Cacao and Its Allies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theobroma Cacao L.) Populations Based on Chloroplast Markers
diversity Article Geographic Patterns of Genetic Variation among Cacao (Theobroma cacao L.) Populations Based on Chloroplast Markers Helmuth Edisson Nieves-Orduña 1,2, Markus Müller 1 , Konstantin V. Krutovsky 1,2,3,4 and Oliver Gailing 1,2,* 1 Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany; [email protected] (H.E.N.-O.); [email protected] (M.M.); [email protected] (K.V.K.) 2 Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany 3 Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia 4 Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia * Correspondence: [email protected] Abstract: The cacao tree (Theobroma cacao L.) is native to the Amazon basin and widely cultivated in the tropics to produce seeds, the valuable raw material for the chocolate industry. Conservation of cacao genetic resources and their availability for breeding and production programs are vital for securing cacao supply. However, relatively little is still known about the phylogeographic structure Citation: Nieves-Orduña, H.E.; of natural cacao populations. We studied the geographic distribution of cpDNA variation in different Müller, M.; Krutovsky, K.V.; Gailing, populations representing natural cacao stands, cacao farms in Ecuador, and breeding populations. O. Geographic Patterns of Genetic Variation among Cacao (Theobroma We used six earlier published cacao chloroplast microsatellite markers to genotype 233 cacao samples. cacao L.) Populations Based on In total, 23 chloroplast haplotypes were identified. -
Cocoa (Theobroma Cacao L.) Malvaceae
Cocoa (Theobroma cacao L.) Malvaceae • Cocoa is an important commercial plantation crop of the world • Cocoa is a crop of humid tropics and so it was introduced as a mixed crop in India in areas where the environments suit the crop • It is cultivated in coconut and arecanut plantations large scale from 1970 onwards • It is grown as an under- storey intercrop with sufficient shade in southern states of India • In India, the current production is about 12,000 Metric Tonnes and Tamil Nadu produces about 400 Metric Tonnes. Climate and soil • The natural habitat of the cocoa tree is in the lower storey of the evergreen rainforest, and climatic factors, particularly temperature and rainfall, are important in encouraging optimum growth • Cocoa is a perennial crop, and it can withstand different seasonal variations with good health and yield potential • Cocoa is normally cultivated at altitudes upto 1200 m above MSL with an annual rainfall of 1000mm to 2000mm and a relative humidity of 80 % with maximum 350C and minimum temperature of 150C • Cocoa can be grown as intercrop in coconut and arecanut gardens. It is predominantly grown on red lateritic soils. It thrives well on wide range of soil types with • pH ranging from 4.5- 8.0 with optimum being 6.5- 7.0. Varieties • There are three varietal types in cocoa namely Criollo, Forastero and Trinitario. • Forastero types are known to perform well under Indian conditions. • Kerala Agricultural University has released 7 improved clones of Forestero types namely CCRP – 1, CCRP – 2, CCRP – 3, CCRP – 4, CCRP– 5, CCRP – 6 and CCRP – 7 and 3 hybrids CCRP – 8, CCRP – 9, CCRP – 10. -
Redalyc.SPATIAL STRUCTURE of Theobroma Subincanum Mart. AND
Revista Árvore ISSN: 0100-6762 [email protected] Universidade Federal de Viçosa Brasil de Freitas Encinas Dardengo, Juliana; Bandini Rossi, Ana Aparecida; da Silva, Carolina Joana; Silveira, Marcos SPATIAL STRUCTURE OF Theobroma subincanum Mart. AND Theobroma speciosum Willd. ex Spreng. IN THE PARQUE NACIONAL DO JURUENA, MATO GROSSO STATE, BRAZIL Revista Árvore, vol. 41, núm. 1, 2017, pp. 1-9 Universidade Federal de Viçosa Viçosa, Brasil Available in: http://www.redalyc.org/articulo.oa?id=48851057001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Spatial structure of theobroma subincanum ... 1 SPATIAL STRUCTURE OF Theobroma subincanum Mart. AND Theobroma speciosum Willd. ex Spreng. IN THE PARQUE NACIONAL DO JURUENA, MATO GROSSO STATE, BRAZIL 1 Juliana de Freitas Encinas Dardengo 2* , Ana Aparecida Bandini Rossi 3, Carolina Joana da Silva 4 and Marcos Silveira 5 1 Received on 27.11.2013 accepted for publication on 09.11.2016. 