Integration of Innate Immune Signaling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of Nlrs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation
International Journal of Molecular Sciences Review Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation Ioannis Kienes 1, Tanja Weidl 1, Nora Mirza 1, Mathias Chamaillard 2 and Thomas A. Kufer 1,* 1 Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; [email protected] (I.K.); [email protected] (T.W.); [email protected] (N.M.) 2 University of Lille, Inserm, U1003, F-59000 Lille, France; [email protected] * Correspondence: [email protected] Abstract: Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection. Citation: Kienes, I.; Weidl, T.; Mirza, Keywords: NOD-like receptors; Interferons; innate immunity; immune regulation; type I interferon; N.; Chamaillard, M.; Kufer, T.A. -
Osteoarthritis and Toll-Like Receptors: When Innate Immunity Meets Chondrocyte Apoptosis
biology Review Osteoarthritis and Toll-Like Receptors: When Innate Immunity Meets Chondrocyte Apoptosis Goncalo Barreto 1,2,* , Mikko Manninen 3 and Kari K. Eklund 1,2,3 1 Department of Rheumatology, Helsinki University and Helsinki University Hospital, 00014 Helsinki, Finland; kari.eklund@hus.fi 2 Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland 3 Orton Research Institute, 00280 Helsinki, Finland; mikko.manninen@orton.fi * Correspondence: goncalo.barreto@helsinki.fi; Tel.: +358-4585-381-10 Received: 24 February 2020; Accepted: 28 March 2020; Published: 30 March 2020 Abstract: Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. In particular, chondrocyte-mediated inflammatory responses triggered by the activation of innate immune receptors by alarmins (also known as danger signals) are thought to be involved. Thus, toll-like receptors (TLRs) and their signaling pathways are of particular interest. Recent reports suggest that among the TLR-induced innate immune responses, apoptosis is one of the critical events. Apoptosis is of particular importance, given that chondrocyte death is a dominant feature in OA. This review focuses on the role of TLR signaling in chondrocytes and the role of TLR activation in chondrocyte apoptosis. The functional relevance of TLR and TLR-triggered apoptosis in OA are discussed as well as their relevance as candidates for novel disease-modifying OA drugs (DMOADs). Keywords: osteoarthritis; chondrocytes; toll-like receptors; apoptosis; innate immunity; cartilage 1. Introduction: The Role of Immunity in OA Clinical osteoarthritis (OA) is preceded by a preclinical stage, which, in conjunction with the presence of risk factors and/or other pathological factors, proceeds to the radiographic OA state. -
Post-Transcriptional Inhibition of Luciferase Reporter Assays
THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 34, pp. 28705–28716, August 17, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Post-transcriptional Inhibition of Luciferase Reporter Assays by the Nod-like Receptor Proteins NLRX1 and NLRC3* Received for publication, December 12, 2011, and in revised form, June 18, 2012 Published, JBC Papers in Press, June 20, 2012, DOI 10.1074/jbc.M111.333146 Arthur Ling‡1,2, Fraser Soares‡1,2, David O. Croitoru‡1,3, Ivan Tattoli‡§, Leticia A. M. Carneiro‡4, Michele Boniotto¶, Szilvia Benko‡5, Dana J. Philpott§, and Stephen E. Girardin‡6 From the Departments of ‡Laboratory Medicine and Pathobiology and §Immunology, University of Toronto, Toronto M6G 2T6, Canada, and the ¶Modulation of Innate Immune Response, INSERM U1012, Paris South University School of Medicine, 63, rue Gabriel Peri, 94276 Le Kremlin-Bicêtre, France Background: A number of Nod-like receptors (NLRs) have been shown to inhibit signal transduction pathways using luciferase reporter assays (LRAs). Results: Overexpression of NLRX1 and NLRC3 results in nonspecific post-transcriptional inhibition of LRAs. Conclusion: LRAs are not a reliable technique to assess the inhibitory function of NLRs. Downloaded from Significance: The inhibitory role of NLRs on specific signal transduction pathways needs to be reevaluated. Luciferase reporter assays (LRAs) are widely used to assess the Nod-like receptors (NLRs)7 represent an important class of activity of specific signal transduction pathways. Although pow- intracellular pattern recognition molecules (PRMs), which are erful, rapid and convenient, this technique can also generate implicated in the detection and response to microbe- and dan- www.jbc.org artifactual results, as revealed for instance in the case of high ger-associated molecular patterns (MAMPs and DAMPs), throughput screens of inhibitory molecules. -
Dephosphorylating TRAM TRIF-Dependent TLR4 Pathway by Phosphatase PTPN4 Preferentially Inhibits
Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM This information is current as Wanwan Huai, Hui Song, Lijuan Wang, Bingqing Li, Jing of September 29, 2021. Zhao, Lihui Han, Chengjiang Gao, Guosheng Jiang, Lining Zhang and Wei Zhao J Immunol published online 30 March 2015 http://www.jimmunol.org/content/early/2015/03/28/jimmun ol.1402183 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published March 30, 2015, doi:10.4049/jimmunol.1402183 The Journal of Immunology Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM Wanwan Huai,* Hui Song,* Lijuan Wang,† Bingqing Li,‡ Jing Zhao,* Lihui Han,* Chengjiang Gao,* Guosheng Jiang,‡ Lining Zhang,* and Wei Zhao* TLR4 recruits TRIF-related adaptor molecule (TRAM, also known as TICAM2) as a sorting adaptor to facilitate the interaction between TLR4 and TRIF and then initiate TRIF-dependent IRF3 activation. -
ATP-Binding and Hydrolysis in Inflammasome Activation
molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. -
RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Toll-Like Receptor Signaling Pathway Cat. no. 330231 PAHS-018ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity. The TLR family of pattern recognition receptors (PRRs) detects a wide range of bacteria, viruses, fungi and parasites via pathogen-associated molecular patterns (PAMPs). Each receptor binds to specific ligands, initiates a tailored innate immune response to the specific class of pathogen, and activates the adaptive immune response. -
NLR Members in Inflammation-Associated
Cellular & Molecular Immunology (2017) 14, 403–405 & 2017 CSI and USTC All rights reserved 2042-0226/17 $32.00 www.nature.com/cmi RESEARCH HIGHTLIGHT NLR members in inflammation-associated carcinogenesis Ha Zhu1,2 and Xuetao Cao1,2,3 Cellular & Molecular Immunology (2017) 14, 403–405; doi:10.1038/cmi.2017.14; published online 3 April 2017 hronic inflammation is regarded as an impor- nucleotide-binding and oligomerization domain IL-2,8 and NAIP was found to regulate the STAT3 Ctant factor in cancer progression. In addition (NOD)-like receptors (NLRs). TLRs and CLRs are pathway independent of inflammasome formation.9 to the immune surveillance function in the early located in the plasma membranes, whereas RLRs, The AOM/DSS model is the most popular model stage of tumorigenesis, inflammation is also known ALRs and NLRs are intracellular PRRs.3 Unlike used to study the function of NLRs in fl fl as one of the hallmarks of cancer and can supply other families that have been shown to bind their in ammation-associated carcinogenesis. In amma- the tumor microenvironment with bioactive mole- specific cognate ligands, the distinct ligands for somes initiated by NLRs or AIM2 have been widely cules and favor the development of other hallmarks NLRs are still unknown. In fact, mounting evidence reported to participate in the maintenance of 10,11 Nlrp3 Nlrp6 of cancer, such as genetic instability and angiogen- suggests that NLRs function as cytoplasmic sensors intestinal homeostasis. -/-, -/-, Nlrc4 Nlrp1 Nlrx1 Nlrp12 esis. Moreover, inflammation contributes to the and participate in modulating TLR, RLR and CLR -/-, -/-, -/- and -/- mice are 4 more susceptible to AOM/DSS-induced colorectal changing tumor microenvironment by altering signaling pathways. -
TLR Signaling Pathways
Seminars in Immunology 16 (2004) 3–9 TLR signaling pathways Kiyoshi Takeda, Shizuo Akira∗ Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Abstract Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing spe- cific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling. © 2003 Elsevier Ltd. All rights reserved. Keywords: TLR; Innate immunity; Signal transduction; TIR domain 1. Introduction 2. Toll-like receptors Toll receptor was originally identified in Drosophila as an A mammalian homologue of Drosophila Toll receptor essential receptor for the establishment of the dorso-ventral (now termed TLR4) was shown to induce the expression pattern in developing embryos [1]. In 1996, Hoffmann and of genes involved in inflammatory responses [3]. In addi- colleagues demonstrated that Toll-mutant flies were highly tion, a mutation in the Tlr4 gene was identified in mouse susceptible to fungal infection [2]. This study made us strains that were hyporesponsive to lipopolysaccharide [4]. aware that the immune system, particularly the innate im- Since then, Toll receptors in mammals have been a major mune system, has a skilful means of detecting invasion by focus in the immunology field. -
TLR2 Signaling Pathway Combats Streptococcus Uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production
cells Article TLR2 Signaling Pathway Combats Streptococcus uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production 1, 1, 1 1,2 1 2 Bin Li y, Zhixin Wan y, Zhenglei Wang , Jiakun Zuo , Yuanyuan Xu , Xiangan Han , Vanhnaseng Phouthapane 3 and Jinfeng Miao 1,* 1 MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; [email protected] (B.L.); [email protected] (Z.W.); [email protected] (Z.W.); [email protected] (J.Z.); [email protected] (Y.X.) 2 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; [email protected] 3 Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane 22797, Laos; [email protected] * Correspondence: [email protected]; Fax: +86-25-8439-8669 These authors contributed equally to this work. y Received: 6 January 2020; Accepted: 19 February 2020; Published: 21 February 2020 Abstract: Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary / epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2− − and / TLR4− − mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage, and bacterial count. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S. -
