Free Zinc Ions Myd88 and TRIF Signaling Pathways by Differential

Total Page:16

File Type:pdf, Size:1020Kb

Free Zinc Ions Myd88 and TRIF Signaling Pathways by Differential Differential Regulation of TLR-Dependent MyD88 and TRIF Signaling Pathways by Free Zinc Ions This information is current as Anne Brieger, Lothar Rink and Hajo Haase of October 6, 2021. J Immunol 2013; 191:1808-1817; Prepublished online 17 July 2013; doi: 10.4049/jimmunol.1301261 http://www.jimmunol.org/content/191/4/1808 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/07/12/jimmunol.130126 Material 1.DC1 References This article cites 48 articles, 13 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/191/4/1808.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 6, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Regulation of TLR-Dependent MyD88 and TRIF Signaling Pathways by Free Zinc Ions Anne Brieger, Lothar Rink, and Hajo Haase Zinc signals are utilized by several immune cell receptors. One is TLR4, which causes an increase of free zinc ions (Zn2+) that is required for the MyD88-dependent expression of inflammatory cytokines. This study investigates the role of Zn2+ on Toll/IL-1R domain–containing adapter inducing IFN-b (TRIF)–dependent signals, the other major intracellular pathway activated by TLR4. Chelation of Zn2+ with the membrane-permeable chelator N,N,N’,N’-Tetrakis(2-pyridylmethyl)ethylenediamine augmented TLR4-mediated production of IFN-b and subsequent synthesis of inducible NO synthase and production of NO. The effect is based on Zn2+ acting as a negative regulator of the TRIF pathway via reducing IFN regulatory factor 3 activation. This was also observed with TLR3, the only TLR that signals exclusively via TRIF, but not MyD88, and does not trigger a zinc signal. In contrast, IFN-g–induced NO production was unaffected by N,N,N’,N’-Tetrakis(2-pyridylmethyl)ethylenediamine. Taken together, Zn2+ is specifically involved in TLR signaling, where it differentially regulates MyD88 and TRIF signaling via a zinc signal or via Downloaded from basal Zn2+ levels, respectively. The Journal of Immunology, 2013, 191: 1808–1817. he essential trace element zinc is indispensable for the NF-kB activation, and thereby for transcription and release of function of the immune system. Zinc deficiency leads to inflammatory cytokines, such as TNF-a, IL-1b, and IL-6 (7). T increased susceptibility to infections, and restoring zinc After activation of the MyD88-dependent pathway, the receptor levels of marginally deficient elderly by supplementation can im- complex is endocytosed (10) and the adaptors TRAM and Toll/IL- http://www.jimmunol.org/ prove immune function (1, 2). In recent years, it has become clear 1R domain–containing adapter inducing IFN-b (TRIF) bind to that the importance of zinc for immunity is based, at least in part, TLR4, resulting in a delayed NF-kB signal and activation of the on a function in signal transduction in cells of the immune system IFN regulatory factor 3 (IRF3) (11). Signaling via TRIF and IRF3 (3). Intracellular zinc concentrations are tightly regulated by zinc triggers the secretion of IFN-b (12). IFN-b binds to the type 1 transporters and zinc signals (4). The latter consists of a change in IFNR, which, in turn, activates a JAK-STAT pathway inducing the the cytoplasmic concentration of free zinc ions (Zn2+), which have expression of surface molecules required for the interaction with already been observed in response to several stimuli and in many T cells, such as CD40, CD80, and CD86 (13, 14). Together, the ac- different types of immune cells. In monocytes, MCP-1 (5), PMA tivation of NF-kB and JAK-STAT also induces the expression of (6), TNF-a, insulin, and the TLR ligands Pam3CSK4 and LPS (7) inducible nitric monoxide synthase (iNOS) (15–17). iNOS activity by guest on October 6, 2021 induce an intracellular increase of the cytosolic free Zn2+ con- is mainly regulated through gene expression, and its product NO is centration. an important mediator of inflammation (18). Functions of iNOS- TLRs are a subgroup of the pattern-recognition receptors, which derived NO are the elimination of microbes, parasites, and cancer detect conserved molecular structures of pathogens that are used as cells (18, 19). danger signals by certain immune cells (8). Ligand binding to the Still, it is poorly understood how the TLR-induced inflammatory ectodomain of TLRs induces dimerization, bringing their cyto- and antiviral immune responses are balanced. Zinc signals affect plasmic Toll/IL-1R domains together, resulting in the recruitment the