Temporal Variation in Population Structure of the Isopod Urobopyrus Processaerichardson, 1904 (Isopoda: Bopyridae) Infesting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Three New Species of Scyracepon Tattersall, 1905 (Isopoda: Bopyridae) from Pacific Islands, with Comments on the Rarity of Bopyrids Parasitizing Brachyurans
Zootaxa 4851 (1): 151–162 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4851.1.6 http://zoobank.org/urn:lsid:zoobank.org:pub:2B3E81FE-D1DC-4087-B36D-80158A178638 Three new species of Scyracepon Tattersall, 1905 (Isopoda: Bopyridae) from Pacific islands, with comments on the rarity of bopyrids parasitizing brachyurans JIANMEI AN1*, WANRUI ZHENG1§, JIELONG LIANG1§ & GUSTAV PAULAY2 1 School of Life Science, Shanxi Normal University, Linfen, 041000, P. R. China [email protected]; https://orcid.org/0000-0003-2231-7327 [email protected]; https://orcid.org/0000-0002-6040-5603 [email protected]; https://orcid.org/0000-0003-4029-0412 2 Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA [email protected]; https://orcid.org/0000-0003-4118-9797 *Corresponding author. § These two authors contributed equally to this work. Abstract Three new species of the bopyrid genus Scyracepon Tattersall, 1905 are described from crabs collected on Pacific Islands: Scyracepon polynesiensis n. sp. from the Society Islands, S. pseudoliomerae n. sp. from the Mariana Islands, and S. biglobosus n. sp. from the Line Islands. The first two were found infesting Xanthias lamarckii and Pseudoliomera sp. (Xanthidae), a new host family for species of Scyracepon, and the last was found parasitizing Schizophrys aspera (Majidae). Scyracepon now includes 11 species, all but one known from single collections, infesting 12 host species in 9 brachyuran families. The discovery of three new species, each rare, suggests that crab parasites are undersampled, and further suggests that the low relative diversity of bopyrids known from brachyurans may partly reflect this undersampling. -
Perception of Faunal Circadian Rhythms Depends on Sampling Technique T ∗ Raül Triay-Portellaa, , Aitor Escribanob, José G
Marine Environmental Research 134 (2018) 68–75 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Perception of faunal circadian rhythms depends on sampling technique T ∗ Raül Triay-Portellaa, , Aitor Escribanob, José G. Pajueloa, Fernando Tuyac a Applied Marine Ecology and Fisheries Group (EMAP), University Research Institute for Environmental Studies and Natural Resources (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain b AZTI-Tecnalia, Derio, Basque Country, Spain c Biodiversity and Conservation Research Group, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, LasPalmas, Spain ARTICLE INFO ABSTRACT Keywords: Ecologists aim at disentangling how species vary in abundance through spatial and temporal scales, using a Diel patterns range of sampling techniques. Here, we investigated the circadian rhythm of seagrass-associated decapod Decapods crustaceans through three sampling techniques. Specifically, we compared the abundance, biomass and structure Seagrass meadows of seagrass-associated decapod assemblages between the day and night using a hand net, an airlift pump and Sampling techniques baited traps. At night, the hand-net consistently collected a larger total abundance and biomass of decapods, Eastern Atlantic what resulted in significant diel differences, which were detected for the total biomass, but not for the total abundance, when decapods were sampled through an airlift pump. Traps, however, collected a larger total abundance, but not total biomass, of decapods during the night. In summary, our perception of faunal diel rhythms is notably influence by the way organisms are sampled. 1. Introduction García Raso et al., 2006; Daoulati et al., 2014). Decapods typically present circadian rhythms in their swimming and locomotion activities Ecological systems are inherently complex entities, where a large in response to light intensity (Aguzzi et al., 2009). -
Decapod Crustacean Assemblages Off the West Coast of Central Italy (Western Mediterranean)
