The Largest Flying Reptile from the Crato Formation, Lower Cretaceous, Brazil

Total Page:16

File Type:pdf, Size:1020Kb

The Largest Flying Reptile from the Crato Formation, Lower Cretaceous, Brazil Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 The largest flying reptile from the Crato Formation, Lower Cretaceous, Brazil Xin Cheng, Renan A. M. Bantim, Juliana M. Sayão, Alexander W. A. Kellner, Xiaolin Wang & Antônio Á. F. Saraiva To cite this article: Xin Cheng, Renan A. M. Bantim, Juliana M. Sayão, Alexander W. A. Kellner, Xiaolin Wang & Antônio Á. F. Saraiva (2018): The largest flying reptile from the Crato Formation, Lower Cretaceous, Brazil, Historical Biology, DOI: 10.1080/08912963.2018.1491567 To link to this article: https://doi.org/10.1080/08912963.2018.1491567 Published online: 04 Jul 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 HISTORICAL BIOLOGY https://doi.org/10.1080/08912963.2018.1491567 ARTICLE The largest flying reptile from the Crato Formation, Lower Cretaceous, Brazil Xin Chenga,b, Renan A. M. Bantima, Juliana M. Sayãoc, Alexander W. A. Kellnerd, Xiaolin Wangb,e and Antônio Á. F. Saraivaa aLaboratório de Paleontologia, Universidade Regional do Cariri, Crato, CE, Brazil; bKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China; cLaboratório de Paleobiologia e Microestruturas, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil; dLaboratory of Systematics and Taphonomy of Fossil Vertebrates, Department of Geology and Paleontology,Museu Nacional/UFRJ, Rio de Janeiro, RJ, Brazil; eUniversity of Chinese Academy of Sciences, Beijing, China ABSTRACT ARTICLE HISTORY The Early Cretaceous deposits of the Araripe Basin in northeast Brazil has yielded numerous vertebrate Received 24 April 2018 fossils, in which pterosaurs are the predominant tetrapods. Almost all specimens of this extinct group of Accepted 17 June 2018 fl ying reptiles recovered from this basin come from two stratigraphic units, the Crato and Romualdo KEYWORDS Formations, with the pterosaurs from the former being usually small to middle-sized and large individuals Anhangueridae; Pterosauria; (with a maximized wingspan over 5 m) being only found in the latter. Here we report on a new specimen bone histology; Crato (MPSC R 1221) composed of a partial right wing, which is the largest pterosaur discovered from the Crato Formation; Cretaceous; Formation so far, having an estimated maximized wingspan of 5.5 m. Despite the incompleteness of this Brazil material, MPSC R 1221 can be referred to the Anhangueridae based on the length ratio between the metacarpal IV and the first wing phalanx. According to the osteohistological study and the degree of fusion, MPSC R 1221 represents a sub-adult individual, showing that the animal had not reached the maximum size before its death. The present study shows that large-sized pterosaurs were also present in the Crato Formation and that their rarity might be an artefact of preservation. Introduction 2013), which was recovered from the Romualdo Formation. It Pterosaurs are a group of extinct flying reptiles that became the has a wingspan of about 1.8 times larger than Arthurdactylus first vertebrates to developed powered flight (e.g., Wellnhofer conandoylei (SMNK 1132 PAL) whose wingspan was estimated 1991a; Kellner 2006;Chengetal.2017). The Araripe Basin being about 4.6 m (Frey and Martill 1994).Thelatterwassofarthe shows several important localities that yielded some of the best largest pterosaur from that stratigraphic unit. pterosaur material known worldwide (e.g., Wellnhofer 1985, Here we report on a partial right wing (MPSC R 1221) of the 1991b; Kellner and Tomida 2000). Several other fossils have largest pterosaur recovered from the Crato Formation so far, with been recorded in this region along the years (e.g., Kellner 1987; anestimatedwingspanexceeding5m.Wehavealsoperformed Maisey 1991), but flying reptiles predominate among tetrapods osteohistological sections to further assign the bone maturity of (e.g., Maisey 1991; Saraiva et al. 2014). Since the first specimen this new specimen. reported by Price (1971), over twenty-seven pterosaur species have been described up to now (e.g., Wellnhofer 1987;Freyand Institutional Abbreviations Martill 1994; Kellner and Campos 2002, 2007;Freyetal.2003a, AMNH-American Museum of Natural History, New York, USA. 