Nanobiotechnology Applications of Reconstituted High Density Lipoprotein Robert O Ryan1,2

Total Page:16

File Type:pdf, Size:1020Kb

Nanobiotechnology Applications of Reconstituted High Density Lipoprotein Robert O Ryan1,2 Ryan Journal of Nanobiotechnology 2010, 8:28 http://www.jnanobiotechnology.com/content/8/1/28 REVIEW Open Access Nanobiotechnology applications of reconstituted high density lipoprotein Robert O Ryan1,2 Abstract High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions. Background While its structural properties and composition can be The term high-density lipoprotein (HDL) describes a rather complex, in its most basic form, HDL are rela- continuum of plasma lipoprotein particles that possess a tively simple, containing only phospholipid and apolipo- multitude of different proteins and a range of lipid con- protein (apo). The most abundant and primary stituents [1]. The major physiological function of HDL apolipoprotein component of plasma HDL is apoA-I. is in Reverse Cholesterol Transport [RCT; [2]]. The Human apoA-I (243 amino acids) is well characterized well-documented inverse relationship between plasma in terms of its structural and functional properties. HDL concentration and incidence of cardiovascular dis- When incubated with certain phospholipid vesicles ease has generated considerable interest in development in vitro, apoA-I induces formation of rHDL. The key of strategies to increase HDL levels. Aside from exercise, structural element of apoA-I required for rHDL assem- moderate consumption of alcohol and a healthy lifestyle, bly is amphipathic a-helix. Indeed, other apolipopro- pharmacological approaches are being pursued with the teins, apolipoprotein fragments or peptides that possess goal of enhancing athero-protection [3]. In addition to this secondary structure, can also combine with phos- these strategies, direct infusion of reconstituted HDL pholipid to form rHDL. In general, the product particle (rHDL) into subjects has been performed [4]. The idea is a nanometer scale disk-shaped phospholipid bilayer is that parenteral administration of rHDL will promote whose periphery is circumscribed by two or more apoli- RCT, facilitating regression of atheroma. Indeed, Nissen poprotein molecules (Figure 1). Indeed, a defining char- et al. [5] reported Phase II clinical trial results showing acteristic of members of the class of exchangeable a decrease in intimal thickness in patients treated with apolipoprotein is an abilitytoformrHDL.Forthepur- rHDL harboring a variant apolipoprotein A-I. pose of this review, the protein/peptide component of discoidal rHDL is termed the “scaffold” in recognition of Correspondence: [email protected] its function in stabilization of the otherwise unstable 1Center for Prevention of Obesity, Cardiovascular Disease and Diabetes, edge of the bilayer. Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609, USA Full list of author information is available at the end of the article © 2010 Ryan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ryan Journal of Nanobiotechnology 2010, 8:28 Page 2 of 10 http://www.jnanobiotechnology.com/content/8/1/28 Figure 1 Schematic diagram of rHDL structural organization. The complex depicted is comprised of a disk-shaped phospholipid bilayer that is circumscribed by an amphipathic “scaffold” protein. Note: The exact structural organization of rHDL remains controversial. Recently, evidence consistent with an ellipsoidal shape has been presented [59-61]. Production of rHDL apolipoproteins [7] or designer peptides [8] can substi- Detailed structure-function studies of exchangeable apo- tute for full-length apolipoproteins in this reaction. lipoproteins have given rise to two general methods for Based on this description, it is evident that myriad com- discoidal rHDL formation: detergent dialysis and direct binations of phospholipid and scaffold can be employed conversion. Whereas the detergent dialysis method [6] toformulateuniquerHDL.These particles are readily has the advantage that a broad spectrum of bilayer characterized in terms of size by non-denaturing polya- forming phospholipids can be employed, a disadvantage crylamide gel electrophoresis and morphology by elec- relates to the potentially problematic detergent removal tron or atomic force microscopy (AFM). step, which can be achieved by specific absorption or Over the past decade, discoidal rHDL have been repur- exhaustive dialysis. On the other hand, while limited to posed for applications beyond its physiological role in fewer phospholipid substrates, the direct conversion lipoprotein metabolism. This review describes active method does not employ detergents. The types of phos- areas of research that have evolved from our basic under- pholipids commonly used in the direct conversion standing of rHDL structure and assembly. Whereas method are synthetic, saturated acyl chain glyceropho- rHDL has been modified to re-task it for alternate pur- spholipids such as dimyristoylphosphatidylcholine poses, its basic structural elements, including disk shape, (DMPC) or dimyristoylphosphatidylglycerol. These lipids nanometer scale size and a planar bilayer whose periph- undergoageltoliquidcrystallinephasetransitionin ery is stabilized by a scaffold, are preserved. In this man- the range of 23°C. Normally, the phospholipid substrate ner, rHDL serve as a platform capable of packaging is hydrated and induced to form vesicles, either by transmembrane proteins in a native-like membrane membrane extrusion or sonication. Incubation of the environment, solubilization and delivery of hydrophobic phospholipid vesicle substrate with an appropriate