TLR4-induced production of MyD88-dependent inflammatory of intracellular adapter proteins and initiation of downstream cytokines (7), and the aim of this study is to investigate whether signaling events (9). TLR4 initially binds the adaptors TIRAP and intracellular Zn2+ levels also affect the TLR4-induced activation MyD88, and causes phosphorylation of MAPKs and early acti- of the TRIF pathway, in particular, the release of the inflammatory vation of NF-kB. The zinc signal is required for preventing de- mediator NO. phosphorylation of MAPKs p38, MEK1/2, and ERK1/2, and for Materials and Methods Cell culture Institute of Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, All cell lines were cultured at 37˚C in a humidified 5% CO2 atmosphere. Germany RAW 264.7 murine macrophages, L929 fibroblasts, and 7FD3 hybridoma Received for publication May 13, 2013. Accepted for publication June 13, 2013. cells were grown in RPMI 1640 (Lonza, Verviers, Belgium) containing This work was supported by German Research Council (Deutsche Forschungsge- 10% FCS (heat inactivated for 30 min at 56˚C; PAA, Co¨lbe, Germany), 2 meinschaft) Grant HA4318/3 (to H.H.). mM L-glutamine, 100 U/ml potassium penicillin, and 100 U/ml strepto- mycin sulfate (all from Lonza). 3T3 and 293T cells were grown in DMEM Address correspondence and reprint requests to Prof. Hajo Haase, Institute of Immu- nology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aa- (Lonza) supplemented as described earlier. Zinc-deficient medium was chen, Germany. E-mail address: [email protected] obtained by treatment with CHELEX 100 ion exchange resin (Sigma- Aldrich, St. Louis, MO) as described previously (20). The online version of this article contains supplemental material. Abbreviations used in this article: BMM, bone marrow–derived macrophage; iNOS, Bone marrow–derived macrophages inducible nitric monoxide synthase; IRF3, IFN regulatory factor 3; PTP, protein tyrosine phosphatase; TPEN, N,N,N’,N’-Tetrakis(2-pyridylmethyl)ethylenediamine; Bone marrow was isolated from the femurs of C57BL/6 mice. A total of 5 TRIF, Toll/IL-1R domain–containing adapter inducing IFN-b. 3 3 10 cells/ml was seeded in 20 ml RPMI 1640 containing 18% heat- inactivated FCS, 2 mM L-glutamine, 100 U/ml potassium penicillin, 100 Copyright Ó 2013 by The American Association of Immunologists, Inc. 0022-1767/13/$16.00 U/ml streptomycin sulfate, 1 mM nonessential amino acids (Lonza), and www.jimmunol.org/cgi/doi/10.4049/jimmunol.1301261 The Journal of Immunology 1809 20% sterile-filtered L929 cell culture supernatant for a total of 8 d. On LumiGlo Reagent (Cell Signaling Technology) on an LAS-3000 (Fujifilm day 4, 10 ml fresh culture medium was added. On day 7, the medium was Lifescience, Du¨sseldorf, Germany). Densitometric quantification was per- completely replaced. On the next day, experiments were performed. formed with Adobe Photoshop Elements. Production of IFN-b–containing cell-free culture supernatant Nuclear extraction for Western blot samples The supernatants of 3T3 and 293T cells stably transfected to produce mouse A total of 5 3 106 cells was thoroughly suspended in 2 ml ice-cold buffer IFN-b were collected 4 d after seeding and were centrifuged for 10 min at (10 mM Tris-HCl, pH 7.4, containing 15 mM NaCl, 60 mM KCl, 0.5% 300 3 g. Supernatants were sterile-filtered with a 0.22-mm filter (Millex- Igepal CA-630, 1 mM EDTA, 0.1 mM EGTA) and lysed at 4˚C for 5 min. GV; Millipore, Billerica, MA), and aliquots were stored at 280˚C until Nuclei were pelleted by centrifugation (600 3 g, 4˚C, 5 min), taken up in use. The activities of the IFN-b–containing cell supernatants were deter- 100-ml Western blot sample buffer, and treated as described earlier for mined by an IFN-b bioassay with the L929 cell line and the Encephalo- Western blot samples. myocarditis virus. For all experiments, 2000 U/ml IFN-b was applied. RT-PCR Purification of monoclonal anti–IFN-b Abs The mRNA of 5 3 105 cells was isolated after lysis in 1 ml Tri Reagent 7FD3 hybridoma cells produce rat IgG1 anti-mouse IFN-b Abs. The cells (Ambion, Life Technologies, Carlsbad, CA) and transcribed into cDNA were grown for 3–4 d under normal culture conditions until confluency and with the qScript cDNA Synthesis Kit (Quanta Biosciences, Darmstadt, cultured for 3 more days in serum-free medium (21). Supernatants were Germany) according to the manufacturers’ instructions. Quantitative real- collected, sterile-filtered, and concentrated (Minicon B15 clinical sample time PCR was performed on an ABI PRISM 7000 or a Step-One plus Real- concentrator; Millipore).
