Review of Species Selected on the Basis of a New Or Increased Export Quota in 2012

Total Page:16

File Type:pdf, Size:1020Kb

Review of Species Selected on the Basis of a New Or Increased Export Quota in 2012 Review of species selected on the basis of a new or increased export quota in 2012 (Version edited for public release) Prepared for the European Commission Directorate General E - Environment ENV.E.2. – Development and Environment by the United Nations Environment Programme World Conservation Monitoring Centre August, 2012 UNEP World Conservation Monitoring Centre 219 Huntingdon Road Cambridge CB3 0DL United Kingdom Tel: +44 (0) 1223 277314 Fax: +44 (0) 1223 277136 Email: [email protected] Website: www.unep-wcmc.org The United Nations Environment Programme World Conservation Monitoring Centre PREPARED FOR (UNEP-WCMC) is the specialist biodiversity assessment centre of the United Nations The European Commission, Brussels, Belgium Environment Programme (UNEP), the world’s foremost intergovernmental environmental DISCLAIMER organisation. The Centre has been in operation for over 30 years, combining scientific research The contents of this report do not necessarily with practical policy advice. The Centre's reflect the views or policies of UNEP or mission is to evaluate and highlight the many contributory organisations. The designations values of biodiversity and put authoritative employed and the presentations do not imply biodiversity knowledge at the centre of the expressions of any opinion whatsoever on decision-making. Through the analysis and the part of UNEP, the European Commission synthesis of global biodiversity knowledge the or contributory organisations concerning the Centre provides authoritative, strategic and legal status of any country, territory, city or timely information for conventions, countries area or its authority, or concerning the and organisations to use in the development delimitation of its frontiers or boundaries. and implementation of their policies and decisions. © Copyright: 2012, European Commission UNEP-WCMC provides objective and scientifically rigorous procedures and services. These include ecosystem assessments, support for the implementation of environmental agreements, global and regional biodiversity information, research on threats and impacts, and the development of future scenarios. CITATION UNEP-WCMC. 2012. Review of species selected on the basis of a new or increased export quota in 2012. UNEP-WCMC, Cambridge. Table of Contents 2. Introduction ......................................................................................................................... 2 3. Update since Analysis of 2012 CITES export quotas ..................................................... 2 4. Species reviews ................................................................................................................... 3 SPECIES: Clelia clelia .................................................................................................................. 3 SPECIES: Cyclagras gigas ........................................................................................................... 5 SPECIES: Eryx miliaris ............................................................................................................... 7 SPECIES: Kinixys erosa ............................................................................................................. 10 ANNEX. Key to Purpose and Source Codes .................................................................... 13 1 Introduction 2. Introduction Export quotas are usually established by each Party to CITES unilaterally on a voluntary basis, but they can also be set by the Conference of the Parties or result from recommendations of the Animals and Plants Committees. Guidance on the management of nationally established export quotas is available through Resolution Conf. 14.7 (Rev. CoP15). To ensure that national quotas are effectively communicated, countries should inform the CITES Secretariat when they establish national export quotas for CITES species (Resolution Conf. 12.3 [Rev. CoP15]). In turn, the Secretariat informs the Parties. Early each year, the Secretariat publishes a Notification to the Parties containing a list of export quotas of which it has been informed. Quotas generally relate to a calendar year (1st January to 31st December); however, since 2008 sturgeon quotas have related to a quota year (1st March to last day of February). In 2012, quotas were published on the CITES website (www.cites.org) on 29/02/2012 and were updated on 14/05/2012, 15/06/2012, 18/06/2012 and 