Investigation of the Error Performance of Tunstall Coding

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of the Error Performance of Tunstall Coding University of Malta Faculty of Engineering DepartmentofCommunications and Computer Engineering Final Year Pro ject B Eng Hons Investigation of the Error Performance of Tunstall Co ding by Johann Bria A dissertation submitted in partial fullment of the requirements for the award of Bachelor of Engineering Hons of the UniversityofMalta June Abstract A lossless data compression algorithm takes a string of symb ols and enco des it as a string of bits such that the average number of bits required is less than that in the unco ded case where all source symb ols are represented by equal length co dewords Compression algorithms are only p ossible when some strings or some symbols in the input stream are more probable than others these would b e enco ded in fewer bits than less probable strings or symb ols resulting in a net average gain Most compression algorithms may b e split into twomajortyp es xedtovariable length schemes such as Human co ding and Arithmetic co ding enco de equallength source symb ols or strings with co dewords of a variable length In variabletoxed length schemes such as the ZivLemp el co de to units of variable length which are then transmitted with a the input is divided in xedlength output co de The Tunstall source co ding algorithm is a variabletoxed length enco ding scheme It has b een frequently hyp othesised that in such schemes the error propagation and re synchronisation diculties encountered in xedtovariable length schemes would b e less signicant leading to a better p erformance in noise The error p erformance of various Tunstall co des is analysed and a theoretical mo del prop osed Several parameters which can be varied in the enco ding pro cess are considered with the ob jective of minimising the eect of errors without sacricing compression The p ossibilityofcho osing an error correction scheme optimised for the Tunstall algorithm is also considered including the use of Unequal Error Protection techniques Finally the p erformance in noise of Tunstall co ding is compared with that of Human co ding Acknowledgements I would like to take this opp ortunity to thank my sup ervisor Dr Victor Buttigieg PhD Manch MSc Manch BElecEng Hons MIEEE for suggesting this eld of study for my nal year pro ject and for all his invaluable assistance Many thanks also go to Mr Edward Gatt for explaining various details of UNIX systems and for a lot of patience during to o long simulations This pro ject nds me once again indebted to my family particularly my parents for their patience and supp ort throughout my studies Their encouragement in the pursuit of knowledge is invaluable and deeply appreciated FinallyIwould like to express my gratitude to all my friends particularly those who have b een with me through these last four years They have help ed often without knowing to makemy life what it is to day Johann Bria June My dear Watson said he I cannot agree with those who rank mo desty among the virtues To the logician all things should b e seen exactly as they are and to underesti mate oneself is as much a departure from the truth as to exaggerate ones own p owers Sherlo ck Holmes The Adventure of the Greek Interpreter Sir Arthur Conan Doyle Contents Intro duction Data Compression Unequal Symb ol Probability Statistically Dep endantSymb ols Lossless Reduction of Statistical Dep endance Lossy Reduction of Statistical Dep endance Eect of Errors in Compressed Data Error Control Co ding Do cument Structure Co ding Algorithm The Tunstall Tunstall Co dec Tunstall Algorithm Illustration Co ding Eciency Co deword Assignment Co de Rate Complications Source Message to o Short CONTENTS Numb er of Source Symb ols not an Integral Power of Two Sources with Memory Mo difying the Tunstall Algorithm Mo difying the Source Message Shortcomings of the Tunstall Co ding System of Tunstall Co de Error Performance Measuring the Error Performance Error Span and Error Increase Levenshtein Distance Standard Algorithm Simplied Algorithm Improved Algorithm Validity of Simplied Algorithms Error Span Validity of Error Span Algorithms to Minimise Error Span Intro duction Random Assignment Sequential Assignment Gray Co de Assignment Simulated Annealing Comments ReactiveTabu Search Comments CONTENTS Greedy Algorithm Illustration Implementation Details ts to the Basic Algorithm Improvemen Comments SemiExhaustive Search Illustration Comments Comparison with Human Co ding Conclusions Performance of Tunstall Co des in a BSC Co ding Gain for Tunstall Co des Mathematical Mo del for Calculating Co ding Gain Comparison with Human Co ding Use of Error Correction Intro duction Indep endent Channel Co ding Comparison with Human Co ding Optimised Channel Co ding Unequal Protection of Bits Within a Co deword Unequal