2003b;Witton2009; Kellner 2013;Bantimetal.2014; Pêgas et al. 2016) some having exceptionally well preserved soft tissue (e.g., MN-Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Kellner 1996). Despite the controversy of taxonomic assignment of some taxa (e.g., Fastnacht 2001; Veldmeijer 2003;Rodrigues MPSC-Museu de Paleontologia Plácido Cidade Nuvens, and Kellner 2008; Martill and Unwin 2012; Pinheiro and Universidade Regional do Cariri, Santana do Cariri, Ceará, Brazil. Rodrigues 2017), two pterosaur groups, the toothed anhanguerids SMNK-Staatliches Museum für Naturkunde, Karlsruhe, and the toothless tapejarids, predominate (e.g., Campos and Germany. Kellner 1985; Kellner 1989;VilaNovaandSayão2012). Almost all these materials were discovered from two distinct UP-University of Portsmouth School of Earth and Environmental Sciences, UK. stratigraphic units: the Crato (Aptian) and the Romualdo (Aptian/ Albian) Formations (Pons et al. 1990; Kellner and Campos 1999; Neumann and Cabrera 1999; Valença et al. 2003; Kellner et al. Material and methods 2013), with only one exception (Martill 2008)whoseprovenance needstobeconfirmed. Among the most interesting findsisthe The specimen (MPSC R 1221) is composed of an incomplete right largest pterosaur species of Gondwanan deposit (Kellner et al. wing with the first wing phalanx exposed in ventral view. It was CONTACT Xin Cheng [email protected] © 2018 Informa UK Limited, trading as Taylor & Francis Group Published online 04 Jul 2018 2 X. CHENG ET AL. discovered by Plácido Cidade Nuvens, former director of the local Specimen paleontological museum at a quarry situated close to the town MPSC R 1221, partial front limb housed in the Santana do Cariri (Ceará State). The specimen arrived at the Palaeontology Museum Plácido Cidade Nuvens, Santana do museum having several parts put together by a plastic acrylic Cariri, CE, Brazil. resin, with a small misplacement at the manual digits area. At Locality and horizon the museum, the specimen was prepared mechanically by steel Crato Formation, Early Cretaceous (Aptian), Araripe needle and pneumatic micro tools under a microscope (PDV Basin, Santana do Cariri, Crato, Northeastern Brazil. TS-30Y). Comments MPSC R 1221 was measured, photographed and described The specimen is not complete enough to allow a classifica- for bone microstructure investigation before sectioned, tion at the generic or specific level. Wing element ratios are according to the methodology proposed by Lamm (2013). generally used in the classification of incomplete pterosaur Traditionally, osteohistological studies use the area of the materials (e.g., Vila Nova and Sayão 2012). Based on the bone diaphysis since this region preserves a comparatively comparison of the proportion between the first wing phalanx larger amount of cortical tissue and growth markers (e.g., and the wing metacarpal among several clades (Table 1), the Francillon-Vieillot et al. 1990; Andrade and Sayão 2014). ratio of MPSC R 1221 is consistent with the Anhangueridae, However, some samples were sectioned in the portion of the to which this specimen is referred. Although not exclusive of metaphysis (second wing phalanx) following original the Araripe deposits (e.g., Rodrigues and Kellner 2013), this breakages of the limestone plates. A sample (approximately clade is well represented in the Romualdo Formation (e.g., 1cm of thickness) from the first and second wing digits was Kellner and Tomida 2000). obtained for osteohistological sections. The sectioned samples were immersed in clear epoxy resin Resapol T-208 catalyzed Description and comparison with Butanox M50. They were cut with the aid of a micro rectify (Dremel 4000 with extender cable 225) coupled to a MPSC R 1221 was preserved in a pale-yellow limestone diamond disk and left to dry. The section was ground and slab and the bones were flattened, a typical feature of the polished in a metal polishing machine (AROPOL-E, fossils recovered from the Crato Formation (Figure 1). AROTEC LTDA) using AROTEC abrasive grit (grit size 60/ The specimen is composed of an incomplete right wing, P60, 120/P120, 320/P400, 1200/P2500) to remove scratches including proximal and distal carpals, wing metacarpal, from the block. After the blocks were polished, they were another metacarpal (probably metacarpal I), manual glued on glass slides and thinned again, in order to make the digits, and first and second wing phalanges. The metacar- blocks translucent enough to enable the observation of osteo- pals and wing phalanges are still articulated while the histological structures under a biological microscope (Zeiss carpals and manual digits are displaced not far from Axio Imager 2). As usually used for paleobiological interpre- their original anatomical position. tations, all slabs were oriented exclusively in transversal view The carpal region is exposed in dorsal view, with all elements (see Lamm 2013 for a review). of the proximal and distal carpal series