scaf- drugs/biomolecules and presentation of contrast agents fold protein (e.g. apoA-I) induces self-assembly of for magnetic resonance imaging of atherosclerotic rHDL. It is likely that the reaction proceeds most effi- lesions. In an effort to distinguish engineered rHDL from ciently in this temperature range because defects created classical rHDL, the term nanodisk (ND) is used to in the vesicle bilayer surface serve as sites for apolipo- describe rHDL formulated to possess a transmembrane protein penetration, bilayer disruption and transforma- protein, drug or non-natural hydrophobic moiety. tion to rHDL. Among the apolipoproteins that have been examined for their ability to transform phospholi- ND as a miniature membrane environment for pid bilayer vesicles into rHDL and function as a scaffold solubilization of transmembrane proteins are apoA-I, apoE, apoA-IV, apoA-V and apolipophorin The bilayer component of ND provides a native-like III. In addition, it is known that fragments of environment for study of transmembrane proteins in Ryan Journal of Nanobiotechnology 2010, 8:28 Page 3 of 10 http://www.jnanobiotechnology.com/content/8/1/28 isolation. The concepts being developed on this research membrane protein. This 247 amino acid, light-driven front are that Type 1, Type 2 or Type 3 membrane pro- proton pump possesses a covalently bound molecule of teins can be inserted into ND with retention of their retinal. Elegant electron crystallography methods were native conformation/biological activity. As with a cell developed and employed by Henderson and Unwin to membrane, the inserted protein would align such that decipher the structure of bacteriorhodopsin at near its transmembrane segment(s) spans the bilayer while atomic resolution [13]. The protein is comprised of a their soluble, extra-membranous portions, exist in the bundle of seven ~25 residue a-helical rods that span the aqueous environment (Figure 2). If correctly inserted, it bilayer while charged residues at the surface of the mem- is anticipated that specific biological or enzymatic prop- brane contact the aqueous solvent. In its native form bR erties of the protein will be preserved. The surface area exists as trimers that organize into a two-dimensional of a 20 nm diameter ND particle is ~300 nm2,ample hexagonal array in the plane of the membrane. In 2006, area to accommodate several molecules of a multiple Bayburt et al. [14] assembled bR into ND. Under the pass transmembrane protein. Advantages of ND versus conditions employed each ND contained three bR mole- detergent micelles include a more natural environment cules. Small angle
Recommended publications
  • How Does Protein Zero Assemble Compact Myelin?
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2020 doi:10.20944/preprints202005.0222.v1 Peer-reviewed version available at Cells 2020, 9, 1832; doi:10.3390/cells9081832 Perspective How Does Protein Zero Assemble Compact Myelin? Arne Raasakka 1,* and Petri Kursula 1,2 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland; [email protected] * Correspondence: [email protected] Abstract: Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin – the lipid-rich, periodic structure that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes together via homophilic adhesion, forming a dense, macroscopic ultrastructure known as the intraperiod line. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs the formation of myelin. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when is P0 trafficked and modified to enable myelin compaction, and how disease mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
    [Show full text]
  • Structural Insights Into Membrane Fusion Mediated by Convergent Small Fusogens
    cells Review Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens Yiming Yang * and Nandini Nagarajan Margam Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] * Correspondence: [email protected] Abstract: From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease. Keywords: fusogen; SNARE; FAST; atlastin; spanin; myomaker; myomerger; membrane fusion 1. Introduction Citation: Yang, Y.; Margam, N.N. Structural Insights into Membrane Membrane fusion
    [Show full text]
  • Lipoprotein Cholesterols Are Stored in High-Resistant
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2018 doi:10.20944/preprints201810.0211.v1 Lipoprotein cholesterols are stored in high-resistant, metastatic cancer cells and released upon stress: implication for a mechanism underlying hypocholesterolemia in cancer patients Taka Eguchi1,2,3,*, Chiharu Sogawa1,3, Kisho Ono1, Mami Itagaki1,3, Masaki Matsumoto1 1Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan. 2Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan. 3Okayama University Dental School, Okayama, Japan. 4Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. *Correspondence and requests for materials should be addressed to: Taka Eguchi, D.D.S., Ph.D. 2-5-1 Shikata-cho, Okayama 700-8525 Japan Phone: +81-86-235-6662; Fax: +81-86-235-6664 E-mail: [email protected] Author Contributions: TE conceptualized and designed the study. TE, CS, and MM prepared resources. TE, MM, CS, KO devised methodology. CS, MM, KO, MI carried out the experimentation. TE, KO, CS, MM interpreted data. TE wrote the manuscript. KO, CS revised and edited the manuscript. All authors reviewed the manuscript. 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2018 doi:10.20944/preprints201810.0211.v1 Abstract Resistant cancer often shows a particular secretory trait such as heat shock proteins (HSPs) and extracellular vesicles (EVs), including exosomes and oncosomes surrounded by lipid bilayers.