2 Universidade Federal do Amazonas, Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Manaus, AM - Brasil. E-mail: <[email protected]>. 3 Universidade do Estado de Mato Grosso, Fundação Universidade do Estado de Mato Grosso, Departamento de Ciências Biológicas, Alta Floresta, MT - Brasil. E-mail: <[email protected]>. 4 Universidade do Estado de Mato Grosso, Centro de Pesquisa de Limnologia, Biodiversidade e Etnobiologia do Pantanal, Cáceres, MT - Brasil. E-mail: <[email protected]>. 5 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Rio Branco, AC - Brasil. -
Cacao Strategy Final
CacaoNet is the Global Network for Cacao Genetic Resources, coordinated by Bioversity International with member representatives from various cocoa research institutes and organizations that support cocoa research. CacaoNet aims to optimize the conservation and use of cacao genetic resources as the foundation of a sustainable cocoa economy (from farmers through research to consumers), by coordinating and strengthening the conservation and related research efforts of a worldwide network of public and private sector stakeholders. www.cacaonet.org Bioversity International is a world leading research-for-development non-profit organization, working towards a world in which smallholder farming communities in developing countries are thriving and sustainable. Bioversity International’s purpose is to investigate the use and conservation of agricultural biodiversity in order to achieve better nutrition, improve smallholders’ livelihoods and enhance agricultural sustainability. Bioversity International works with a global range of partners to maximize impact, to develop capacity and to ensure that all stakeholders have an effective voice. www.bioversityinternational.org Bioversity International is a member of the CGIAR Consortium, a global partnership that unites organizations engaged in research for a food secure future. CGIAR research is dedicated to reducing rural poverty increasing food security, improving human health and nutrition, and ensuring more sustainable management of natural resources. It is carried out by the 15 centers who are members of the CGIAR Consortium in close collaboration with hundreds of partner organizations, including national and regional research institutes, civil society organizations, academia, and the private sector. www.cgiar.org While every effort is made to ensure the accuracy of the information reported in this publication, CacaoNet, Bioversity International and any contributing authors cannot accept any responsibility for the consequences of the use of this information. -
Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential
nutrients Review Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential Olga Rojo-Poveda 1,2,* , Letricia Barbosa-Pereira 2,3 , Giuseppe Zeppa 2,* and Caroline Stévigny 1,* 1 RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium 2 Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy 3 Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] * Correspondence: [email protected] (O.R.-P.); [email protected] (G.Z.); [email protected] (C.S.) Received: 20 March 2020; Accepted: 15 April 2020; Published: 17 April 2020 Abstract: Cocoa bean shells (CBS) are one of the main by-products from the transformation of cocoa beans, representing 10%-17% of the total cocoa bean weight. Hence, their disposal could lead to environmental and economic issues. As CBS could be a source of nutrients and interesting compounds, such as fiber (around 50% w/w), cocoa volatile compounds, proteins, minerals, vitamins, and a large spectrum of polyphenols, CBS may be a valuable ingredient/additive for innovative and functional foods. In fact, the valorization of food by-products within the frame of a circular economy is becoming crucial due to economic and environmental reasons. The aim of this review is to look over the chemical and nutritional composition of CBS and to revise the several uses that have been proposed in order to valorize this by-product for food, livestock feed, or industrial usages, but also for different medical applications. -