Recommended publications
  • A New Angiosperm from the Crato Formation (Araripe Basin, Brazil) and Comments on the Early Cretaceous Monocotyledons
    Anais da Academia Brasileira de Ciências (2014) 86(4): 1657-1672 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420140339 www.scielo.br/aabc A new angiosperm from the Crato Formation (Araripe Basin, Brazil) and comments on the Early Cretaceous Monocotyledons FLAVIANA J. DE LIMA1, ANTÔNIO A.F. SARAIVA2, MARIA A.P. DA SILVA3, RENAN A.M. BANTIM1 and JULIANA M. SAYÃO4 1Programa de Pós-Graduação em Geociências, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n, Cidade Universitária, 50740-530 Recife, PE, Brasil 2Laboratório de Paleontologia, Universidade Regional do Cariri, Rua Carolino Sucupira, s/n, 63100-000 Crato, CE, Brasil 3Laboratório de Botânica Aplicada, Universidade Regional do Cariri, Rua Carolino Sucupira, s/n, 63100-000 Crato, CE, Brasil 4Laboratório de Biodiversidade do Nordeste, Universidade Federal de Pernambuco, Rua do Alto Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brasil Manuscript received on July 1, 2014; accepted for publication on September 9, 2014 ABSTRACT The Crato Formation paleoflora is one of the few equatorial floras of the Early Cretaceous. It is diverse, with many angiosperms, especially representatives of the clades magnoliids, monocotyledons and eudicots, which confirms the assumption that angiosperm diversity during the last part of the Early Cretaceous was reasonably high. The morphology of a new fossil monocot is studied and compared to all other Smilacaceae genus, especially in the venation. Cratosmilax jacksoni gen. et sp. nov. can be related to the Smilacaceae family, becoming the oldest record of the family so far.
    [Show full text]
  • From the Crato Formation (Lower Cretaceous)
    ORYCTOS.Vol. 3 : 3 - 8. Décembre2000 FIRSTRECORD OT CALAMOPLEU RUS (ACTINOPTERYGII:HALECOMORPHI: AMIIDAE) FROMTHE CRATO FORMATION (LOWER CRETACEOUS) OF NORTH-EAST BRAZTL David M. MARTILL' and Paulo M. BRITO'z 'School of Earth, Environmentaland PhysicalSciences, University of Portsmouth,Portsmouth, POl 3QL UK. 2Departmentode Biologia Animal e Vegetal,Universidade do Estadode Rio de Janeiro, rua SâoFrancisco Xavier 524. Rio de Janeiro.Brazll. Abstract : A partial skeleton representsthe first occurrenceof the amiid (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus from the Nova Olinda Member of the Crato Formation (Aptian) of north east Brazil. The new spe- cimen is further evidencethat the Crato Formation ichthyofauna is similar to that of the slightly younger Romualdo Member of the Santana Formation of the same sedimentary basin. The extended temporal range, ?Aptian to ?Cenomanian,for this genus rules out its usefulnessas a biostratigraphic indicator for the Araripe Basin. Key words: Amiidae, Calamopleurus,Early Cretaceous,Brazil Première mention de Calamopleurus (Actinopterygii: Halecomorphi: Amiidae) dans la Formation Crato (Crétacé inférieur), nord est du Brésil Résumé : la première mention dans le Membre Nova Olinda de la Formation Crato (Aptien ; nord-est du Brésil) de I'amiidé (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus est basée sur la découverted'un squelettepar- tiel. Le nouveau spécimen est un élément supplémentaireindiquant que I'ichtyofaune de la Formation Crato est similaire à celle du Membre Romualdo de la Formation Santana, située dans le même bassin sédimentaire. L'extension temporelle de ce genre (?Aptien à ?Cénomanien)ne permet pas de le considérer comme un indicateur biostratigraphiquepour le bassin de l'Araripe. Mots clés : Amiidae, Calamopleurus, Crétacé inférieu4 Brésil INTRODUCTION Araripina and at Mina Pedra Branca, near Nova Olinda where cf.