    [Show full text]
  • Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: a High-Risk/High-Gain Endeavor
    biomolecules Review Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor Raf Van Campenhout 1 , Serge Muyldermans 2 , Mathieu Vinken 1,†, Nick Devoogdt 3,† and Timo W.M. De Groof 3,*,† 1 Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; [email protected] (R.V.C.); [email protected] (M.V.) 2 Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; [email protected] 3 In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-2-6291980 † These authors share equal seniorship. Abstract: Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane Citation: Van Campenhout, R.; transport proteins.
    [Show full text]
  • Immuno-Electron and Confocal Laser Scanning Microscopy of the Glycocalyx
    biology Article Immuno-Electron and Confocal Laser Scanning Microscopy of the Glycocalyx Shailey Gale Twamley 1,2, Anke Stach 1, Heike Heilmann 3, Berit Söhl-Kielczynski 4, Verena Stangl 1,2, Antje Ludwig 1,2,*,† and Agnieszka Münster-Wandowski 3,*,† 1 Medizinische Klinik für Kardiologie und Angiologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; [email protected] (S.G.T.); [email protected] (A.S.); [email protected] (V.S.) 2 DZHK (German Centre for Cardiovascular Research), Partner Site, 10117 Berlin, Germany 3 Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; [email protected] 4 Institute for Integrative Neurophysiology—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; [email protected] * Correspondence: [email protected] (A.L.); [email protected] (A.M.-W.) † These authors equally contributed. Simple Summary: The glycocalyx (GCX) is a hydrated, gel-like layer of biological macromolecules attached to the cell membrane. The GCX acts as a barrier and regulates the entry of external substances into the cell. The function of the GCX is highly dependent on its structure and composition. Citation: Twamley, S.G.; Stach, A.; Pathogenic factors can affect the protective structure of the GCX. We know very little about the three- Heilmann, H.; Söhl-Kielczynski, B.; dimensional organization of the GXC. The tiny and delicate structures of the GCX are difficult Stangl, V.; Ludwig, A.; to study by microscopic techniques.
    [Show full text]
  • Membrane Structure
    Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer 2 3 1 Membrane Structure Cellular membranes have 4 components: 1. phospholipid bilayer 2. transmembrane proteins 3. interior protein network 4. cell surface markers 4 5 Phospholipids Phospholipid structure consists of -glycerol – a 3-carbon polyalcohol acting as a backbone for the phospholipid -2 fatty acids attached to the glycerol -phosphate group attached to the glycerol 6 2 Phospholipids The fatty acids are nonpolar chains of carbon and hydrogen. -Their nonpolar nature makes them hydrophobic (“water-fearing”). The phosphate group is polar and hydrophilic (“water-loving”). 7 Phospholipids The partially hydrophilic, partially hydrophobic phospholipid spontaneously forms a bilayer: -fatty acids are on the inside -phosphate groups are on both surfaces of the bilayer 8 9 3 Phospholipids Phospholipid bilayers are fluid. -hydrogen bonding of water holds the 2 layers together -individual phospholipids and unanchored proteins can move through the membrane -saturated fatty acids make the membrane less fluid than unsaturated fatty acids -warm temperatures make the membrane more fluid than cold temperatures 10 Membrane Proteins Membrane proteins have various functions: 1. transporters 2. enzymes 3. cell surface receptors 4. cell surface identity markers 5. cell-to-cell adhesion proteins 6. attachments to the cytoskeleton 11 12 4 Membrane Proteins
    [Show full text]
  • Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR
    biology Review Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR Vivien Yeh , Alice Goode and Boyan B. Bonev * School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] (V.Y.); [email protected] (A.G.) * Correspondence: [email protected] Received: 21 October 2020; Accepted: 11 November 2020; Published: 12 November 2020 Simple Summary: Cells, life’s smallest units, are defined within the enclosure of thin, continuous membranes, which confine the molecular machinery required for the life and replication of cells. Crucially, membranes of cells establish and actively maintain distinctly different environments inside cells, including electrical and solute gradients vital to normal cellular functions. Membrane proteins are in charge of transport, electrical polarisation, signalling, membrane remodelling and other important functions. As such, membrane proteins are key drug targets and understanding their structure and function is essential to drug development and cellular control. Membrane proteins have physical characteristics that make such studies very challenging. Nuclear magnetic resonance is one advanced tool that enables structural studies of membrane proteins and their interactions at the atomic level of detail. We discuss the applications of NMR in solution and solid state to membrane protein studies alongside new developments in signal and sensitivity enhancement through dynamic nuclear polarisation. Abstract: Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics.