SCIENTIA MARINA 71(1) March 2007, 19-28, Barcelona (Spain) ISSN: 0214-8358 Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean) EMANUELA FANELLI 1, FRANCESCO COLLOCA 2 and GIANDOMENICO ARDIZZONE 2 1 IAMC-CNR Marine Ecology Laboratory, Via G. da Verrazzano 17, 91014 Castellammare del Golfo (Trapani) Italy. E-mail: [email protected] 2 Department of Animal and Human Biology, University of Rome “la Sapienza”, V.le dell’Università 32, 00185 Rome, Italy. SUMMARY: Community structure and faunal composition of decapod crustaceans off the west coast of central Italy (west- ern Mediterranean) were investigated. Samples were collected during five trawl surveys carried out from June 1996 to June 2000 from 16 to 750 m depth. Multivariate analysis revealed the occurrence of five faunistic assemblages: 1) a strictly coastal community over sandy bottoms at depths <35 m; 2) a middle shelf community over sandy-muddy bottoms at depths between 50 and 100 m; 3) a slope edge community up to 200 m depth as a transition assemblage; 4) an upper slope community at depths between 200 and 450 m, and 5) a middle slope community at depths greater than 450 m. The existence of a shelf- slope edge transition is a characteristic of the western and central Mediterranean where a Leptometra phalangium facies is found in many areas at depths between 120 and 180 m. The brachyuran crab Liocarcinus depurator dominates the shallow muddy-sandy bottoms of the shelf, while Parapenaeus longirostris is the most abundant species from the shelf to the upper slope assemblage. -
From Ghost and Mud Shrimp
Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 . -
Seasonality of Planktonic Crustacean Decapod Larvae in the Subtropical Waters of Gran Canaria Island, NE Atlantic
SCIENTIA MARINA 82(2) June 2018, 119-134, Barcelona (Spain) ISSN-L: 0214-8358 https://doi.org/10.3989/scimar.04683.08A Seasonality of planktonic crustacean decapod larvae in the subtropical waters of Gran Canaria Island, NE Atlantic José M. Landeira 1, Fernando Lozano-Soldevilla 2 1 Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan. (JML) (Corresponding author) E-mail: [email protected]. ORCID ID: http://orcid.org/0000-0001-6419-2046 2 Departamento de Biología Animal, Edafología y Geología. Universidad de La Laguna, Avd. Astrofísico Francisco Sánchez, s/n. 38200 La Laguna, Spain. (FL-S) E-mail: [email protected]. ORCID ID: http://orcid.org/0000-0002-1028-4356 Summary: A monitoring programme was established to collect plankton samples and information of environmental vari- ables over the shelf off the island of Gran Canaria during 2005 and 2006. It produced a detailed snapshot of the composi- tion and seasonal assemblages of the decapod larvae community in this locality, in the subtropical waters of the Canary Islands (NE Atlantic), where information about crustacean phenology has been poorly studied. The larval community was mainly composed of benthic taxa, but the contribution of pelagic taxa was also significant. Infraorders Anomura (33.4%) and Caridea (32.8%) accounted for more than half the total collected larvae. High diversity, relatively low larval abundance throughout the year and weak seasonality characterized the annual cycle. However, in relation to the temporal dynamics of temperature, two distinct larval assemblages (cold and warm) were identified that correspond to periods of mixing and strati- fication of the water column. -
Feeding Habits of the Prawns Processa Edulzs and Palaemon Adspersus (Crustacea, Decapoda, Caridea) in the Alfacs Bay, Ebro Delta (Nw Mediterranean)
FEEDING HABITS OF THE PRAWNS PROCESSA EDULZS AND PALAEMON ADSPERSUS (CRUSTACEA, DECAPODA, CARIDEA) IN THE ALFACS BAY, EBRO DELTA (NW MEDITERRANEAN) Guerao, G., 1993-1994. Feeding habits of the prawns Processa edulis and Palaemon adspersus (Crustacea, Decapoda, Caridea) in the Alfacs Bay, Ebro Delta (NW Mediterranean). Misc. Zool., 17: 115-122. Feeding habits of the prawns Processa edulis and Palaemon adspersus (Crustacea, Decapoda, Caridea) in the Alfacs Bay, Ebro Delta (NW Mediterranean).