    [Show full text]
  • SG125 035-140 Veldmeijer 16-01-2007 07:46 Pagina 35
    SG125 035-140 veldmeijer 16-01-2007 07:46 Pagina 35 Description of Coloborhynchus spielbergi sp. nov. (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil. André J. Veldmeijer Veldmeijer, A.J. Coloborhynchus spielbergi sp. nov. (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil. Scripta Geologica 125: 35-139, 22 figs., 16 pls; Leiden, May 2003. André J. Veldmeijer, Mezquitalaan 23, 1064 NS Amsterdam, The Netherlands ([email protected]). A new species of pterosaur, Coloborhynchus spielbergi sp. nov. (Pterodactyloidea), from the Romualdo Member (Albian) of the Santana Formation is described. The type consists of the skull, mandible and many of the post-cranial bones. The specimen displays a high degree of co-ossification indicating that the animal was an adult and likely quite old when it died. The wingspan is reconstructed at nearly 6 m. Among the characteristic features are a large anteriorly positioned premaxillary sagittal crest and a smaller, also anteriorly positioned dentary sagittal crest, a flat anterior aspect of the skull from which two teeth project and a ventrally fused pelvis. Comments on Brazilian pterosaurs are made in connec- tion with the classificiation of the Leiden specimen. Keywords –– Pterosaur, Coloborhynchus, Santana Formation, Lower Cretaceous, Brazil. Contents Introduction ..................................................................................................................................................... 35 Material .............................................................................................................................................................
    [Show full text]
  • 7.2.1. Introduction
    Veldmeijer Cretaceous, toothed pterosaurs from Brazil. A reappraisal 1. Introduction Campos & Kellner (1985b) related that references to flying reptiles from Brazil (not from the Araripe Basin) were made as early as the 19th century, but the first find from Chapada do Araripe was described as late as the 1970s (Price, 1971, post–cranial remains of Araripesaurus castilhoi). Wellnhofer (1977) published the description of a phalanx of a wing finger of a pterosaur from the Santana Formation and named it Araripedactylus dehmi. Since then, much has been published on the pterosaurs from Brazil, and there has been an increasing interest in the material from this area, resulting in an increase in scientific interest in pterosaurs in general. The plateau of the Araripe Basin, in northeast Brazil on the boundaries of Piaui, Ceará and Pernambuco (figure 1.1) was already famous for its well preserved fossils, escpacially fish (e.g. Maisey, 1991), long before the area became the most important source of Cretaceous pterosaur fossils. At present, it is the most important area for Cretaceous pterosaurs globally, although an increasing number of finds are reported from China (e.g. Lü & Ji, 2005; Wang & Lü, 2001 and Wang & Zhou, 2003). Some of the Brazilian material is severely compacted (Crato Formatin; Frey & Martill, 1994; Frey et al., 2003a, b; Sayão & Kellner, 2000) and preserved on a laminated limestone comparable to that of Solnhofen. (The type locality of most, if not all, pterosaur fossils from the Araripe Basin is uncertain, because no systematic, scientically based excavations or even surveys have been done in this area.