20/07/2012. Based on the quotas that were available on 29/02/2012, UNEP-WCMC analysed the 2012 CITES export quotas to identify: a) Quotas that were newly established in 2012 (i.e. 2012 quotas for particular species/country/term/source combinations which had not previously been subject to a quota, or had not been subject to a quota for at least the last 5 years); b) Quotas that increased or decreased in 2012 compared with 2011 quotas (or compared with 2010 quotas if no quota was published in 2011). This analysis was discussed at SRG 60 on 07/06/2012. Four species/country combinations were selected for review where the new or increased quota in 2012 indicated that further consideration might be necessary to determine whether the trade would have a harmful effect on the conservation status of the species or on the extent of the territory occupied by the relevant population of the species. These were: Clelia clelia / Guyana: New quota of 100 live individuals. Not been assessed by the IUCN. Cyclagras gigas / Guyana: New quota of 100 live individuals. Not been assessed by the IUCN. Eryx miliaris / Uzbekistan: New quota of 50 live individuals. Not been assessed by the IUCN. Kinixys erosa / Democratic Republic of the Congo: Quota increased from 500 live individuals in 2011 to 3000 live individuals in 2012. Data Deficient. 2.1. Trade data Trade data included in this report were downloaded from the CITES Trade Database on 29/06/2012. 3. Update since Analysis of 2012 CITES export quotas Since publication of the Analysis of 2012 CITES export quotas (SRG 60) and an update provided at SRG 60 on new and increased export quotas published on 14/05/2012, additional CITES export quotas have been published on the CITES website. Of these, the following relate to new or increased quotas for wild specimens: an increase in Prunus africana dry bark from Cameroon from 350 000 kg in 2011 to 658 674 kg in 2012; an increase in Strombus gigas meat from Cuba from 38 350 kg in 2011 to 40 000 kg in 2012; and new quotas of 319.837 m3 logs and 543.724 m3 sawn wood for Pericopsis elata from Congo. 2 Clelia clelia 4. Species reviews REVIEW OF SPECIES SELECTED ON THE BASIS OF A NEW OR INCREASED EXPORT QUOTA IN 2012 REPTILIA COLUBRIDAE SPECIES: Clelia clelia SYNONYMS: Boiruna maculata, Clelia occipitolutea, Clelia plumbea, Pseudoboa clelia COMMON NAMES: Mussurana (Danish), Mussurana (Dutch), Mussurana (English), Mussurana (Finnish), Mussurana (French), Mussurana d'Amérique du sud (French), Mussurana (German), Mussurana (Italian), Masurana (Spanish), Mussurana (Spanish), Massurana (Swedish), Mussurana (Swedish), Mussuranasnok (Swedish). RANGE STATES: Antigua and Barbuda (ex), Argentina, Belize, Bolivia, Brazil, Colombia, Costa Rica, Dominica, Ecuador, El Salvador, French Guiana, Grenada, Guatemala, Guyana, Honduras, Nicaragua, Panama, Paraguay, Peru, Saint Lucia (ex), Suriname, Trinidad and Tobago, Uruguay, Bolivarian Republic of Venezuela. RANGE STATE UNDER REVIEW: Guyana IUCN RED LIST: Not evaluated PREVIOUS EC OPINIONS: - TRADE PATTERNS: Clelia clelia from Guyana was selected for review on the basis of a new quota for 100 live individuals published in 2012 and also because of its unknown global conservation status. Guyana previously published quotas for 50 live individuals 1997-2001. There was no reported direct or indirect trade in this species from Guyana to the EU-27 or any other country over the period 2001-2010. Prior to 2001, there was no reported direct or indirect trade from Guyana to the EU-27, but single live, wild-sourced individuals were exported to countries other than the EU-27 in 1983, 1986 and 1992. CONSERVATION STATUS in range states Clelia clelia is a large constrictor occuring in lowland rainforests of Central and South America, from Guatemala to northwestern Ecuador west of Andes, northern Argentina east of Andes and Uruguay 3 Clelia clelia (Peters and Orejas-Miranda, 1986; O'Shea and Halliday, 2002). It was reported to reach lengths of 2– 2.5 m and to lay 10–22 eggs (O'Shea and Halliday, 2002). Its overall status was reported to be ‘rare’ (O'Shea and Halliday, 2002); it was described as ‘widespread’ in the Guiana Shield (de Ávila Pires, 2005). Guyana: In a preliminary list of herpetofauna of Guyana, Reynolds et al. (2002) recorded C. clelia as present in Guyana based upon collections from the American Museum of Natural History and the British Museum. C. clelia was listed as occurring in Guyana in de Ávila Pires’ (2005) checklist of reptiles of the Guiana Shield. The species was also reported from Guyana by Zaher (1996). No further information could be found on the species’ status in Guyana. Roughly 85 per cent of Guyana’s land area was reported to be forested, with its biodiversity considered largely intact but understudied; pressures/threats to Guyana’s biodiversity were reported to include overhunting on commercial scales and uncontrolled harvesting and poaching, as well as indirect threats such as weak law enforcement, limited knowledge of species’ distributions and behaviour and a limited number of protected areas (Environmental Protection Agency, 2010). Guyana’s Wildlife