Recommended publications
  • Osteoarthritis and Toll-Like Receptors: When Innate Immunity Meets Chondrocyte Apoptosis
    biology Review Osteoarthritis and Toll-Like Receptors: When Innate Immunity Meets Chondrocyte Apoptosis Goncalo Barreto 1,2,* , Mikko Manninen 3 and Kari K. Eklund 1,2,3 1 Department of Rheumatology, Helsinki University and Helsinki University Hospital, 00014 Helsinki, Finland; kari.eklund@hus.fi 2 Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland 3 Orton Research Institute, 00280 Helsinki, Finland; mikko.manninen@orton.fi * Correspondence: goncalo.barreto@helsinki.fi; Tel.: +358-4585-381-10 Received: 24 February 2020; Accepted: 28 March 2020; Published: 30 March 2020 Abstract: Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. In particular, chondrocyte-mediated inflammatory responses triggered by the activation of innate immune receptors by alarmins (also known as danger signals) are thought to be involved. Thus, toll-like receptors (TLRs) and their signaling pathways are of particular interest. Recent reports suggest that among the TLR-induced innate immune responses, apoptosis is one of the critical events. Apoptosis is of particular importance, given that chondrocyte death is a dominant feature in OA. This review focuses on the role of TLR signaling in chondrocytes and the role of TLR activation in chondrocyte apoptosis. The functional relevance of TLR and TLR-triggered apoptosis in OA are discussed as well as their relevance as candidates for novel disease-modifying OA drugs (DMOADs). Keywords: osteoarthritis; chondrocytes; toll-like receptors; apoptosis; innate immunity; cartilage 1. Introduction: The Role of Immunity in OA Clinical osteoarthritis (OA) is preceded by a preclinical stage, which, in conjunction with the presence of risk factors and/or other pathological factors, proceeds to the radiographic OA state.
    [Show full text]
  • Dephosphorylating TRAM TRIF-Dependent TLR4 Pathway by Phosphatase PTPN4 Preferentially Inhibits
    Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM This information is current as Wanwan Huai, Hui Song, Lijuan Wang, Bingqing Li, Jing of September 29, 2021. Zhao, Lihui Han, Chengjiang Gao, Guosheng Jiang, Lining Zhang and Wei Zhao J Immunol published online 30 March 2015 http://www.jimmunol.org/content/early/2015/03/28/jimmun ol.1402183 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published March 30, 2015, doi:10.4049/jimmunol.1402183 The Journal of Immunology Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM Wanwan Huai,* Hui Song,* Lijuan Wang,† Bingqing Li,‡ Jing Zhao,* Lihui Han,* Chengjiang Gao,* Guosheng Jiang,‡ Lining Zhang,* and Wei Zhao* TLR4 recruits TRIF-related adaptor molecule (TRAM, also known as TICAM2) as a sorting adaptor to facilitate the interaction between TLR4 and TRIF and then initiate TRIF-dependent IRF3 activation.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Toll-Like Receptor Signaling Pathway Cat. no. 330231 PAHS-018ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity. The TLR family of pattern recognition receptors (PRRs) detects a wide range of bacteria, viruses, fungi and parasites via pathogen-associated molecular patterns (PAMPs). Each receptor binds to specific ligands, initiates a tailored innate immune response to the specific class of pathogen, and activates the adaptive immune response.