    [Show full text]
  • Is Our Understanding of Santana Group Pterosaur Diversity Biased by Poor Biological and Stratigraphic Control?
    Anhanguera taxonomy revisited: is our understanding of Santana Group pterosaur diversity biased by poor biological and stratigraphic control? Felipe L. Pinheiro1 and Taissa Rodrigues2 1 Laboratório de Paleobiologia, Universidade Federal do Pampa, São Gabriel, RS, Brazil 2 Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil ABSTRACT Background. Anhanguerids comprise an important clade of pterosaurs, mostly known from dozens of three-dimensionally preserved specimens recovered from the Lower Cretaceous Romualdo Formation (northeastern Brazil). They are remarkably diverse in this sedimentary unit, with eight named species, six of them belonging to the genus Anhanguera. However, such diversity is likely overestimated, as these species have been historically diagnosed based on subtle differences, mainly based on the shape and position of the cranial crest. In spite of that, recently discovered pterosaur taxa represented by large numbers of individuals, including juveniles and adults, as well as presumed males and females, have crests of sizes and shapes that are either ontogenetically variable or sexually dimorphic. Methods. We describe in detail the skull of one of the most complete specimens referred to Anhanguera, AMNH 22555, and use it as a case study to review the diversity of anhanguerids from the Romualdo Formation. In order to accomplish that, a geometric morphometric analysis was performed to assess size-dependent characters with respect to the premaxillary crest in the 12 most complete skulls bearing crests that are referred in, or related to, this clade, almost all of them analyzed first hand. Results. Geometric morphometric regression of shape on centroid size was highly Submitted 4 January 2017 statistically significant (p D 0:0091) and showed that allometry accounts for 25.7% Accepted 8 April 2017 Published 4 May 2017 of total shape variation between skulls of different centroid sizes.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • An Unusual Occurrence of Amber in Laminated Limestones: the Crato Formation Lagerstätte (Early Cretaceous) of Brazil
    [Palaeontology, Vol. 48, Part 6, 2005, pp. 1399–1408] AN UNUSUAL OCCURRENCE OF AMBER IN LAMINATED LIMESTONES: THE CRATO FORMATION LAGERSTA¨ TTE (EARLY CRETACEOUS) OF BRAZIL by DAVID M. MARTILL*, ROBERT F. LOVERIDGE*, JOSE´ ARTUR FERREIRA GOMES DE ANDRADE and ANDRE HERZOG CARDOSOà *Palaeobiology Research Group, School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL UK; e-mail: [email protected] Centro de Pesquisas Paleontolo´gicas da Chapada do Araripe – DNPM, Crato, Ceara´, Brazil àUniversidade Regional do Cariri – URCA, Crato, Ceara´, Brazil Typescript received 24 May 2004; accepted in revised form 12 November 2004 Abstract: Sub-ellipsoidal to irregular clasts of amber occur to Brachyphyllum sp., cf. Wollemia sp. and cf. Agathis sp. within millimetrically laminated limestones of the Nova Irregular, septate tubular structures may represent micro- Olinda Member, Crato Formation (Early Cretaceous, ?Aptian) inclusions and are considered to be fungal hyphae. of the Araripe Basin in Ceara´, north-east Brazil. The amber is associated with resin-filled cones, foliage and palyno- Key words: Amber, Araucariaceae, Agathis, Brachyphyllum, morphs attributed to the Araucariaceae and may be referred Wollemia, Cretaceous, Crato Formation, Brazil. The Crato Formation Konservat Lagersta¨tte of the Ara- (de Lima 1979). The flora has not been studied in detail, ripe Basin in north-east Brazil represents one of the most but it includes complete plants (roots, stems, leaves and diverse fossil assemblages for the Early Cretaceous. Only fruiting bodies) of a variety of pteridophytes, gymno- the lowest part of the formation, the Nova Olinda Mem- sperms, cycads, gnetaleans and angiosperms (Crane and ber, yields the famous well-preserved fauna and flora, Maisey 1991).