Recommended publications
  • The Common Mussurana, Clelia Clelia, Is a Widespread Colubrid Found Throughout Much of Central and South America
    The Common Mussurana, Clelia clelia, is a widespread colubrid found throughout much of Central and South America. One unusual feature of this snake is its ontogenetic color change, as juveniles (above; KU 181136) display markedly different coloration from adults, which are uniform bluish black. In the following study we quantitatively measured the coloration patterns of 105 juvenile museum specimens of this species from many localities throughout its range, and found strong geographic patterns in the shape and size of the head bands. To our knowledge, this information on color pattern variation has not been reported. ' © Luke Welton 111 Arquilla and Lehtinen Head band shape in juveniles of Clelia clelia www.mesoamericanherpetology.com www.eaglemountainpublishing.com Geographic variation in head band shape in juveniles of Clelia clelia (Colubridae) APRIL M. ARQUILLA AND RICHARD M. LEHTINEN Department of Biology, The College of Wooster, 554 E. University St., Wooster, Ohio 44691, United States. E-mail: [email protected] (RML, Corresponding author) ABSTRACT: Color variability influences many aspects of organismal function, such as camouflage, mating displays, and thermoregulation. Coloration patterns frequently vary geographically and sometimes among life stages of the same species. One widely distributed snake species that shows ontogenetic color change is Clelia clelia (Colubridae). No quantitative studies, however, have assessed coloration patterns in this species. To fill this gap and to assess color pattern variation within this species, we measured the lengths of the head and neck bands of 105 specimens of C. clelia from across much of its geographic range. We found that the head band shape and length of specimens from Amazonia and the Atlantic Forest were significantly different compared to those from Central America and the Pacific or Caribbean coasts of South America, and that they stem from a difference in the shape of the first black collar on the snout and the anterior portion of the head.
    [Show full text]
  • A Natural History Database and R Package for Comparative Biology of Snake Feeding Habits
    Biodiversity Data Journal 8: e49943 doi: 10.3897/BDJ.8.e49943 R Package SquamataBase: a natural history database and R package for comparative biology of snake feeding habits Michael C. Grundler ‡ ‡ Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, United States of America Corresponding author: Michael C. Grundler ([email protected]) Academic editor: Scott Chamberlain Received: 07 Jan 2020 | Accepted: 20 Feb 2020 | Published: 27 Mar 2020 Citation: Grundler MC (2020) SquamataBase: a natural history database and R package for comparative biology of snake feeding habits. Biodiversity Data Journal 8: e49943. https://doi.org/10.3897/BDJ.8.e49943 Abstract Public databases in taxonomy, phylogenetics and geographic and fossil occurrence records are key research tools that provide raw materials, on which broad-scale analyses and synthesis in their respective fields are based. Comparable repositories for natural history observations are rare. Publicly available natural history data on traits like diet, habitat and reproduction are scattered across an extensive primary literature and remain relatively inaccessible to researchers interested in using these data for broad-scale analyses in macroecology and macroevolution. In this paper, I introduce SquamataBase, an open-source R package and database of predator-prey records involving the world’s snakes. SquamataBase facilitates the discovery of natural history observations for use in comparative analyses and synthesis and, in its current form, contains observations of at least 18,304 predator individuals comprising 1,227 snake species and at least 58,633 prey items comprising 3,231 prey taxa. To facilitate integration with comparative analysis workflows, the data are distributed inside an R package, which also provides basic functionality for common data manipulation and filtering operations.