Protection of Co dewords Conclusions Tunstall Co dec Diculties of Having an Incomplete Tunstall Co de CONTENTS Sources with Memory Sources which Cannot b e Fully Enco ded Adaptive Compression Minimising Error Span Comparison with Human Co ding Use of Error Control Co ding Optimised Error Protection for Tunstall Co des A Source Statistics B Program Do cumentation B EndUser Programs B Library Functions B Simulation Controllers B UtilityFunctions List of Figures Mo del of a communication system Tunstall tree at one level of expansion Message transmission using Tunstall co ding Matrix used to calculate Levenshtein distance Simulation to test validity and accuracy of Levenshtein distance algorithms Dierence in the Error Increase calculated by the approximate algorithms as compared to the standard algorithm Comparison of Error Span and Error Increase Error Span values for source toy Error Span values for source pic Error Span distribution for source pic with random co dewords Error Span distribution for source eng with random co dewords Simulated Annealing Basic algorithm Typical simulated annealing prole ReactiveTabu Search Basic algorithm Evolution of the tabu search showing the escap e mechanism in action List size dynamics for the reactivetabusearch Greedy Algorithm LIST OF FIGURES Co deword allo cations considered by the semiexhaustive algorithm Source pic with no error correction Detail from Fig Source eng with no error correction Comparison b etween mathematical mo del and simulation results Co ding gain b etween Tunstall co des with dierentcodeword assignments Co ding gain b etween a Tunstall co de and an uncompressed co de Comparison with Human co ding for source pic with no error correction Comparison with Human co ding for source eng with no error correction Eect of BER on SER for source pic with no error correction Eect of BER on SER for source eng with no error correction Source pic protected with BCH singleerrorcorrecting co de Source pic protected with BCH dualerrorcorrecting co de Source eng protected with BCH singleerrorcorrecting co de Comparison with Human co ding for source pic protected with BCH singleerrorcorrecting co de Comparison with Human co ding for source eng protected with BCH singleerrorcorrecting co de Eect of BER on SER for source pic protected with BCH single errorcorrecting co de Contribution of dierent bits in the co deword to the Error Span pic Contribution of dierent bits in the co deword to the Error Span eng Contribution of dierentcodewords to the Error Span pic Contribution of dierentcodewords to the Error Span eng List of Tables Tunstall co de for source toy with sequentially assigned co dewords Timings for dierent Levenshtein distance algorithms .
Recommended publications
  • Source Coding: Part I of Fundamentals of Source and Video Coding
    Foundations and Trends R in sample Vol. 1, No 1 (2011) 1–217 c 2011 Thomas Wiegand and Heiko Schwarz DOI: xxxxxx Source Coding: Part I of Fundamentals of Source and Video Coding Thomas Wiegand1 and Heiko Schwarz2 1 Berlin Institute of Technology and Fraunhofer Institute for Telecommunica- tions — Heinrich Hertz Institute, Germany, [email protected] 2 Fraunhofer Institute for Telecommunications — Heinrich Hertz Institute, Germany, [email protected] Abstract Digital media technologies have become an integral part of the way we create, communicate, and consume information. At the core of these technologies are source coding methods that are described in this text. Based on the fundamentals of information and rate distortion theory, the most relevant techniques used in source coding algorithms are de- scribed: entropy coding, quantization as well as predictive and trans- form coding. The emphasis is put onto algorithms that are also used in video coding, which will be described in the other text of this two-part monograph. To our families Contents 1 Introduction 1 1.1 The Communication Problem 3 1.2 Scope and Overview of the Text 4 1.3 The Source Coding Principle 5 2 Random Processes 7 2.1 Probability 8 2.2 Random Variables 9 2.2.1 Continuous Random Variables 10 2.2.2 Discrete Random Variables 11 2.2.3 Expectation 13 2.3 Random Processes 14 2.3.1 Markov Processes 16 2.3.2 Gaussian Processes 18 2.3.3 Gauss-Markov Processes 18 2.4 Summary of Random Processes 19 i ii Contents 3 Lossless Source Coding 20 3.1 Classification
    [Show full text]
  • Efficient Variable-To-Fixed Length Coding Algorithms for Text