- The stomach contents of 147 Palaemon adspersus Rathke, and 102 Processa edulis (Risso) were analyzed. The frequency of occurrence method and the points method were used. The role of these species in the food web of Cymodocea nodosa meadows is defined. Results indicate that both species are predators of benthic invertebrates rather than scavengers or detritus feeders. The main food items varied according to species. The diet of Palaemon adspersus consisted almost entirely of crustaceans, molluscs, and plant material, with amphipods playing a major role. Processa edulis ate an almost equal amount of crustaceans and polychaetes. In P. adspersus, most dietary items differed according to size classes of prawn. Key words: Feeding, Prawns, Palaemon, Processa, Ebro Delta. (Rebut: 18 V 94; Acceptació condicional: 13 IX 94; Acc. definitiva: 18 X 94) G. Guerao, Dept. de Biologia Animal (Artrdpodes), Fac. de Biologia, Univ. de Barcelona, Avgda. Diagonal 645, 08028 Barcelona, Espanya (Spain). INTRODUCTION and has been recorded from as far north as the Norwegian Sea to the Marocco coast Processidae prawns are abundant in coastal (LAGARDERE,1971) and the Mediterranean waters of temperate and tropical areas. (ZARIQUIEYÁLVAREZ, 1968). This species is Processa edulis (Risso, 1816) is a comrnon the subject of commercial fisheries in many littoral mediterranean prawn (ZARIQUIEY areas (JENSEN,1958; HOLTHUIS,1980; ÁLVAREZ,1968). -
California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida)
California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida) by Timothy D. Stebbins Presented to SCAMIT 13 February 2012 City of San Diego Marine Biology Laboratory Environmental Monitoring & Technical Services Division • Public Utilities Department (Revised 1/18/12) California Epicarideans Suborder Cymothoida Subfamily Phyllodurinae Superfamily Bopyroidea Phyllodurus abdominalis Stimpson, 1857 Subfamily Athelginae Family Bopyridae * Anathelges hyphalus (Markham, 1974) Subfamily Pseudioninae Subfamily Hemiarthrinae Aporobopyrus muguensis Shiino, 1964 Hemiarthrus abdominalis (Krøyer, 1840) Aporobopyrus oviformis Shiino, 1934 Unidentified species † Asymmetrione ambodistorta Markham, 1985 Family Dajidae Discomorphus magnifoliatus Markham, 2008 Holophryxus alaskensis Richardson, 1905 Goleathopseudione bilobatus Román-Contreras, 2008 Family Entoniscidae Munidion pleuroncodis Markham, 1975 Portunion conformis Muscatine, 1956 Orthione griffenis Markham, 2004 Superfamily Cryptoniscoidea Pseudione galacanthae Hansen, 1897 Family Cabiropidae Pseudione giardi Calman, 1898 Cabirops montereyensis Sassaman, 1985 Subfamily Bopyrinae Family Cryptoniscidae Bathygyge grandis Hansen, 1897 Faba setosa Nierstrasz & Brender à Brandis, 1930 Bopyrella calmani (Richardson, 1905) Family Hemioniscidae Probopyria sp. A Stebbins, 2011 Hemioniscus balani Buchholz, 1866 Schizobopyrina striata (Nierstrasz & Brender à Brandis, 1929) Subfamily Argeiinae † Unidentified species of Hemiarthrinae infesting Argeia pugettensis -
Some European Processidae (Crustacea, Decapoda, Caridea) I > A
J. nat. Hist., 1975, 9 ; 693-703 ' ^ . ^ctUxUAAj^- Some European Processidae (Crustacea, Decapoda, Caridea) i > A. H. Y. AL-ADHUB* and D. I WILLIAMSON University of Liverpool Department of Marine Biology, Port Erin, Isle of Man library D1VlSlon of T , , Crustww Introduction The European Processidae all belong to the genus Processa Leach, 1815 (= Nika Risso, 1816). Prior to 1936, only one species was generally recognized in this region, although some authors, notably Kemp (1910), had commented on the great differences between forms which they regarded as representing the extremes of specific variation. The first clear demonstration that more than one species was involved was provided by Lebour (1936) who showed that two species were present near Plymouth; she described these under the names P. canaliculata Leach and P. edulis (Risso). Later, after a thorough study of specimens from many localities, Nouvel & Holthuis (1957) recognized eight European species, one of these being further divisible into three subspecies. These authors considered that Lebour had misapplied the name P. canaliculata, and they attached it to a species which they regarded as being in better agree- ment with the illustration by Leach (1815). They redescribed the species which Lebour had called P. canaliculata under the name P. mediterranea (Parisi). Allen (1961) questioned the status of the nominal species which Nouvel & Holthuis (1957) had called P. canaliculata and P. mediterranea, claiming that specimens captured off north-east England could not be satisfactorily identified using the key given by these authors. He regarded most of the points of distinction between the two forms as representing " extremes of a variation that is related to the growth of the shrimp '' and came to the conclusion that P. -