    [Show full text]
  • TLR Signaling Pathways
    Seminars in Immunology 16 (2004) 3–9 TLR signaling pathways Kiyoshi Takeda, Shizuo Akira∗ Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Abstract Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing spe- cific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling. © 2003 Elsevier Ltd. All rights reserved. Keywords: TLR; Innate immunity; Signal transduction; TIR domain 1. Introduction 2. Toll-like receptors Toll receptor was originally identified in Drosophila as an A mammalian homologue of Drosophila Toll receptor essential receptor for the establishment of the dorso-ventral (now termed TLR4) was shown to induce the expression pattern in developing embryos [1]. In 1996, Hoffmann and of genes involved in inflammatory responses [3]. In addi- colleagues demonstrated that Toll-mutant flies were highly tion, a mutation in the Tlr4 gene was identified in mouse susceptible to fungal infection [2]. This study made us strains that were hyporesponsive to lipopolysaccharide [4]. aware that the immune system, particularly the innate im- Since then, Toll receptors in mammals have been a major mune system, has a skilful means of detecting invasion by focus in the immunology field.
    [Show full text]
  • TLR2 Signaling Pathway Combats Streptococcus Uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production
    cells Article TLR2 Signaling Pathway Combats Streptococcus uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production 1, 1, 1 1,2 1 2 Bin Li y, Zhixin Wan y, Zhenglei Wang , Jiakun Zuo , Yuanyuan Xu , Xiangan Han , Vanhnaseng Phouthapane 3 and Jinfeng Miao 1,* 1 MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; [email protected] (B.L.); [email protected] (Z.W.); [email protected] (Z.W.); [email protected] (J.Z.); [email protected] (Y.X.) 2 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; [email protected] 3 Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane 22797, Laos; [email protected] * Correspondence: [email protected]; Fax: +86-25-8439-8669 These authors contributed equally to this work. y Received: 6 January 2020; Accepted: 19 February 2020; Published: 21 February 2020 Abstract: Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary / epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2− − and / TLR4− − mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage, and bacterial count. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S.
    [Show full text]
  • TLR4 Signalling
    RESEA r CH HIGHLIGHTS INNATE IMMUNITY TLR4 signalling Toll-like receptor 4 (TLR4) is unique plasma membrane. Now, a study from sufficient to allow TRAM to localize among TLRs in its ability to activate Ruslan Medzhitov’s laboratory shows specifically to endosomes. These 20 two distinct signalling pathways that the two signalling pathways amino acids constitute a bipartite — one pathway is activated by the are induced sequentially and that localization domain — consisting of adaptors TIRAP (Toll/interleukin-1- the TRAM–TRIF pathway is only a myristoylation motif (the first 7 receptor (TIR)-domain-containing operational from early endosomes amino acids) and a polybasic domain adaptor protein) and MyD88, following endocytosis of TLR4. — that is commonly found in other which leads to the induction of The authors found it puzzling proteins that shuttle between the pro‑inflammatory cytokines, and that TLR4 is the only known TLR plasma membrane and endosomes. the second pathway is activated by capable of inducing the production Mutational analysis showed that the the adaptors TRIF (TIR-domain- of type I interferons from the plasma myristoylation motif is necessary containing adaptor protein inducing membrane so they decided to take for endosomal localization but interferon‑β) and TRAM (TRIF- a closer look at TLR4 signalling. both parts of the bipartite motif related adaptor molecule), which First, they assessed the subcellular are required for plasma-membrane leads to the induction of type I inter- localization of tagged TLR4 and found targeting. A TRAM transgene of ferons. Until now, it had been believed that it localized to both the plasma which the protein product resided that these two signalling pathways membrane and endosomal vesicles.
    [Show full text]
  • Bacterial Flagellin—A Potent Immunomodulatory Agent
    OPEN Experimental & Molecular Medicine (2017) 49, e373; doi:10.1038/emm.2017.172 Official journal of the Korean Society for Biochemistry and Molecular Biology www.nature.com/emm REVIEW Bacterial flagellin—a potent immunomodulatory agent Irshad A Hajam1, Pervaiz A Dar2, Imam Shahnawaz2, Juan Carlos Jaume2 and John Hwa Lee1 Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests. Experimental & Molecular Medicine (2017) 49, e373; doi:10.1038/emm.2017.172; published online 1 September 2017 INTRODUCTION vaccines. Even though all the adjuvants studied so far have The immune system has evolved to fight off microbial invasion proven to be effective, flagellin, a TLR5 agonist, has been through the coordinated action of the innate and adaptive arms shown more promising results without any major side effects. of the immunity. Innate immune cells respond to a variety of Flagellin is the structural component of the flagellum, a stimuli, including bacterial, viral, parasitic or fungal infections, locomotory organ that is mostly associated with Gram-negative via members of structurally related receptors termed toll-like bacteria. It is characterized by highly conserved N- and receptors (TLRs).