    Efficient Variable-to-Fixed Length Coding Algorithms for Text Compression (テキスト圧縮に対する効率よい可変長-固定長符号化アルゴリズム) Satoshi Yoshida February, 2014 Abstract Data compression is a technique for reducing the storage space and the cost of trans- ferring a large amount of data, using redundancy hidden in the data. We focus on lossless compression for text data, that is, text compression, in this thesis. To reuse a huge amount of data stored in secondary storage, I/O speeds are bottlenecks. Such a communication-speed problem can be relieved if we transfer only compressed data through the communication channel and furthermore can perform every necessary pro- cesses, such as string search, on the compressed data itself without decompression. Therefore, a new criterion \ease of processing the compressed data" is required in the field of data compression. Development of compression algorithms is currently in the mainstream of data compression field but many of them are not adequate for that criterion. The algorithms employing variable length codewords succeeded to achieve an extremely good compression ratio, but the boundaries between codewords are not obvious without a special processing. Such an \unclear boundary problem" prevents us from direct accessing to the compressed data. On the contrary, Variable-to-Fixed-length coding, which is referred to as VF coding, is promising for our demand. VF coding is a coding scheme that segments an input text into a consecutive sequence of substrings (called phrases) and then assigns a fixed length codeword to each substring. Boundaries between codewords of VF coding are obvious because all of them have the same length. Therefore, we can realize \accessible data compression" by VF coding.
    [Show full text]
  • The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414 © Research India Publications. http://www.ripublication.com The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree Evon Abu-Taieh, PhD Information System Technology Faculty, The University of Jordan, Aqaba, Jordan. Abstract tree is presented in the last section of the paper after presenting the 12 main compression algorithms each with a practical This paper presents the pillars of lossless compression example. algorithms, methods and techniques. The paper counted more than 40 compression algorithms. Although each algorithm is The paper first introduces Shannon–Fano code showing its an independent in its own right, still; these algorithms relation to Shannon (1948), Huffman coding (1952), FANO interrelate genealogically and chronologically. The paper then (1949), Run Length Encoding (1967), Peter's Version (1963), presents the genealogy tree suggested by researcher. The tree Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976), shows the interrelationships between the 40 algorithms. Also, Stream (1979), P-Based FIFO (1981). Two examples are to be the tree showed the chronological order the algorithms came to presented one for Shannon-Fano Code and the other is for life. The time relation shows the cooperation among the Arithmetic Coding. Next, Huffman code is to be presented scientific society and how the amended each other's work. The with simulation example and algorithm. The third is Lempel- paper presents the 12 pillars researched in this paper, and a Ziv-Welch (LZW) Algorithm which hatched more than 24 comparison table is to be developed.
    [Show full text]
  • The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on Iot Nodes in Smart Cities
    sensors Article The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (Z.A.O.); [email protected] (N.S.S.) * Correspondence: [email protected] Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, Citation: Nasif, A.; Othman, Z.A.; we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Sani, N.S.
    [Show full text]
  • Error-Resilient Coding Tools in MPEG-4
    I Error-Resilient Coding Tools In MPEG-4 t By CHENG Shu Ling A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF THE MASTER OF PHILOSOPHY DIVISION OF INFORMATION ENGnvfEERING THE CHINESE UNIVERSITY OF HONG KONG July 1997 • A^^s^ p(:^S31^^^ 4c—^w -v^ UNIVERSITY JgJ ' %^^y^^ s�,s^^ %^r::^v€X '^<"nii^Ji.^i:^'5^^ Acknowledgement I would like to thank my supervisor Prof. Victor K. W. Wei for his invaluable guidance and support throughout my M. Phil, study. He has given to me many fruitful ideas and inspiration on my research. I have been the teaching assistant of his channel coding and multimedia coding class for three terms, during which I have gained a lot of knowledge and experience. Working with Prof. Wei is a precious experience for me; I learnt many ideas on work and research from him. I would also like to thank my fellow labmates, C.K. Lai, C.W. Lam, S.W. Ng and C.W. Yuen. They have assisted me in many ways on my duties and given a lot of insightful discussions on my studies. Special thanks to Lai and Lam for their technical support on my research. Last but not least, I want to say thank you to my dear friends: Bird, William, Johnny, Mok, Abak, Samson, Siu-man and Nelson. Thanks to all of you for the support and patience with me over the years. ii Abstract Error resiliency is becoming increasingly important with the rapid growth of the mobile systems. The channels in mobile communications are subject to fading, shadowing and interference and thus have a high error rate.