    [Show full text]
  • Modeling Membrane-Protein Interactions
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2018 doi:10.20944/preprints201809.0055.v1 Peer-reviewed version available at Biomolecules 2018, 8, 120; doi:10.3390/biom8040120 Review Modeling membrane-protein interactions Haleh Alimohamadi and Padmini Rangamani* Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA * Correspondence: [email protected]; Tel.: +1-858-534-4734 Abstract: In order to alter and adjust the shape of the membrane, cells harness various mechanisms of curvature generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane 1 proteins, integral membrane proteins, and lipids in the bilayer membrane. One of the challenges in modeling these 2 processes is identifying the suitable constitutive relationships that describe the membrane free energy that includes 3 protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic 4 membrane models that have been developed for this purpose and discuss their applications. Finally, we address some 5 fundamental challenges that future theoretical methods need to overcome in order to push the boundaries of current model 6 applications. 7 8 Keywords: Plasma membrane; Spontaneous curvature; Helfrich energy; Area difference elastic model; Protein crowding; Deviatoric curvature 9 10 11 1. Introduction 12 The ability of cellular membranes to bend and adapt their configurations is critical for a variety of cellular functions 13 including membrane trafficking processes [1,2], fission [3,4], fusion [5,6], differentiation [7], cell motility [8,9], and signal 14 transduction [10–12]. In order to dynamically reshape the membrane, cells rely on a variety of molecular mechanisms from 15 forces exerted by the cytoskeleton [13–15] and membrane-protein interactions [16–19].
    [Show full text]
  • Pathogenic Protist Transmembranome Database (Pptdb): a Web-Based Platform for Searching and Analysis of Protist Transmembrane Pr
    Lee et al. BMC Bioinformatics 2019, 20(Suppl 13):382 https://doi.org/10.1186/s12859-019-2857-7 RESEARCH Open Access Pathogenic Protist Transmembranome database (PPTdb): a web-based platform for searching and analysis of protist transmembrane proteins Chi-Ching Lee1,2, Po-Jung Huang2,3, Yuan-Ming Yeh2, Sin-You Chen1, Cheng-Hsun Chiu2,4, Wei-Hung Cheng5* and Petrus Tang4,5* From The 8th Annual Translational Bioinformatics Conference Seoul, South Korea. 31 October - 2 November 2018 Abstract Background: Pathogenic protist membrane transporter proteins play important roles not only in exchanging molecules into and out of cells but also in acquiring nutrients and biosynthetic compounds from their hosts. Currently, there is no centralized protist membrane transporter database published, which makes system-wide comparisons and studies of host-pathogen membranomes difficult to achieve. Results: We analyzed over one million protein sequences from 139 protists with full or partial genome sequences. Putative transmembrane proteins were annotated by primary sequence alignments, conserved secondary structural elements, and functional domains. We have constructed the PPTdb (Pathogenic Protist Transmembranome database), a comprehensive membrane transporter protein portal for pathogenic protists and their human hosts. The PPTdb is a web-based database with a user-friendly searching and data querying interface, including hierarchical transporter classification (TC) numbers, protein sequences, functional annotations, conserved functional domains, batch sequence retrieving and downloads. The PPTdb also serves as an analytical platform to provide useful comparison/mining tools, including transmembrane ability evaluation, annotation of unknown proteins, informative visualization charts, and iterative functional mining of host-pathogen transporter proteins. Conclusions: The PPTdb collected putative protist transporter proteins and offers a user-friendly data retrieving interface.