Expression Pro Les of NOD-Like Receptors and Regulation Of
Expression Proles of NOD-Like Receptors and Regulation of NLRP3 Inammasome Activation in Toxoplasma Gondii- Infected Human Small Intestinal Epithelial Cells Jia-Qi CHu Guangdong Medical University Fei Fei Gao Chungnam National University Weiyun Wu Guangdong Medical College Zhanjiang Campus: Guangdong Medical University Chunchao Li Guangdong Medical University Zhaobin Pan Guangdong Medical University Jinhui Sun Guangdong Medical University Hao Wang Guangdong Medical University Cong Huang Peking University Shenzhen Hospital Sang Hyuk Lee Sun General Hospital: Daejeon Sun Hospital Juan-Hua Quan Guangdong Medical University Young-Ha Lee ( [email protected] ) Chungnam National University School of Medicine Research Keywords: Toxoplasma gondii, Human small intestinal epithelial cells, NOD-like receptors, inammasome, Caspase-cleaved interleukins Posted Date: December 23rd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-133332/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 12th, 2021. See the published version at https://doi.org/10.1186/s13071-021-04666-w. Page 1/17 Abstract Background: Toxoplasma gondii is a parasite that majorly infects through the oral route. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) play crucial roles in the immune responses generated during the parasitic infection and also drive the inammatory response against invading parasites. However, little is known about the regulation of NLRs and inammasome activation in T. gondii-infected human small intestinal epithelial (FHs 74 Int) cells. Methods: FHs 74 Int cells infected with T. gondii were subsequently evaluated for morphological changes, cytotoxicity, expression proles of NLRs, inammasome components, caspase-cleaved interleukins (ILs), and the mechanisms of NLRP3 and NLRP6 inammasome activation. -
TLR4 Signalling
RESEA r CH HIGHLIGHTS INNATE IMMUNITY TLR4 signalling Toll-like receptor 4 (TLR4) is unique plasma membrane. Now, a study from sufficient to allow TRAM to localize among TLRs in its ability to activate Ruslan Medzhitov’s laboratory shows specifically to endosomes. These 20 two distinct signalling pathways that the two signalling pathways amino acids constitute a bipartite — one pathway is activated by the are induced sequentially and that localization domain — consisting of adaptors TIRAP (Toll/interleukin-1- the TRAM–TRIF pathway is only a myristoylation motif (the first 7 receptor (TIR)-domain-containing operational from early endosomes amino acids) and a polybasic domain adaptor protein) and MyD88, following endocytosis of TLR4. — that is commonly found in other which leads to the induction of The authors found it puzzling proteins that shuttle between the pro‑inflammatory cytokines, and that TLR4 is the only known TLR plasma membrane and endosomes. the second pathway is activated by capable of inducing the production Mutational analysis showed that the the adaptors TRIF (TIR-domain- of type I interferons from the plasma myristoylation motif is necessary containing adaptor protein inducing membrane so they decided to take for endosomal localization but interferon‑β) and TRAM (TRIF- a closer look at TLR4 signalling. both parts of the bipartite motif related adaptor molecule), which First, they assessed the subcellular are required for plasma-membrane leads to the induction of type I inter- localization of tagged TLR4 and found targeting. A TRAM transgene of ferons. Until now, it had been believed that it localized to both the plasma which the protein product resided that these two signalling pathways membrane and endosomal vesicles. -
Bacterial Flagellin—A Potent Immunomodulatory Agent
OPEN Experimental & Molecular Medicine (2017) 49, e373; doi:10.1038/emm.2017.172 Official journal of the Korean Society for Biochemistry and Molecular Biology www.nature.com/emm REVIEW Bacterial flagellin—a potent immunomodulatory agent Irshad A Hajam1, Pervaiz A Dar2, Imam Shahnawaz2, Juan Carlos Jaume2 and John Hwa Lee1 Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests. Experimental & Molecular Medicine (2017) 49, e373; doi:10.1038/emm.2017.172; published online 1 September 2017 INTRODUCTION vaccines. Even though all the adjuvants studied so far have The immune system has evolved to fight off microbial invasion proven to be effective, flagellin, a TLR5 agonist, has been through the coordinated action of the innate and adaptive arms shown more promising results without any major side effects. of the immunity. Innate immune cells respond to a variety of Flagellin is the structural component of the flagellum, a stimuli, including bacterial, viral, parasitic or fungal infections, locomotory organ that is mostly associated with Gram-negative via members of structurally related receptors termed toll-like bacteria. It is characterized by highly conserved N- and receptors (TLRs).