    [Show full text]
  • NERG 1994 Deel 59 Nr. 05
    tijdschrift van het ---------------------- \ nederlands elektronica- en radiogenootschap s___________ > deel 59 1994 Nederlands Elektronica- en Radiogenootschap nederlands Correspondentie-adres: Postbus 39, 2260 AA Leidschendam. Gironummer 94746 t.n.v. Penningmeester NERG, Leidschendam. elektronica- HET GENOOTSCHAP De vereniging stelt zich ten doel het wetenschappelijk onderzoek op en het gebied van de elektronica en de informatietransmissie en -ver­ werking te bevorderen en de verbreiding en toepassing van de ver­ radiogenootschap worven kennis te stimuleren. Het genootschap is lid van de Convention of National Societies of Electrical Engineers of Western Europe (Eurel). BESTUUR Prof.Ir.J.H.Geels, voorzitter Ir.P.K.Tilburgs, secretaris Ir.O.B.P.Rikkert de Koe, penningmeester Ir.P.R.J.M.Smits, programma manager Ir.P.Baltus, vice voorzitter Prof.Dr.Ir.W.M.G.van Bokhoven, voorzitter onderwijscommissie Dr.Ir.R.C.den Duik Ir.C.Th.Koole Ir.P.P.M.van der Zalm Ir. W. van der Bijl LIDMAATSCHAP Voor lidmaatschap wende men zich via het correspondentie-adres tot de secretaris. Het lidmaatschap staat open voor academisch gegra­ dueerden en hen, wier kennis of ervaring naar het oordeel van het bestuur een vruchtbaar lidmaatschap mogelijk maakt. De contributie bedraagt ƒ 60,- per jaar. Leden jonger dan 30 jaar betalen gedurende maximaal 5 jaar de gereduceerde contributie van f 30,- per jaar. In bepaalde gevallen kunnen ook andere leden, na overleg met de penningmeester, voor deze gereduceerde contributie in aanmerking komen. Gevorderde stu­ denten komen in aanmerking voor een gratis lidmaatschap, en kun­ nen daartoe contact opnemen met een van de contactpersonen. De contributie is inclusief abonnement op het Tijdschrift van het NERG en deelname aan de werkvergaderingen.
    [Show full text]
  • Entropy Coding and Different Coding Techniques
    Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org Volume 6, Issue 5, May (2016) Entropy Coding and Different Coding Techniques Sandeep Kaur Asst. Prof. in CSE Dept, CGC Landran, Mohali Sukhjeet Singh Asst. Prof. in CS Dept, TSGGSK College, Amritsar. Abstract – In today’s digital world information exchange is been 2. CODING TECHNIQUES held electronically. So there arises a need for secure transmission of the data. Besides security there are several other factors such 1. Huffman Coding- as transfer speed, cost, errors transmission etc. that plays a vital In computer science and information theory, a Huffman code role in the transmission process. The need for an efficient technique for compression of Images ever increasing because the is a particular type of optimal prefix code that is commonly raw images need large amounts of disk space seems to be a big used for lossless data compression. disadvantage during transmission & storage. This paper provide 1.1 Basic principles of Huffman Coding- a basic introduction about entropy encoding and different coding techniques. It also give comparison between various coding Huffman coding is a popular lossless Variable Length Coding techniques. (VLC) scheme, based on the following principles: (a) Shorter Index Terms – Huffman coding, DEFLATE, VLC, UTF-8, code words are assigned to more probable symbols and longer Golomb coding. code words are assigned to less probable symbols. 1. INTRODUCTION (b) No code word of a symbol is a prefix of another code word. This makes Huffman coding uniquely decodable. 1.1 Entropy Encoding (c) Every source symbol must have a unique code word In information theory an entropy encoding is a lossless data assigned to it.