    [Show full text]
  • Resveratrol Inhibits LPS‑Induced Inflammation Through Suppressing the Signaling Cascades of TLR4‑NF‑Κb/Mapks/IRF3
    1824 EXPERIMENTAL AND THERAPEUTIC MEDICINE 19: 1824-1834, 2020 Resveratrol inhibits LPS‑induced inflammation through suppressing the signaling cascades of TLR4‑NF‑κB/MAPKs/IRF3 WENZHI TONG*, XIANGXIU CHEN*, XU SONG*, YAQIN CHEN, RENYONG JIA, YUANFENG ZOU, LIXIA LI, LIZI YIN, CHANGLIANG HE, XIAOXIA LIANG, GANG YE, CHENG LV, JUCHUN LIN and ZHONGQIONG YIN Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China Received February 1, 2019; Accepted October 23, 2019 DOI: 10.3892/etm.2019.8396 Abstract. Resveratrol (Res) is a natural compound Introduction that possesses anti-inflammatory properties. However, the protective molecular mechanisms of Res against Inflammation is a response of tissues to chemical and lipopolysaccharide (LPS)-induced inflammation have not mechanical injury or infection, which is usually caused by been fully studied. In the present study, RAW264.7 cells were various bacteria (1). The inflammatory response or chronic stimulated with LPS in the presence or absence of Res, and infections may cause significant damage to the host, including the subsequent modifications to the LPS‑induced signaling rheumatoid arthritis and psoriasis. Lipopolysaccharide (LPS), pathways caused by Res treatment were examined. It was a component of the outer membrane of gram-negative bacteria, identified that Res decreased the mRNA levels of Toll‑like initiates a number of major cellular responses that serve critical receptor 4 (TLR4), myeloid differentiation primary response roles in the pathogenesis of inflammatory responses (2). LPS protein MyD88, TIR domain-containing adapter molecule 2, may lead to an acute inflammatory response towards patho- which suggested that Res may inhibit the activation of the gens.
    [Show full text]
  • Receptor 5/Toll-Like Receptor 4 Complexes Involves Signaling Via
    Induction of Macrophage Nitric Oxide Production by Gram-Negative Flagellin Involves Signaling Via Heteromeric Toll-Like Receptor 5/Toll-Like Receptor 4 Complexes This information is current as of September 25, 2021. Steven B. Mizel, Anna N. Honko, Marlena A. Moors, Pameeka S. Smith and A. Phillip West J Immunol 2003; 170:6217-6223; ; doi: 10.4049/jimmunol.170.12.6217 http://www.jimmunol.org/content/170/12/6217 Downloaded from References This article cites 50 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/170/12/6217.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Induction of Macrophage Nitric Oxide Production by Gram-Negative Flagellin Involves Signaling Via Heteromeric Toll-Like Receptor 5/Toll-Like Receptor 4 Complexes1 Steven B.