    [Show full text]
  • Review of the Pterodactyloid Pterosaur Coloborhynchus 219
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • The Branchial Skeleton in Aptian Chanid Fishes
    Cretaceous Research 112 (2020) 104454 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes The branchial skeleton in Aptian chanid fishes (Gonorynchiformes) from the Araripe Basin (Brazil): Autecology and paleoecological implications * Alexandre Cunha Ribeiro a, , Francisco Jose Poyato-Ariza b, Filipe Giovanini Varejao~ c, Flavio Alicino Bockmann d a Departamento de Biologia e Zoologia, Universidade Federal de Mato Grosso, Av. Fernando Corr^ea da Costa, 2367, Cuiaba 78060-900, Mato Grosso, Brazil b Centre for Integration on Palaeobiology & Unidad de Paleontología, Departamento de Biología, Universidad Autonoma de Madrid, Cantoblanco, E-28049, Madrid, Spain c Instituto LAMIR, Departamento de Geologia, Universidade Federal do Parana, Av. Cel. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba 81531- 980, Parana, Brazil d Laboratorio de Ictiologia de Ribeirao~ Preto, Departamento de Biologia, FFCLRP, Universidade de Sao~ Paulo, Av. Bandeirantes 3900, Ribeirao~ Preto 14040- 901, Sao~ Paulo, Brazil article info abstract Article history: Gonorynchiformes are a small, but morphologically diverse group of teleost fishes with an extensive Received 17 October 2019 fossil record. Most extant gonorynchiforms are efficient filter feeders, bearing long gill rakers and other Received in revised form morphological specializations, such as microbranchiospines and an epibranchial organ. The analyses of 28 January 2020 the gill arch of the Brazilian gonorynchiform fishes Dastilbe crandalli and Tharrias araripis from the Aptian Accepted in revised form 12 March 2020 of the Araripe Basin, Northeast Brazil, demonstrate significant morphological variation suggestive of Available online 19 March 2020 distinct feeding habitats as well as ontogenetic dietary shifts in these closely related gonorynchiforms. © 2020 Elsevier Ltd.
    [Show full text]
  • On the Osteology of Tapejara Wellnhoferi KELLNER 1989 and the first Occurrence of a Multiple Specimen Assemblage from the Santana Formation, Araripe Basin, NE-Brazil
    Swiss J Palaeontol (2011) 130:277–296 DOI 10.1007/s13358-011-0024-5 On the osteology of Tapejara wellnhoferi KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the Santana Formation, Araripe Basin, NE-Brazil Kristina Eck • Ross A. Elgin • Eberhard Frey Received: 28 May 2011 / Accepted: 9 August 2011 / Published online: 26 August 2011 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2011 Abstract The postcranial elements of two similar sized ocular lobes indicate that Tapejara possessed both excel- and juvenile individuals, along with a partial skull, are lent balancing and visual systems as a consequence of its attributed to the Early Cretaceous pterosaur Tapejara aerial lifestyle. wellnhoferi. The remains, recovered from a single con- cretion of the Romualdo Member, Santana Formation, Keywords Brazil Á Lower Cretaceous Á Santana NE-Brazil, represent the first account of multiple specimens Formation Á Pterosauria Á Tapejaridae Á Osteology having settled together and allow for a complete review of postcranial osteology in tapejarid pterosaurs. A comparison Abbreviations of long bone morphometrics indicates that all specimens BSP Bayerische Staatammlung fu¨r Pala¨ontologie und attributed to the Tapejaridae for which these elements are historische Geologie, Munich, Germany known (i.e. Huaxiapterus, Sinopterus, Tapejara) display D Dalian Natural History Museum, Dalian, China similar bivariate ratios, suggesting that Chinese and Bra- IMNH Iwaki City Museum of Coal and Fossils, Iwaki, zilian taxa must have exhibited similar growth patterns. An Japan unusual pneumatic configuration, whereby the humerus is IVPP Institute for Vertebrate Palaeontology and pierced by both dorsally and ventrally located foramina, is Palaeoanthropology Beijing, P.