    [Show full text]
  • Elements of Digital Communications
    ELEMENTS OF DIGITAL COMMUNICATIONS Instructor: Dr. Mustafa El-Halabi Fall 2020 Theory is the first term in the Taylor series expansion of practice. T. COVER 2 TABLE OF CONTENTS Page TABLE OF CONTENTS 2 LIST OF FIGURES 4 1 PULSE CODE MODULATION 7 1.1 Digital Versus Analog Communication . 7 1.1.1 Advantages of Digital Communications versus Analog Communications . 8 1.2 Formatting Textual Data . 9 1.3 Analog Pulse Modulation . 9 1.3.1 Pulse Amplitude Modulation (PAM) . 9 1.3.2 Pulse Width Modulation (PWM) and Pulse Position Modulation (PPM) . 11 1.4 Quantization . 12 1.4.1 Scalar Quantization . 12 1.4.2 Minimum Mean-Square Quantization Error (MMSQE) . 15 1.4.3 Uniform Quantization . 16 1.4.4 Quantization Noise . 17 1.4.5 Non-Uniform Quantization/Companding . 18 1.5 Pulse Code Modulation (PCM) . 22 1.5.1 Regenerative Repeaters . 23 1.6 Baseband Modulation . 24 1.6.1 PCM Waveforms Types . 24 1.6.2 Bit Rate, Bit Duration and Bandwidth in PCM . 26 1.7 Virtues, Limitations and Modifications of PCM . 27 1.8 Differential Pulse-Code Modulation (DPCM) . 28 1.9 Linear Prediction . 29 1.10 Delta Modulation (DM) . 32 1.10.1 Quantization Noise . 33 1.11 Time-Division Multiplexing (TDM) . 35 1.11.1 Frame Synchronization . 36 3 INFORMATION THEORY 38 3.1 Introduction . 38 3.2 Measures of Information . 38 3.3 Source Codes . 44 3.3.1 Fixed-Length Codes . 45 3.3.2 Variable-Length Codes . 46 3.4 Huffman Coding Algorithm . 48 3.5 Tunstall Codes .
    [Show full text]
  • Lecture 4 4 Lossless Coding
    Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Lecture 4 Lossless Coding (I) May 13, 2009 Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Outline z Review • With proofs of some theorems (new) z Entropy Coding: Overview z Huffman Coding: The Optimal Code z Information Theory: Hall of Fame 1 Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Review Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Image and video coding: Where is IT? Predictive Coding Input Image/Video Pre- Lossy Lossless Post- Processing Coding Coding Processing …110 Visual Quality Predictive Encoded 11001 Measurement Coding Image/Video … … Post- Lossy Lossless Pre-Processing Decoded PiProcessing CdiCoding CdiCoding Image/Video 3 Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Coding: A Formal Definition z Intput: x=(x1,…,xm), where xi∈X * 2 z Output: y=(y1,…,ym), where yi∈Y =Y∪Y ∪… z Encoding: y=F(x)=f(x1)…f(xm), where f(xi)=yi • yi is the codeword corresponding to the input symbol xi. • The mapping f: X→Y* is called a code. • F is called the extension of f. • If F is an injection, i.e., x1≠x2 → y1≠y2, then f is a uniquely decodable (UD) code. z Decoding: x*=F-1(y) • When x*=x, we have a lossless code. • When x*≠x, we have a lossy code. • A lossy code cannot be a UD code . 4 Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Memoryless random (i.i.d.) source z Notations • A source emits symbols in a set X. • At any time, each symbol xi is emitted from the source with a fixed probability pi, independent of any other symbols.