    [Show full text]
  • Download (Pdf, 5.07
    THE HERPETOLOGICAL BULLETIN The Herpetological Bulletin is produced quarterly and publishes, in English, a range of articles concerned with herpetology. These include full-length papers, new methodologies, short communications, natural history notes and book reviews. Emphasis is placed on field studies, conservation, veterinary and behavioural aspects. Authors should read and adhere to the British Ecological Society’s Ethical Policy and Guidelines, a full version of which can be found at https://www.thebhs.org/info-advice/134-bhs-ethics-policy or The Herpetological Bulletin (2017), 141: 46- 18. All submissions are liable to assessment by the editorial board for ethical considerations, and publication may be refused on the recommendation of this committee. Contributors may therefore need to justify killing or the use of other animal procedures, if these have been involved in the execution of the work. Likewise, work that has involved the collection of endangered species or disturbance to their habitat(s) will require full justification. Articles reporting the results of experimental research, descriptions of new taxa, or taxonomic revisions should be submitted to The Herpetological Journal (see inside back cover for Editor’s address). Guidelines for Contributing Authors: 1. See the BHS website for a free download of the Bulletin showing Bulletin style. A template is available from the BHS website www.thebhs.org or on request from the Editor. 2. Contributions should be submitted by email to [email protected]. 3. Articles should be arranged in the following general order: Title Name(s) of authors(s) Address(es) of author(s) (please indicate corresponding author) Abstract (required for all full research articles - should not exceed 10% of total word length) Text acknowledgements References Appendices Footnotes should not be included.
    [Show full text]
  • Aberrant Colourations in Wild Snakes: Case Study in Neotropical Taxa and a Review of Terminology
    SALAMANDRA 57(1): 124–138 Claudio Borteiro et al. SALAMANDRA 15 February 2021 ISSN 0036–3375 German Journal of Herpetology Aberrant colourations in wild snakes: case study in Neotropical taxa and a review of terminology Claudio Borteiro1, Arthur Diesel Abegg2,3, Fabrício Hirouki Oda4, Darío Cardozo5, Francisco Kolenc1, Ignacio Etchandy6, Irasema Bisaiz6, Carlos Prigioni1 & Diego Baldo5 1) Sección Herpetología, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo 11800, Uruguay 2) Instituto Butantan, Laboratório Especial de Coleções Zoológicas, Avenida Vital Brasil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil 3) Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Travessa 14, Rua do Matão, 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil 4) Universidade Regional do Cariri, Departamento de Química Biológica, Programa de Pós-graduação em Bioprospecção Molecular, Rua Coronel Antônio Luiz 1161, Pimenta, Crato, Ceará 63105-000, CE, Brazil 5) Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, CP 3300, Posadas, Misiones, Argentina 6) Alternatus Uruguay, Ruta 37, km 1.4, Piriápolis, Uruguay Corresponding author: Claudio Borteiro, e-mail: [email protected] Manuscript received: 2 April 2020 Accepted: 18 August 2020 by Arne Schulze Abstract. The criteria used by previous authors to define colour aberrancies of snakes, particularly albinism, are varied and terms have widely been used ambiguously. The aim of this work was to review genetically based aberrant colour morphs of wild Neotropical snakes and associated terminology. We compiled a total of 115 cases of conspicuous defective expressions of pigmentations in snakes, including melanin (black/brown colour), xanthins (yellow), and erythrins (red), which in- volved 47 species of Aniliidae, Boidae, Colubridae, Elapidae, Leptotyphlopidae, Typhlopidae, and Viperidae.