    [Show full text]
  • Revista Brasileira De Paleontologia, 21(3):245–254, Setembro/Dezembro 2018 a Journal of the Brazilian Society of Paleontology Doi:10.4072/Rbp.2018.3.05
    Revista Brasileira de Paleontologia, 21(3):245–254, Setembro/Dezembro 2018 A Journal of the Brazilian Society of Paleontology doi:10.4072/rbp.2018.3.05 THROWING LIGHT ON AN UNCOMMON PRESERVATION OF BLATTODEA FROM THE CRATO FORMATION (ARARIPE BASIN, CRETACEOUS), BRAZIL FRANCISCO IRINEUDO BEZERRA Programa de Pós-Graduação em Geologia, Departamento de Geologia, Universidade Federal do Ceará, 64049-550, Fortaleza, CE, Brazil. [email protected] JOÃO HERMÍNIO DA SILVA Campus de Juazeiro do Norte, Universidade Federal do Cariri, 63000-000, Juazeiro do Norte, CE, Brazil. [email protected] AMAURI JARDIM DE PAULA, NAIARA CIPRIANO OLIVEIRA, ALEXANDRE ROCHA PASCHOAL, PAULO TARSO C. FREIRE Departamento de Física, Universidade Federal do Ceará, 60455-970, Fortaleza, CE, Brazil. [email protected], [email protected], [email protected], [email protected] BARTOLOMEU CRUZ VIANA NETO Departamento de Física, Universidade Federal do Piauí, 64049-550, Teresina, PI, Brazil. [email protected] MÁRCIO MENDES Departamento de Geologia, Universidade Federal do Ceará, 64049-550, Fortaleza, CE, Brazil. [email protected] ABSTRACT – Fossilization results from several physical-chemical-geological processes. Original labile and non-bioclastic structures rarely survive throughout this process. In particular, the Crato Formation (Araripe Basin) is one of the most significant Cretaceous Konservat- Lagerstätten due to its well-preserved invertebrates, mainly three-dimensional insects. In general, Crato insects exhibit brown-orange color, constituted by goethite or hematite replacements. In this context, we used the scanning electron microscopy coupled to energy dispersive spectrometer and Raman spectroscopy to analyze Araripeblatta dornellesae, a 115 million-years-old fossil from Crato Formation, Araripe Basin.
    [Show full text]
  • New Azhdarchoid Pterosaur (Pterosauria
    Anais da Academia Brasileira de Ciências (2017) 89(3 Suppl.): 2003-2012 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720170478 www.scielo.br/aabc | www.fb.com/aabcjournal New azhdarchoid pterosaur (Pterosauria, Pterodactyloidea) with an unusual lower jaw from the Portezuelo Formation (Upper Cretaceous), Neuquén Group, Patagonia, Argentina ALEXANDER W.A. KELLNER1 and JORGE O. CALVO2 1Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Departamento de Geologia e Paleontologia, Museu Nacional/ Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil 2Grupo de Transferencia Proyecto Dino, Universidad Nacional del Comahue, Parque Natural Geo- Paleontológico Proyecto Dino, Ruta Provincial 51, Km 65, Neuquén, Argentina Manuscript received on June 22, 2017; accepted for publication on September 4, 2017 ABSTRACT A new azhdarchoid pterosaur from the Upper Cretaceous of Patagonia is described. The material consists of an incomplete edentulous lower jaw that was collected from the upper portion of the Portezuelo Formation (Turonian-Early Coniacian) at the Futalognko site, northwest of Neuquén city, Argentina. The overall morphology of Argentinadraco barrealensis gen. et sp. nov. indicates that it belongs to the Azhdarchoidea and probable represents an azhdarchid species. The occlusal surface of the anterior portion is laterally compressed and shows blunt lateral margins with a medial sulcus that are followed by two well- developed mandibular ridges, which in turn are bordered laterally by a sulcus. The posterior end of the symphysis is deeper than in any other azhdarchoid.
    [Show full text]