    [Show full text]
  • Data Compression
    Razi University Data Compression Department of Computer Engineering Razi University Dr. Abdolhossein Fathi References and Evaluation Razi University Textbook: Khalid Sayood, “Introduction to Data Compression”, Fifth Edition, Morgan Kaufmann Publishers, 2017. Ida Mengyi Pu, “Fundamental Data Compression”, First Edition, Oxford, 2006. David Salomon and Giovanni Motta, “Handbook of Data Compression”, Fifth Edition, Springer, 2010. Score Details: Presentation 15% Implementation Project 15% Final Exam 70% Dr. A. Fathi, Data Compression 2 Contents Razi University Basic Concepts in the Information Theory Basic Compression Methods Statistical Based Compression Methods Dictionary Based Compression Methods Transform Based Compression Methods Image Compression Audio Compression Video Compression Your presentation is explanation of a new methods in the medical image compression (each of yours one new paper last two years ago). Your project is analyzing and enhancement of the selected paper along with implementation of enhanced version of it. Dr. A. Fathi, Data Compression 3 Razi University Basic Concepts in the Information Theory Data Compression Razi University Data compression, in the context of computer science, is the science (and art) of representing information in a compact form to: Conserve storage space Reduce time for transmission Faster to encode, send, then decode than to send the original Progressive transmission Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version Reduce computation Use less data to achieve an approximate answer Dr. A. Fathi, Data Compression 5 What is Data and Information Razi University Data and information are not synonymous terms! Data is the means by which information is conveyed.
    [Show full text]
  • The Effectiveness of the Radon Transform Against the Quantization Noise
    European Scientific Journal February 2015 edition vol.11, No.6 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 THE EFFECTIVENESS OF THE RADON TRANSFORM AGAINST THE QUANTIZATION NOISE Mehdi Cherifi, Magister student Mourad Lahdir, PhD Soltane Ameur, Prof. Zohra Ameur, Prof. Mouloud Mammeri University of Tizi-Ouzou, Faculty of Electrical Engineering and Computing, LAMPA laboratory. Department of Electronic, Tizi-Ouzou, Algeria Abstract The aim of image compression consists to reduce the number of bits required to represent an image. The Radon transform has become a very interesting tool in the field of image processing. Its Robustness against noises such as white noise has boosted the researchers to realize methods of detection of objects in noisy images. The Discrete Cosine Transform has shown its efficacy in the energy compaction of the image to be compressed into a smaller number of coefficients. It is part of many international standards including JPEG and MPEG. In this paper, we present an image compression method, which is the modification of the scheme presented by Predeep and Manavalan. The modification consists to use a high scale quantization, which is 20 in order to realize a heavy quantization for the DCT to achieve a high compression. A comparative study is performed to show the contribution of this modification. Keywords: Image Compression; Discrete Cosine Transform (DCT); Radon Transform; Integration Process; Peak Signal to Noise Ratio (PSNR); JPEG2000. 1. Introduction The image compression consists to reduce the amount of data needed to represent an image. The exploitation of the spatial and spectral redundancy and weaknesses of psychovisual system helped to develop methods that lead to the reduction of the amount of data required to represent an image.
    [Show full text]
  • UTSA 1997-1999 Graduate Catalog
    GRADUATE CATALOG 1997-99 BULLETIN OF THE UNIVERSITY OF TEXAS AT SAN ANTONIO USPS #982940 VOLUME XVI APRIL 1997 NUMBER 2 Published four times a year (one issue in March, two issues in April, and one issue in October) by The University of Texas at San Antonio Office ofAdmissions and Registrar San Antonio, TX 78249-0616. Second Class Postage Paid at San Antonio, Texas POSTMASTER: Send address changes to BULLETIN OF THE UNIVERSITY OF TEXAS AT SAN ANTONIO Office of Admissions and Registrar, San Antonio, TX 78249 The provisions of this catalog do not constitute a contract, expressed or implied, between any applicant, student, or facuIty member and The University ofTexas at San Antonio or The University of Texas System. This catalog is a general information publication, and it does not contain all regulations that relate to students. The University ofTexas at San Antonio reserves the right to withdraw courses at any time, and to change fees, tuition, rules, calendar, curriculum, degree programs, degree requirements, graduation procedures, and any other requirement affecting students. The policies, regulations, and procedures stated in this catalog are subject to change without prior notice, and changes become effective whenever the appropriate authorities so determine and may apply to both prospective students and those already enrolled. University policies are required to be consistent with policies adopted by the Board ofRegents ofThe University ofTexas System and are in compliance with State and federal laws. STUDENTS ARE HELD INDIVIDUALLY RESPONSIBLE FOR MEETING ALL REQUIREMENTS AS DETERMINED BY THE UNIVERSITY OF TEXAS AT SAN ANTONIO AND THE UNIVERSITY OF TEXAS SYSTEM.
    [Show full text]