    [Show full text]
  • Characterization of Five Transmembrane Proteins: with Focus on the Tweety, Sideroflexin, and YIP1 Domain Families
    fcell-09-708754 July 16, 2021 Time: 14:3 # 1 ORIGINAL RESEARCH published: 19 July 2021 doi: 10.3389/fcell.2021.708754 Characterization of Five Transmembrane Proteins: With Focus on the Tweety, Sideroflexin, and YIP1 Domain Families Misty M. Attwood1* and Helgi B. Schiöth1,2 1 Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, 2 Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia Transmembrane proteins are involved in many essential cell processes such as signal transduction, transport, and protein trafficking, and hence many are implicated in different disease pathways. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. This analysis investigates the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). More Edited by: Angela Wandinger-Ness, than half of the 58 proteins identified with the 5TM architecture belong to 12 families University of New Mexico, with two or more members. Interestingly, more than half the proteins in the dataset United States function in localization activities through movement or tethering of cell components and Reviewed by: more than one-third are involved in transport activities, particularly in the mitochondria. Nobuhiro Nakamura, Kyoto Sangyo University, Japan Surprisingly, no receptor activity was identified within this dataset in large contrast with Diego Bonatto, other TM groups. The three major 5TM families, which comprise nearly 30% of the Departamento de Biologia Molecular e Biotecnologia da UFRGS, Brazil dataset, include the tweety family, the sideroflexin family and the Yip1 domain (YIPF) Martha Martinez Grimes, family.
    [Show full text]
  • Tmfunction: Database for Functional Residues in Membrane Proteins M
    Published online 8 October 2008 Nucleic Acids Research, 2009, Vol. 37, Database issue D201–D204 doi:10.1093/nar/gkn672 TMFunction: database for functional residues in membrane proteins M. Michael Gromiha1,*, Yukimitsu Yabuki1, M. Xavier Suresh1, A. Mary Thangakani2, Makiko Suwa1 and Kazuhiko Fukui1 1Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Bio-IT Research Building, 2-42 Aomi, Koto-ku, Tokyo 135-0064 and 2Advanced Technology Inc., Tokyo, Japan Received August 13, 2008; Revised and Accepted September 22, 2008 ABSTRACT algorithm (2). Saier et al. (3) developed a comprehensive classification system for membrane transport proteins We have developed the database TMFunction, known as the Transport Classification Database which is a collection of more than 2900 experimen- (TCDB). Further, functional databases have been devel- tally observed functional residues in membrane pro- oped for G-protein-coupled receptors (GPGRs), human teins. Each entry includes the numerical values for seven transmembrane receptors, Arabidopsis integral the parameters IC50 (measure of the effectiveness membrane proteins and so on (4,5). Edvardsen et al. (6) of a compound in inhibiting biological function), created a G-protein-coupled receptor mutant database, Vmax (maximal velocity of transport), relative activity which is mainly focused on different families of GPCRs. of mutants with respect to wild-type protein, bind- Mutational databases have also been developed for the ing affinity, dissociation constant, etc., which structure, function and thermodynamics of proteins (7,8). are important for understanding the sequence– On the other hand, several methods have been proposed structure–function relationship of membrane pro- for discriminating transmembrane a-helical and b-strand teins.
    [Show full text]
  • Sphingolipid/Cholesterol Regulation of Neurotransmitter Receptor Conformation and Function
    Biochimica et Biophysica Acta 1788 (2009) 2345–2361 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function Jacques Fantini a, Francisco J. Barrantes b,⁎ a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), University of Aix-Marseille 2 and Aix-Marseille 3, CNRS UMR 6231, INRA USC 2027, Faculté des Sciences de St. Jérôme, Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France b Instituto de Investigaciones Bioquímicas de Bahía Blanca and UNESCO Chair of Biophysics and Molecular Neurobiology, Universidad Nacional del Sur-CONICET, C.C. 857, Bahía Blanca, B8000FWB Buenos Aires, Argentina article info abstract Article history: Like all other monomeric or multimeric transmembrane proteins, receptors for neurotransmitters are Received 19 April 2009 surrounded by a shell of lipids which form an interfacial boundary between the protein and the bulk Received in revised form 17 July 2009 membrane. Among these lipids, cholesterol and sphingolipids have attracted much attention because of their Accepted 28 August 2009 well-known propensity to segregate into ordered platform domains commonly referred to as lipid rafts. In Available online 3 September 2009 this review we present a critical analysis of the molecular mechanisms involved in the interaction of cholesterol/sphingolipids with neurotransmitter receptors, in particular acetylcholine and serotonin Keywords: Lipid domain receptors, chosen as representative members of ligand-gated ion channels and G protein-coupled receptors. Sphingomyelin Cholesterol and sphingolipids interact with these receptors through typical binding sites located in both the Ganglioside transmembrane helices and the extracellular loops.
    [Show full text]