    [Show full text]
  • A Morphological and Molecular Study of Hydrodynastes Gigas (Serpentes, Dipsadidae), a Widespread Species from South America
    A morphological and molecular study of Hydrodynastes gigas (Serpentes, Dipsadidae), a widespread species from South America Priscila S. Carvalho1,2, Hussam Zaher3, Nelson J. da Silva Jr4 and Diego J. Santana1 1 Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil 2 Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio preto, São Paulo, Brazil 3 Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo, Brazil 4 Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil ABSTRACT Background. Studies with integrative approaches (based on different lines of evidence) are fundamental for understanding the diversity of organisms. Different data sources can improve the understanding of the taxonomy and evolution of snakes. We used this integrative approach to verify the taxonomic status of Hydrodynastes gigas (Duméril, Bibron & Duméril, 1854), given its wide distribution throughout South America, including the validity of the recently described Hydrodynastes melanogigas Franco, Fernandes & Bentim, 2007. Methods. We performed a phylogenetic analysis of Bayesian Inference with mtDNA 16S and Cytb, and nuDNA Cmos and NT3 concatenated (1,902 bp). In addition, we performed traditional morphometric analyses, meristic, hemipenis morphology and coloration pattern of H. gigas and H. melanogigas. Results. According to molecular and morphological characters, H. gigas is widely Submitted 19 May 2020 distributed throughout South America. We found no evidence to support that H. Accepted 9 September 2020 gigas and H. melanogigas species are distinct lineages, therefore, H. melanogigas is a Published 25 November 2020 junior synonym of H.
    [Show full text]
  • Stiiemtific PNSTHTUTHQNS in LATIN AMERICA the BUTANTAN Institutel
    StiIEMTIFIC PNSTHTUTHQNS IN LATIN AMERICA THE BUTANTAN INSTITUTEl Director: Dr. Jayme Cavalcanti Xão Paulo, Brazil The ‘%utantan Institute of Serum-Therapy,” situated in the middle of a large park on the outskirts of Sao Paulo, was founded in 1899 by the Government of the State primarily for the purpose of preparing plague vaccine and serum. Dr. Vital Brazil, the first Director of the Institute, resumed there the studies on snake poisons which he had begun in 1895 on his return from France, and his work and that of his colleagues soon caused the Institute to become world-famous for its work in that field. Dr. Brazil was one of the first workers to observe the specificity of snake venom, that is, that different species of snakes have different venoms and that, therefore, different sera must be made for treating their bites. His work on snake poisons included zoological studies of the various species of snakes in the country, with their geographic distribution, biology, common names, types of venom, etc.; the prepara- tion of sera from various types of venom; the teaching of preventive measures, including the method of capturing snakes and sending them ’ to the specialized centers; establishment of a system of exchange of live snakes for ampules of serum between the farmers and the Insti- tute; the introduction into the death certificate of an entry for the recording of snake-bite as a cause of death, and the compiling of sta- tistics of bites, treatment used, and results. Dr. Brazil was followed in the directioqof the Institute, in 1919, by Dr.
    [Show full text]
  • Additional Defensive Behaviours of Dipsas Mikanii (Schlegel, 1837) and Taeniophallus Occipitalis (Jan, 1863) (Serpentes: Dipsadidae)
    Herpetology Notes, volume 12: 359-362 (2019) (published online on 0 April 2019) Additional defensive behaviours of Dipsas mikanii (Schlegel, 1837) and Taeniophallus occipitalis (Jan, 1863) (Serpentes: Dipsadidae) Bruno F. Fiorillo1,*, Giordano N. Rossi2, and Marcio Martins3 Snakes evolved defensive behaviours to avoid being 2015). Its diet is specialized in gastropods (Oliveira, detected, injured or killed by predators, and they possess 2001; Marques et al., 2015). an array of such behaviours (see a review in Greene, Taeniophallus occipitalis is a terrestrial, diurnal species 1988). The family Dipsadidae is widespread in the New that is found in leaf-litter (Sawaya et al., 2008; Morato et World and exhibits a high species diversity in Central al., 2011; Marques et al., 2015) of open vegetation types and South America, and the West Indies (Zaher et al., of the Cerrado (Scrocchi and Giraudo, 2005; França 2009; Vidal et al., 2010). Previous studies have reported et al., 2008; Sawaya et al., 2008). It does not seem to different defensive tactics used by several species of this persist in disturbed areas (Sawaya et al., 2008). Its diet family (e.g. Martins and Oliveira, 1998; Martins et al., is composed mainly of anurans and lizards (Yanosky et 2008; Maia-Carneiro et al., 2012; Menezes et al., 2015, al., 1996; Cechin, 1999; Marques et al., 2009). 2017; Atkinson, 2018; Fiorillo et al., 2018). However, Known defensive behaviours of D. mikanii are head there is still much to discover about defensive behavior triangulation, hiding the head, cloacal discharge, and in snakes, and the description and documentation of striking (Marques et al., 2015).