Seeds and Plants
r. i. -20. U. S. DEPARTMENT OF AGRICULTURE. SECTION OF SKKI) AND PLANT INTRODUCTION. INVENTORY NO. 8. SEEDS AND PLANTS, IMI'ORTED FOR DISTRIBUTION IN COOPERATION WITH THE AGRICULTURAL EXPERIMENT STATIONS. NUMBE11S 3401-4350. 10183—00 1 INVENTORY OF FOREIGN SEEDS AND PLANTS. INTRODUCTORY STATEMENT. This inventory or catalogue of seeds and plants includes a number of exceptionally valuable items collected by the Agricultural Explorers of the Section of Seed and Plant Introduction. There is an interest- ing and valuable series of economic plants of the most varied uses procured by the Hon. Harbour Lathrop, of Chicago, assisted by Mr. David G. Fairchild. Mr. W. T. Swingle has continued his work in Algeria, Sicily, and Turkey, and this list contains many of his impor- tations. There are also a number of donations from various sources, and a few seeds purchased directly from the growers. The following importations represent perhaps the most valuable of the many interesting novelties here described: Mr. Swingle's col- lection of improved varieties of the date palm, procured in Algeria; a collection of spineless cacti from the Argentine Republic secured by Messrs. Lathrop and Fairchild, which may become valuable forage plants in the arid Southwest; genge clover, a leguminous forage crop and green manure which is grown in the rice fields of Japan as a winter soil cover and fertilizer; a collection of broad beans from England, this vegetable being practically unknown in the United States, although extensively used in Europe and on the Continent; a new seedless raisin grape from Italy for the raisin growers of California and Arizona; a little sample of wheat from Peru, donated by Dr. -
The Discovery of the Amazing Sabinaria Magnifica
PALM S Bernal: Sabinaria magnifica Vol. 58(1) 2014 The Discovery RODRIGO BERNAL of the Instituto de Ciencias Naturales, Universidad Nacional de Amazing Colombia, Apartado 7495, Sabinaria Bogotá, Colombia. [email protected] magnifica 1. The locality where Sabinaria magnifica grows. The new genus of fan palm, Sabinaria, was recently discovered in the area bordering Colombia and Panama. Here is a narrative of its discovery. The discovery of a new palm genus in the years. No wonder, then, I was shocked on 15 western hemisphere is a rare event. So rare, April 2013 when Saúl Hoyos, a former student indeed, that out of the 184 genera accepted in of mine, sent me some photos of an unusual the family up to 2012, only eleven were palm that looked unlike any genus known to discovered in the Americas during the past 100 date. Saúl had taken the photos at the base of PALMS 58(1): 5 –18 5 PALM S Bernal: Sabinaria magnifica Vol. 58(1) 2014 the Serranía del Darién, the remote, forested include any details of the stem, the leaf bases mountain range that forms the border between or the flowers, which were vital details to Colombia and Panama, and had grabbed a proceed any further. specimen in a rush, while returning from a Full of excitement, I called Gloria Galeano, my trip to the Serranía in search of the elusive lifetime companion and fellow palm researcher Magnolia sambuensis . With daylight fading and for over 30 years, who was on her way back five hours of forest walk ahead to their base in from a field trip. -
Long-Reads Reveal That the Chloroplast Genome Exists in Two Distinct Versions in Most Plants
GBE Long-Reads Reveal That the Chloroplast Genome Exists in Two Distinct Versions in Most Plants Weiwen Wang* and Robert Lanfear* Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: November 15, 2019 Downloaded from https://academic.oup.com/gbe/article/11/12/3372/5637229 by guest on 02 October 2021 Data deposition: The Herrania umbratica and Siraitia grosvenorii chloroplast genomes in this project have been deposited at NCBI under the accession MN163033 and MK279915. Abstract The chloroplast genome usually has a quadripartite structure consisting of a large single copy region and a small single copy region separated by two long inverted repeats. It has been known for some time that a single cell may