Evaluation of Potential Propulsion Systems for a Commercial Micro Moon Lander
Total Page:16
File Type:pdf, Size:1020Kb
Evaluation of Potential Propulsion Systems for a Commercial Micro Moon Lander Konstantinos Papavramidis Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology TRITA-ITM-EX 2019-231 Division of Heat and Power Technology SE-100 44 STOCKHOLM Master of Science Thesis TRITA-ITM-EX 2019:231 Evaluation of Potential Propulsion Systems for a Commercial Micro Moon Lander Konstantinos Papavramidis Approved Examiner Supervisor Date Björn Laumert Nenad Glodic Commissioner Contact person -2- Authors Konstantinos Papavramidis <[email protected]> Aeronautical and Vehicle Engineering KTH Royal Institute of Technology Place for Project Stockholm, Sweden Examiner Björn Laumert Professor in Energy Technology Division of Heat and Power Technology KTH Royal Institute of Technology Supervisor Nenad Glodic THRUST Programme Director Division of Heat and Power Technology KTH Royal Institute of Technology Abstract In the advent of Space 4.0 era with the commercialization and increased accessi- bility of space, a requirement analysis, trade-off options, development status and critical areas of a propulsion system for a Commercial Micro Moon Lander is car- ried out. An investigation of a suitable system for the current mission is examined in the frame of the ASTRI project of OHB System AG and Blue Horizon. Main trajectory strategies are being investigated and simulations are performed to ex- tract the ∆V requirements. Top-level requirements are extracted which give the first input for the propulsion design. An evaluation of the propulsion require- ments is implemented which outlines the factors that are more important and drive the propulsion design. The evaluation implements a dual comparison of the requirements where weighting factors are extracted, resulting the main drivers of the propulsion system design. A trade-off analysis is performed for various types of propulsion systems and a preliminary selection of a propulsion system suitable for the mission is described. A first-iteration architecture of the propulsion, ADCS and GNC subsystems are also presented as well as a component list. A first ap- proach of the landing phase is described and an estimation of the required thrust is calculated. A unified Bipropellant propulsion system is proposed which fills out most of the mission requirements. However, the analysis shows that the total mass of the lander, including all the margins, exceeds a bit the mass limitations but no the volume limitations. The results shows that a decrease in payload capacity or the implementation of a different trajectory strategy can lower the mass below the limit. In addition, further iterations in the lander concept which will give a more detailed design, resulting to no extra margins, can drive the mass below the limit. Finally, a discussion on the results is done, addressing the limitations and the important factors that need to be considered for the mission. The viability of the mission due to its commercial aspect is being questioned and further investi- gation is suggested to be carried out on the ”micro” lander concept. ii Sammanfattning I tillkomsten av Space 4.0 era med kommersialisering och ökad tillgänglighet av rymden, en kravanalys, avvägningsalternativ, utvecklingsstatus och kritiska om- råden av ett framdrivningssystem för en kommersiell mikro månlandare bärs ut. En undersökning av ett lämpligt system för det aktuella uppdraget genomförs inom ramen för ASTRI-projektet för OHB System AG och Blue Horizon. Olika strategier för banor undersöks och simuleringar utförs för att extrahera ΔV-kraven. Topp-nivå krav definieras och ger den första inputen för designen av framdrivn- ingssystemet. En utvärdering av framdrivningskraven implementeras och belyser de viktigaste faktorer som driver design av framdrivningssystemet. En avvägn- ingsanalys utförs för olika typer av framdrivningssystem och ett preliminärt urval av ett framdrivningssystem som är lämpligt för uppdraget beskrivs. En arkitek- tur för framdrivningen, ADCS och GNC-delsystem presenteras såväl som en kom- ponentlista. Ett första tillvägagångssätt av landningsfasen beskrivs och en upp- skattning av den nödvändiga dragkraften beräknas. Ett enhetligt Bi-propellant framdrivningssystem föreslås som uppfyller ut de flesta uppdragskraven. Anal- ysen visar dock att summan av månlandarens massa, inklusive alla marginaler, överstiger massbegränsningarna men inte de volymbegränsningarna uppsatta i projektet. Resultaten visar att en minskning av nyttolastkapaciteten eller genom- förandet av en annan banstrategi kan minska den totala massan då den inom gränsvärdena. Dessutom, ytterligare iterationer i månlandarens koncept som kom- mer att ge en mer detaljerad design, vilket