    [Show full text]
  • Recognition of Lipopolysaccharide Pattern by TLR4 Complexes
    OPEN Experimental & Molecular Medicine (2013) 45, e66; doi:10.1038/emm.2013.97 & 2013 KSBMB. All rights reserved 2092-6413/13 www.nature.com/emm REVIEW Recognition of lipopolysaccharide pattern by TLR4 complexes Beom Seok Park1 and Jie-Oh Lee2 Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. Minute amounts of LPS released from infecting pathogens can initiate potent innate immune responses that prime the immune system against further infection. However, when the LPS response is not properly controlled it can lead to fatal septic shock syndrome. The common structural pattern of LPS in diverse bacterial species is recognized by a cascade of LPS receptors and accessory proteins, LPS binding protein (LBP), CD14 and the Toll-like receptor4 (TLR4)–MD-2 complex. The structures of these proteins account for how our immune system differentiates LPS molecules from structurally similar host molecules. They also provide insights useful for discovery of anti-sepsis drugs. In this review, we summarize these structures and describe the structural basis of LPS recognition by LPS receptors and accessory proteins. Experimental & Molecular Medicine (2013) 45, e66; doi:10.1038/emm.2013.97; published online 6 December 2013 Keywords: lipopolysaccharide (LPS); Toll-like receptor 4 (TLR4); MD-2; CD14; LBP INTRODUCTION the cell surface by a glycosylphosphatidylinositol anchor. CD14 In the initial phase of infection, the innate immune system splits LPS aggregates into monomeric molecules and presents generates a rapid inflammatory response that blocks the them to the TLR4–MD-2 complex. Aggregation of the TLR4– growth and dissemination of the infectious agent.
    [Show full text]
  • Ab-Htlr2 Prot
    PuMrifiedA mobnoc lomnal aTntibLodyR to 4mo/usMe TLDR4/2MD2 Catalog # mab-mtlr4md2 For research use only, not for diagnostic or therapeutic use Version # 14B27-MM PRODUCT INFORMATION APPLICATIONS Content MAb mTLR4/MD2 (MTS510) can be used for flow cytometry 100 µg purified monoclonal anti-mTLR4/MD2 antibody (intracellular staining), immunoprecipitation and immunohistochemical (MAb -mTLR4/MD2), provided lyophilized staining of frozen tissue sections. The antibody recognizes the mouse Clone: MTS510 TLR4/MD2 complex and is not useful for detection of TLR4 alone. Isotype: Rat IgG2a Furthermore, MAb TLR4 can be used as an antagonist of TLR4, it Formulation: PBS pH 7.4 blocks LPS-induced cellular activation. Antibody resuspension Neutralization Add 1 ml of sterile water to obtain a concentration of 0.1 mg/ml. The exact concentration of antibody required to neutralize mouse TLR4/MD2 activity is dependent on the TLR4 agonist used and its Storage concentration, cell type and growth conditions. - Product is shipped at room temperature. Store lyophilized InvivoGen has determined the neutralization dose for this antibody using MAb -mTLR4/MD2 at -20˚C. Product is stable for 1 year. the TLR4 ligand lipopolysaccharide (LPS) from Escherichia coli 0111:B4 - Upon resuspension, prepare aliquots of MAb -mTLR4/MD2 and store (LPS-EB Ultrapure) and HEK-Blue ™ mTLR4 cells. HEK-Blue ™ mTLR4 at -20°C. Resuspended product is stable 1 year when properly stored. cells were obtained by co-transfection of the murine TLR4, MD-2 and Avoid repeated freeze-thaw cycles. CD14 co-receptor genes, and an inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene into HEK293 cells.
    [Show full text]
  • Introduction to the Immune System, Lentivectors, and Transmission of HIV-1
    1 Chapter 1 Chapter 1: Introduction to the immune system, lentivectors, and transmission of HIV-1 2 Overview of thesis In this thesis we explore the role of dendritic cells (DCs) in regulating the adaptive immune system and mediating the anti-viral immune response to HIV-1 derived lentiviral vectors (LVs). The study of immunology and LVs is important in gaining understanding of anti-viral immunity as well as HIV-1 pathogenesis. We seek to learn how DCs can be critical to the development of efficient anti-viral immune responses, but also be culprits in aiding viral dissemination. The first chapter will provide background information on LVs and HIV-1 and the innate immune response in mediating immunity and infection to these viral vectors. It will also discuss the role of DCs in HIV-1 dissemination. In chapter 2, we will explore in depth how LVs activate DCs and result in priming of antigen-specific memory T cells. Our findings suggest that cellular DNA may act as a viral ligand to the STING pathway. In chapter 3 we continue to explore the role of DCs in HIV-1 infection. We find DCs that amplify HIV infection of T cells. This mode of transmission is relatively resistant to reverse transcriptase inhibitors compared to T cell infection in the absence of DCs. We consider the future directions and potential implications of this work in chapter 5, and discuss ongoing work to investigate innate immune signaling pathways associated with LV and HIV recognition, viral heterogeneity, and ways to address cell-to- cell infection.
    [Show full text]