contain at least two structural haplotypes of this structure, which differ in the relative orientation of the single copy regions. However, the methods required to detect and measure the abundance of the structural haplotypes are labor-intensive, and this phenomenon remains understudied. Here, we develop a new method, Cp-hap, to detect all possible structural haplotypes of chloroplast genomes of quadripartite structure using long-read sequencing data. We use this method to conduct a systematic analysis and quantification of chloroplast structural haplotypes in 61 land plant species across 19 orders of Angiosperms, Gymnosperms, and Pteridophytes. Our results show that there are two chloroplast structural haplotypes which occur with equal frequency in most land plant individuals. Nevertheless, species whose chloroplast genomes lack inverted repeats or have short inverted repeats have just a single structural haplotype. -
Recommended International Code of Practice
CAC/RCP 72-2013 Page 1 of 9 CODE OF PRACTICE FOR THE PREVENTION AND REDUCTION OF OCHRATOXIN A CONTAMINATION IN COCOA (CAC/RCP 72-2013) 1. INTRODUCTION 1. This document is intended to provide guidance for all interested parties producing and handling cocoa beans for human consumption. All cocoa beans should be prepared and handled in accordance with the General Principles of Food Hygiene1, which are relevant for all foods being prepared for human consumption. This code of practice indicates the measures that should be implemented by all persons that have the responsibility for assuring that food is safe and suitable for consumption. 2. Ochratoxin A (OTA) is a toxic fungal metabolite classified by the International Agency for Research on Cancer as a possible human carcinogen (group 2B). JECFA established a PTWI of 100 ng/kg bodyweight for OTA. OTA is produced by a few species in the genera Aspergillus and Penicillium. In cocoa beans, the studies have shown that only Aspergillus species, specifically A. carbonarius and A. niger agregate, with lower numbers of A. westerdijkiae, A. ochraceus and A. melleus are involved. OTA is produced when favourable conditions of water activity, nutrition and temperature required for growth of fungi and OTA biosynthesis are present. 3. The fruit of cocoa derived from the cocoa tree, Theobroma cacao L., is composed of pericarp, tissue that arises from the ripened ovary wall of a fruit, and the ovary. When the fruit is ripe the external tissue, also known as the pod, consisting of thick and hard organic material, could be used as compost, animal feed and a source of potash. -
Sfps Fall 2011 Sale Plant List
SFPS FALL 2011 SALE PLANT LIST PLANTS VENDOR # Palms Acanthophoenix rubra 35 Acoelorrhaphe wrightii 26, 67 Acrocomia aculeata 50, 67 Actinokentia divaricata 35, 57, 66, 68, 72 Actinorhytis calapparia 72 Adonidia merrillii 31, 57, 66, 89 Adonidia merrillii var. "Golden Form" 35 Aiphanes aculeata = Aiphanes horrida - Aiphanes caryotifolia = Aiphanes horrida - Aiphanes erosa = Aiphanes minima - Aiphanes horrida 35, 68, 72 Aiphanes minima 68 Aiphanes vincentiana = Aiphanes minima - Allagoptera arenaria 57, 66, 67, 68, 72 Allagoptera campestris 67 Allagoptera leucocalyx 57 Alloschmidia glabrata = Basselinia glabrata - Alsmithia longipes = Heterospathe longipes - Archontophoenix cunninghamiana var. 'Illawara' 68 Archontophoenix maxima 67, 72 Archontophoenix myolensis 50, 66, 67, 68 Archontophoenix purpurea 57, 66, 72 Archontophoenix tuckeri 66, 68 Areca aliceae = Areca triandra - Areca camarinensis 57, 68 Areca catechu 57, 67, 72 Areca catechu var. 'Dwarf' 35, 50 Areca hutchinsoniana 68 Areca ipot 67 Areca latiloba = Areca montana - Areca macrocalyx var. 'Red Form' 35, 57, 68 Areca macrocarpa 68 Areca montana 57 Areca triandra 68, 72 Areca vestiaria 25, 35, 57, 67, 68 Areca vestiaria var. 'Orange Form' 25, 57, 67, 72 Areca vestiaria var. 'Maroon Leaf' 35, 57, 67 Areca vestiaria var. 'Red Leaf' 57, 67, 72 Areca sp. 'Yellow Crownshaft' 25 Arenga ambong = Arenga undulatifolia - Arenga brevipes 57 Arenga caudata 66 Arenga engleri 31, 66, 68, 72 Arenga hookeriana 35, 57, 66, 72 Arenga microcarpa 26, 66 Arenga obtusifolia 57, 66 PLANTS VENDOR # Arenga pinnata 50, 57, 66, 67, 68 Arenga porphyrocarpa 66 Arenga tremula 26, 57, 66, 68, 72 Arenga undulatifolia 35, 57, 66, 67 Arenga westerhoutii 68 Asterogyne martiana 57, 68, 72 Astrocaryum acaule 72 Astrocaryum alatum 35, 50, 57, 67 Astrocaryum mexicanum 72 Astrocaryum murumuru 72 Attalea butyracea 57, 67, 72 Attalea cohune 35 Attalea phalerata 50, 91 Attalea rostrata 68 Attalea speciosa 50, 66 Bactris bidentula 72 Bactris gasipaes 67 Bactris gasipaes var. -
