Part I of Fundamentals of Source and Video Coding by Thomas Wiegand and Heiko Schwarz Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Source Coding: Part I of Fundamentals of Source and Video Coding
Foundations and Trends R in sample Vol. 1, No 1 (2011) 1–217 c 2011 Thomas Wiegand and Heiko Schwarz DOI: xxxxxx Source Coding: Part I of Fundamentals of Source and Video Coding Thomas Wiegand1 and Heiko Schwarz2 1 Berlin Institute of Technology and Fraunhofer Institute for Telecommunica- tions — Heinrich Hertz Institute, Germany, [email protected] 2 Fraunhofer Institute for Telecommunications — Heinrich Hertz Institute, Germany, [email protected] Abstract Digital media technologies have become an integral part of the way we create, communicate, and consume information. At the core of these technologies are source coding methods that are described in this text. Based on the fundamentals of information and rate distortion theory, the most relevant techniques used in source coding algorithms are de- scribed: entropy coding, quantization as well as predictive and trans- form coding. The emphasis is put onto algorithms that are also used in video coding, which will be described in the other text of this two-part monograph. To our families Contents 1 Introduction 1 1.1 The Communication Problem 3 1.2 Scope and Overview of the Text 4 1.3 The Source Coding Principle 5 2 Random Processes 7 2.1 Probability 8 2.2 Random Variables 9 2.2.1 Continuous Random Variables 10 2.2.2 Discrete Random Variables 11 2.2.3 Expectation 13 2.3 Random Processes 14 2.3.1 Markov Processes 16 2.3.2 Gaussian Processes 18 2.3.3 Gauss-Markov Processes 18 2.4 Summary of Random Processes 19 i ii Contents 3 Lossless Source Coding 20 3.1 Classification -
16.1 Digital “Modes”
Contents 16.1 Digital “Modes” 16.5 Networking Modes 16.1.1 Symbols, Baud, Bits and Bandwidth 16.5.1 OSI Networking Model 16.1.2 Error Detection and Correction 16.5.2 Connected and Connectionless 16.1.3 Data Representations Protocols 16.1.4 Compression Techniques 16.5.3 The Terminal Node Controller (TNC) 16.1.5 Compression vs. Encryption 16.5.4 PACTOR-I 16.2 Unstructured Digital Modes 16.5.5 PACTOR-II 16.2.1 Radioteletype (RTTY) 16.5.6 PACTOR-III 16.2.2 PSK31 16.5.7 G-TOR 16.2.3 MFSK16 16.5.8 CLOVER-II 16.2.4 DominoEX 16.5.9 CLOVER-2000 16.2.5 THROB 16.5.10 WINMOR 16.2.6 MT63 16.5.11 Packet Radio 16.2.7 Olivia 16.5.12 APRS 16.3 Fuzzy Modes 16.5.13 Winlink 2000 16.3.1 Facsimile (fax) 16.5.14 D-STAR 16.3.2 Slow-Scan TV (SSTV) 16.5.15 P25 16.3.3 Hellschreiber, Feld-Hell or Hell 16.6 Digital Mode Table 16.4 Structured Digital Modes 16.7 Glossary 16.4.1 FSK441 16.8 References and Bibliography 16.4.2 JT6M 16.4.3 JT65 16.4.4 WSPR 16.4.5 HF Digital Voice 16.4.6 ALE Chapter 16 — CD-ROM Content Supplemental Files • Table of digital mode characteristics (section 16.6) • ASCII and ITA2 code tables • Varicode tables for PSK31, MFSK16 and DominoEX • Tips for using FreeDV HF digital voice software by Mel Whitten, KØPFX Chapter 16 Digital Modes There is a broad array of digital modes to service various needs with more coming. -
Shannon's Coding Theorems
Saint Mary's College of California Department of Mathematics Senior Thesis Shannon's Coding Theorems Faculty Advisors: Author: Professor Michael Nathanson Camille Santos Professor Andrew Conner Professor Kathy Porter May 16, 2016 1 Introduction A common problem in communications is how to send information reliably over a noisy communication channel. With his groundbreaking paper titled A Mathematical Theory of Communication, published in 1948, Claude Elwood Shannon asked this question and provided all the answers as well. Shannon realized that at the heart of all forms of communication, e.g. radio, television, etc., the one thing they all have in common is information. Rather than amplifying the information, as was being done in telephone lines at that time, information could be converted into sequences of 1s and 0s, and then sent through a communication channel with minimal error. Furthermore, Shannon established fundamental limits on what is possible or could be acheived by a communication system. Thus, this paper led to the creation of a new school of thought called Information Theory. 2 Communication Systems In general, a communication system is a collection of processes that sends information from one place to another. Similarly, a storage system is a system that is used for storage and later retrieval of information. Thus, in a sense, a storage system may also be thought of as a communication system that sends information from one place (now, or the present) to another (then, or the future) [3]. In a communication system, information always begins at a source (e.g. a book, music, or video) and is then sent and processed by an encoder to a format that is suitable for transmission through a physical communications medium, called a channel. -
Efficient Variable-To-Fixed Length Coding Algorithms for Text