    [Show full text]
  • Clelia Plumbea Wied, 1820.Musurana Misionera O Gris
    Cuad. herpetol. 26 (Supl. 1): 327-374 (2012) Categoría UICN plejos de cabañas, clubes recreativos, aumento de No evaluada pobladores en zonas ribereñas, extracción de leña, construcción de represas). Esta especie presenta Justificación otras características que la convierten en Vulnerable Esta especie había sido excluida de Argentina por como ser su especialización en alimentación (ofio- Zaher (1996), y varios taxones que incluyen princi- fagia), crecimiento lento y maduración tardía con palmente a Boiruna maculata, Clelia clelia y Clelia puestas relativamente pequeñas y largos períodos plumbea, habían sido confundidas frecuentemente entre puestas, además de su gran tamaño (Giraudo, en la literatura (Giraudo, 2001). Posteriormente 2001; Webb et al., 2002; Pizzatto, 2005). Scott et al., (2006) examinaron los géneros Boiru- na y Clelia en Argentina y Paraguay, incluyendo Sugerencias y acciones de conservación nuevamente a Clelia clelia en Argentina, mediante Su área de distribución posee pocas áreas protegidas material examinado del este de Formosa, Chaco, y estas están pobremente implementadas (Giraudo, Santa Fe y norte de Corrientes (posiblemente áreas 2001; Arzamendia y Giraudo, 2012). Se debería limítrofes de Misiones). Su distribución está asociada aumentar su superficie, representatividad e invertir a los grandes ríos Paraná y Paraguay (Arzamendia mayor cantidad de recursos humanos y materiales y Giraudo, 2009), donde habita principalmente en para mejorar la situación de las áreas protegidas bosques húmedos, que están siendo rápidamente existentes (por ejemplo: Sitios Ramsar Jaaukanigás y modificados en estas áreas por actividades humanas Chaco, Reserva de Biósfera Laguna Oca, Isla Apipé, (urbanización, construcción de viviendas, com- entre otras). Clelia plumbea Wied, 1820. Musurana misionera o gris Giraudo, A.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • A Single Specimen Reveals Multiple New Aspects of Diet and Distribution of Snakes
    Herpetology Notes, volume 14: 385-390 (2021) (published online on 15 February 2021) A Matryoshka of scales: a single specimen reveals multiple new aspects of diet and distribution of snakes Thaís B. Guedes1 Snakes comprise approximately 3,800 species et al., 2013). Much of what is known about the diet (Uetz and Hošek, 2020), all of which are carnivorous, of C. plumbea is based on the analysis of gut contents consuming an enormous variety of prey types captured of preserved specimens (Cunha and Nascimento, by active foraging or ambush methods (Greene, 1978; Gaiarsa et al., 2013), with two reports about 1997; Grundler 2020). Despite recent advances, prey ingestion position being head-first (Teixeira and detailed information on feeding ecology is still scarce, Vrcibradic, 2003; Drummond et al., 2010). particularly for many species of the rich snake fauna Here we report four interesting findings that came of the Neotropics (e.g., Marques and Sazima, 1997; from the examination of a single specimen of Clelia Hartmann and Marques, 2005; Gaiarsa et al., 2013; plumbea housed in a scientific collection: (1) two new Roberto and Souza, 2020). The frequency of prey items records of prey items for C. plumbea; (2) an unusual found in the stomachs of specimens collected or housed food item found in the stomach of the Yellow-bellied in scientific collections is low (e.g., Vitt and Vangilder, Puffing-snake (Spilotes sulphureus) eaten by the C. 1983; Marques and Sazima, 1997) and the observation plumbea; (3) the second record of C. plumbea in the of a predation event in the field is rare and unpredictable state of Maranhão; and (4) the second record of S.