resulterar i inga extra marginaler, kan leda till att den uppskattade massan minskar ytterligare. Slutligen förs en diskus- sion om resultaten, med hänsyn till de begränsningarna och de viktigaste faktor- erna som måste beaktas för uppdraget. Lönsamheten hos uppdraget på grund av sin kommersiella aspekt är ifrågasatt och vidare utredning föreslås utförs på ”mikro” månlandare konceptet. iii Keywords Propulsion, Moon Lander, Trajectory, Space, Commercialization of space, Space 4.0, OHB System, Blue Horizon, ASTRI program, Space exploration, Service-oriented space program iv Acknowledgement I would like to thank Nicolas Faber at Blue Horizon Sárl & OHB System AG for his continuous support during the ASTRI-OHB commercial lunar lander project. I would also like to thank Nenad Glodic, my supervisor, and Björn Laumert, my ex- aminer, for agreeing to participate in this thesis project with me. Finally, I would like to thank Gunnar Tibert for coordinating the participation of KTH Royal Insti- tute of Technology in the ASTRI-program, which made this thesis project possible. Last but not least, I would like to thank my lovely partner, Tonya, for support- ing me in all aspects through all these years. Also my family and my closest rela- tives, who they supported me and helped me during my studies. Without all these people around me, obtaining not only my first MSc degree but also this second MSc degree wouldn’t be possible. v Contents 1 Introduction 1 1.1 Background ................................ 1 1.2 Purpose and Goal ............................ 3 1.3 Outline .................................. 6 2 Literature Study 7 2.1 Ways to the Moon ............................ 7 2.2 Overview of the Space Propulsion Technology . 14 2.3 Review of past missions ......................... 30 3 CMML Case 35 3.1 Approach and Method .......................... 35 3.2 Designing Philosophy of the PS ..................... 42 3.3 Preliminary selection of suitable PS . 56 4 Conclusions 77 vi List of Figures 1 ∆V requirements on different trajectories. [9] ............ 8 2 Hohmann Transfer. [19] ........................ 9 3 Phasing loop Transfer. [13] ....................... 10 4 Bi-elliptic Transfer. [14] ......................... 11 5 WSB Transfer. [4] ............................ 12 6 Low-Thrust Transfer. [13] ........................ 13 7 Classification of Propulsion systems. [26] . 17 8 Schematic of a Solid fuel Motor. [21] . 18 9 Schematic of a Hybrid Propulsion Rocket. [9] . 19 10 Schematic of a Cold Gas System. [21] . 20 11 Schematic of a Mono-propellant System. [27] . 22 12 Schematic of a Bi-propellant System. [4] . 23 13 Electric propulsion configurations. [25] . 24 14 Thrust versus Specific Impulse on different PS. [25] . 28 15 ∆V performance of PS concepts. [21] . 28 16 GMAT simulation of Hohmann trajectory to the Moon. With red color is the transfer trajectory and in light blue is the TCM maneu- ver. In grey color is the Moon orbit around Earth. 38 17 GMAT simulation of Moon arrival. With red color is the arriving circular lunar orbit and the landing phase. In light blue is the TCM maneuver while arriving on the Moon. 39 18 Bi-elliptic trajectory. ........................... 40 19 Requirements weighting. ........................ 44 20 Dry mass in [kg] of the lander on Moon surface for different PS configurations. .............................. 51 21 Total fuel in [kg] required for the mission for different PS configu- rations. .................................. 52 22 Total mass in [kg] of the lander for different PS configurations. 52 23 Lander’s wet mass for different payload mass. 55 vii 24 Proposed engine configuration on the lander. Left: Bottom view of the lander. Main engine and assist thrusters are shown with red font. The ADCS thrusters are shown as black boxes from this view. Right: Isometric view of the lander. The ADCS thrusters configu- ration is shown with a representation of control on all 3-axes. The red arrows represent the thrust direction during firing with results in a control of an axis. .......................... 57 25 Functional block diagram of the selected PS. 60 26 Preliminary architecture layout of the ADCS & GNC subsystems. 64 27 Global landing reference system, [45]. 70 28 Altitude as a function of time during the landing phase. 73 29 Altitude as a function of the surface distance covered throughout the landing phase. ............................ 73 30 Thrust angle, Thrust and Lander mass as a function of time during landing phase. .............................. 74 31 Horizontal and Vertical velocities as a function of time during land- ing phase. ................................. 75 32 Altitude vs Time.Zoom-in the last 2 phases of the landing. 87 33 Altitude vs Downrange. Zoom-in the last 2 phases of the landing. 87 34 Horizontal and Vertical velocities