California Bopyridae T
California Bopyridae T. D. Stebbins, January 2012 (Crustacea, Isopoda, Cymothoida, Bopyroidea) Subfamily Species Host(s) Range Notes Pseudioninae Aporobopyrus muguensis Porcelain crabs Pachycheles Bodega Bay, northern California Shiino, 1964 holosericus, P. pubescens, and P. to central west Baja California; rudis in California 10-12 m Pseudioninae Aporobopyrus oviformis Porcelain crab Pachycheles Point Mugu, California and Shiino, 1934 pubescens in California Japan; 10-12 m Pseudioninae Asymmetrione ambodistorta Hermit crab Isocheles pilosus Southern California Markham, 1985 Pseudioninae Discomorphus magnifoliatus Porcelain crab Petrolisthes Pacific Grove, Monterey County, Markham, 2008 cinctipes California Pseudioninae Goleathopseudione bilobatus Galatheid crab Munidopsis Central California; 4100 m Because the stem name “Ione” Román-Contreras, 2008 antonii is feminine, so should be “Goleathopseudione.” Thus, the correct species name should be “bilobata” (J. Markham, pers. comm.) Pseudioninae Munidion pleuroncodis Galatheid pelagic red crab Central California to central Markham, 1975 Pleuroncodes planipes Mexico Pseudioninae Orthione griffenis Markham, Mud shrimp Upogebia British Columbia to southern 2004 pugettensis and Upogebia California (Introduced species macginitieorum from Asia: China, Japan) Pseudioninae Pseudione galacanthae Galatheid crabs Galacantha British Columbia to Gulf of Need to confirm: Record from Hansen, 1897 diomediae and Munida California R. Brusca “List of California quadrispina Species” Page 1 California Bopyrid Isopods / T. D. Stebbins (January 2012) Subfamily Species Host(s) Range Notes Pseudioninae Pseudione giardi Calman, 1898 Hermit crabs of the genus Bering Sea to San Juan Islands, Added to SCAMIT Ed. 6 list Pagurus; plus 1 possible record Washington; possibly extended (SCAMIT, 2011) based on trawl record off PV (D. Cadien, pers. infesting the lithodid into California (see Notes) comm.); However, P. -
ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste -
An Illustrated Key to the Malacostraca (Crustacea) of the Northern Arabian Sea
An illustrated key to the Malacostraca (Crustacea) of the northern Arabian Sea. Part 1: Introduction Item Type article Authors Tirmizi, N.M.; Kazmi, Q.B. Download date 25/09/2021 13:22:23 Link to Item http://hdl.handle.net/1834/31867 Pakistan Journal of Marine Sciences, Vol.2(1), 49-66, 1993 AN IlLUSTRATED KEY TO THE MALACOSTRACA (CRUSTACEA) OF THE NORTHERN ARABIAN SEA Part 1: INTRODUCTION Nasima M. T:innizi and Quddusi B. Kazmi Marine Reference Collection and Resource Centre, University of Karachi Karachi-75270, Pakistan ABS'J.'R.ACT: The key deals with the Malacostraca from the northern Arabian Sea (22°09'N to 10°N and 50°E to 76°E). It is compiled from the specimens available to us and those which are in the literature. An introduction to the class Malacostraca and key to the identification of subclasses, superorders and orders is given. All the key characters are illustrated. Original references with later changes are men tioned. The key will be published in parts not necessarily in chronological order. KEY WORDS: Malacostraca -Arabian Sea - Orders -Keys. INTRODUCTION The origin of this work can be traced back to the prepartition era and the early efforts of carcinologists who reported on the marine Crustacea of the northern Arabi an Sea and adjacent oceanic zones. We owe indebtedness to many previous workers like Alcock (1896-1901) and Henderson (1893) who had also contributed to the list of species which the fauna now embodies. With the creation of Pakistan carcinological studies were 'undertaken specially by the students and scientists working at the Zoolo gy Department, University of Karachi. -
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.