The Age of Chocolate: a Diversification History of Theobroma and Malvaceae
ORIGINAL RESEARCH published: 10 November 2015 doi: 10.3389/fevo.2015.00120 The age of chocolate: a diversification history of Theobroma and Malvaceae James E. Richardson 1, 2*, Barbara A. Whitlock 3, Alan W. Meerow 4 and Santiago Madriñán 5 1 Programa de Biología, Universidad del Rosario, Bogotá, Colombia, 2 Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, UK, 3 Department of Biology, University of Miami, Coral Gables, FL, USA, 4 United States Department of Agriculture—ARS—SHRS, National Clonal Germplasm Repository, Miami, FL, USA, 5 Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia Dated molecular phylogenies of broadly distributed lineages can help to compare patterns of diversification in different parts of the world. An explanation for greater Neotropical diversity compared to other parts of the tropics is that it was an accident of the Andean orogeny. Using dated phylogenies, of chloroplast ndhF and nuclear DNA WRKY sequence datasets, generated using BEAST we demonstrate that the diversification of the genera Theobroma and Herrania occurred from 12.7 (11.6–14.9 [95% HPD]) million years ago (Ma) and thus coincided with Andean uplift from the mid-Miocene and that this lineage had a faster diversification rate than other major clades in Malvaceae. We also demonstrate that Theobroma cacao, the source of chocolate, diverged from its most recent common ancestor 9.9 (7.7–12.9 [95% HPD]) Ma, in the Edited by: Federico Luebert, mid-to late-Miocene, suggesting that this economically important species has had ample Universität Bonn, Germany time to generate significant within-species genetic diversity that is useful information Reviewed by: for a developing chocolate industry. -
PC-000867.Pdf
UNIVERSIDAD TÉCNICA DE COTOPAXI FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES CARRERA DE INGENIERÍA AGROINDUSTRIAL PROYECTO DE INVESTIGACIÓN “ESTUDIO DEL PERFIL FITOQUÍMICO Y REOLÓGICO DE DOS VARIEDADES DE PLANTAS MUCILAGINOSAS DEL CANTÓN LA MANÁ: Herrania balaensis y Ochroma pyramidale” Proyecto de Investigación presentado previo a la obtención del Título de Ingenieros Agroindustriales Autores: Tituaña Toapanta Wilmer Fernando Zurita Morales Karla Fernanda Tutor: Ing. Salazar Espinoza Galo Arcenio M. Sc. Latacunga - Ecuador Febrero 2020 DECLARACIÓN DE AUTORÍA Wilmer Fernando Tituaña Toapanta con C.C 180532909-9 y Karla Fernanda Zurita Morales con C.C 180475823-1 declaramos ser autores del presente proyecto de investigación: “ESTUDIO DEL PERFIL FITOQUÍMICO Y REOLÓGICO DE DOS VARIEDADES DE PLANTAS MUCILAGINOSAS DEL CANTÓN LA MANÁ: Herrania balaensis y Ochroma pyramidale”, siendo el Ingeniero Galo Arcenio Salazar Espinoza tutor del presente trabajo; y eximimos expresamente a la Universidad Técnica de Cotopaxi y a sus representantes legales de posibles reclamos o acciones legales. Además certificamos que las ideas, conceptos, procedimientos y resultados vertidos en el presente trabajo investigativo, son de nuestra exclusiva responsabilidad. …………………………………. …………………………………. Wilmer Fernando Tituaña Toapanta Karla Fernanda Zurita Morales C.I. 180532909-9 C.I. 180475823-1 II CONTRATO DE CESIÓN NO EXCLUSIVA DE DERECHOS DE AUTOR Comparecen a la celebración del presente instrumento de cesión no exclusiva de obra, que celebran de una parte Tituaña Toapanta Wilmer Fernando, identificada/o con C.C. N°180532909-9, de estado civil soltero y con domicilio en el Cantón Pillaro y Zurita Morales Karla Fernanda, identificada/o con C.C. N°180475823-1, de estado civil soltero y con domicilio en la ciudad de Ambato, a quien en lo sucesivo se denominará LOS CEDENTES; y, de otra parte, el Ing.