    [Show full text]
  • Ecology of the Sand Boa, Eryx Jayakari in Riyadh Region of Saudi Arabia
    Saudi Journal of Biological Sciences (2014) xxx, xxx–xxx King Saud University Saudi Journal of Biological Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Ecology of the Sand Boa, Eryx jayakari in Riyadh Region of Saudi Arabia Mohammed K. Al-Sadoon *, Fahed S. Al-Otaibi Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia Received 7 April 2014; revised 22 April 2014; accepted 30 April 2014 KEYWORDS Abstract The ecology, feeding habits and sexual dimorphism in Arabian Sand Boa, Eryx jayakari Reptiles; from the Central region of Saudi Arabia, were studied. In this study the E. jayakari was recorded Arabian Sand Boa; for the first time from several sites. Significant differences were noted in total length of body and Feeding habitat; tail, and body diameter of male and female. The females were of larger size. The mean number Sexual dimorphism of the dorsal body scales, ventrals and subcaudal for both sexes were not significantly different. The mean number of the dorsal body scales, ventral body scales and subcaudal scales for the females was 43, 169 and 18 scales which were not significantly different from respectively ones in males 42, 168 and 18 scales. Frequent prey consumed were lizards (50%), rodents (25%) and arthropods (12.5%). ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. 1. Introduction Arabia (Mandaville, 1965, 1967), Central Arabia (Schmidt, 1941; Al-Wailly and Al-Uthman, 1971), and Riyadh Saudi Arabia lies between Africa and Asia, occupying about (Hussein, 1966). Farag and Banaja (1980) have identified four three fourth of the Arabian Peninsula.
    [Show full text]
  • Short Communication Non-Venomous Snakebites in the Western Brazilian
    Revista da Sociedade Brasileira de Medicina Tropical Journal of the Brazilian Society of Tropical Medicine Vol.:52:e20190120: 2019 doi: 10.1590/0037-8682-0120-2019 Short Communication Non-venomous snakebites in the Western Brazilian Amazon Ageane Mota da Silva[1],[2], Viviane Kici da Graça Mendes[3],[4], Wuelton Marcelo Monteiro[3],[4] and Paulo Sérgio Bernarde[5] [1]. Instituto Federal do Acre, Campus de Cruzeiro do Sul, Cruzeiro do Sul, AC, Brasil. [2]. Programa de Pós-Graduação Bionorte, Campus Universitário BR 364, Universidade Federal do Acre, Rio Branco, AC, Brasil. [3]. Universidade do Estado do Amazonas, Manaus, AM, Brasil. [4]. Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil. [5]. Laboratório de Herpetologia, Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, AC, Brasil. Abstract Introduction: In this study, we examined the clinical manifestations, laboratory evidence, and the circumstances of snakebites caused by non-venomous snakes, which were treated at the Regional Hospital of Juruá in Cruzeiro do Sul. Methods: Data were collected through patient interviews, identification of the species that were taken to the hospital, and the clinical manifestations. Results: Eight confirmed and four probable cases of non-venomous snakebites were recorded. Conclusions: The symptoms produced by the snakes Helicops angulatus and Philodryas viridissima, combined with their coloration can be confused with venomous snakes (Bothrops atrox and Bothrops bilineatus), thus resulting in incorrect bothropic snakebite diagnosis. Keywords: Serpentes. Dipsadidae. Snakes. Ophidism. Envenomation. Snakes from the families Colubridae and Dipsadidae incidence of cases is recorded (56.1 per 100,000 inhabitants)2. Of are traditionally classified as non-poisonous, despite having these, bites by non-venomous snakes are also computed (Boidae, the Duvernoy's gland and the capacity for producing toxic Colubridae, and Dipsadidae) which, depending on the region, secretions, which eventually cause envenomations1.
    [Show full text]