Efficient Variable-to-Fixed Length Coding Algorithms for Text Compression (テキスト圧縮に対する効率よい可変長-固定長符号化アルゴリズム) Satoshi Yoshida February, 2014 Abstract Data compression is a technique for reducing the storage space and the cost of trans- ferring a large amount of data, using redundancy hidden in the data. We focus on lossless compression for text data, that is, text compression, in this thesis. To reuse a huge amount of data stored in secondary storage, I/O speeds are bottlenecks. Such a communication-speed problem can be relieved if we transfer only compressed data through the communication channel and furthermore can perform every necessary pro- cesses, such as string search, on the compressed data itself without decompression. Therefore, a new criterion \ease of processing the compressed data" is required in the field of data compression. Development of compression algorithms is currently in the mainstream of data compression field but many of them are not adequate for that criterion. The algorithms employing variable length codewords succeeded to achieve an extremely good compression ratio, but the boundaries between codewords are not obvious without a special processing. Such an \unclear boundary problem" prevents us from direct accessing to the compressed data. On the contrary, Variable-to-Fixed-length coding, which is referred to as VF coding, is promising for our demand. VF coding is a coding scheme that segments an input text into a consecutive sequence of substrings (called phrases) and then assigns a fixed length codeword to each substring. Boundaries between codewords of VF coding are obvious because all of them have the same length. Therefore, we can realize \accessible data compression" by VF coding. -
Information Theory and Coding
Information Theory and Coding Introduction – What is it all about? References: C.E.Shannon, “A Mathematical Theory of Communication”, The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October, 1948. C.E.Shannon “Communication in the presence of Noise”, Proc. Inst of Radio Engineers, Vol 37 No 1, pp 10 – 21, January 1949. James L Massey, “Information Theory: The Copernican System of Communications”, IEEE Communications Magazine, Vol. 22 No 12, pp 26 – 28, December 1984 Mischa Schwartz, “Information Transmission, Modulation and Noise”, McGraw Hill 1990, Chapter 1 The purpose of telecommunications is the efficient and reliable transmission of real data – text, speech, image, taste, smell etc over a real transmission channel – cable, fibre, wireless, satellite. In achieving this there are two main issues. The first is the source – the information. How do we code the real life usually analogue information, into digital symbols in a way to convey and reproduce precisely without loss the transmitted text, picture etc.? This entails proper analysis of the source to work out the best reliable but minimum amount of information symbols to reduce the source data rate. The second is the channel, and how to pass through it using appropriate information symbols the source. In doing this there is the problem of noise in all the multifarious ways that it appears – random, shot, burst- and the problem of one symbol interfering with the previous or next symbol especially as the symbol rate increases. At the receiver the symbols have to be guessed, based on classical statistical communications theory. The guessing, unfortunately, is heavily influenced by the channel noise, especially at high rates. -
The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414 © Research India Publications. http://www.ripublication.com The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree Evon Abu-Taieh, PhD Information System Technology Faculty, The University of Jordan, Aqaba, Jordan. Abstract tree is presented in the last section of the paper after presenting the 12 main compression algorithms each with a practical This paper presents the pillars of lossless compression example. algorithms, methods and techniques. The paper counted more than 40 compression algorithms. Although each algorithm is The paper first introduces Shannon–Fano code showing its an independent in its own right, still; these algorithms relation to Shannon (1948), Huffman coding (1952), FANO interrelate genealogically and chronologically. The paper then (1949), Run Length Encoding (1967), Peter's Version (1963), presents the genealogy tree suggested by researcher. The tree Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976), shows the interrelationships between the 40 algorithms. Also, Stream (1979), P-Based FIFO (1981). Two examples are to be the tree showed the chronological order the algorithms came to presented one for Shannon-Fano Code and the other is for life. The time relation shows the cooperation among the Arithmetic Coding. Next, Huffman code is to be presented scientific society and how the amended each other's work. The with simulation example and algorithm. The third is Lempel- paper presents the 12 pillars researched in this paper, and a Ziv-Welch (LZW) Algorithm which hatched more than 24 comparison table is to be developed. -
The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on Iot Nodes in Smart Cities
sensors Article The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (Z.A.O.); [email protected] (N.S.S.) * Correspondence: [email protected] Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, Citation: Nasif, A.; Othman, Z.A.; we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Sani, N.S. -
Source Coding: Part I of Fundamentals of Source and Video Coding Full Text Available At
Full text available at: http://dx.doi.org/10.1561/2000000010 Source Coding: Part I of Fundamentals of Source and Video Coding Full text available at: http://dx.doi.org/10.1561/2000000010 Source Coding: Part I of Fundamentals of Source and Video Coding Thomas Wiegand Berlin Institute of Technology and Fraunhofer Institute for Telecommunications | Heinrich Hertz Institute Germany [email protected] Heiko Schwarz Fraunhofer Institute for Telecommunications | Heinrich Hertz Institute Germany [email protected] Boston { Delft Full text available at: http://dx.doi.org/10.1561/2000000010 Foundations and Trends R in Signal Processing Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is T. Wiegand and H. Schwarz, Source Coding: Part I of Fundamentals of Source and Video Coding, Foundations and Trends R in Signal Processing, vol 4, nos 1{2, pp 1{222, 2010 ISBN: 978-1-60198-408-1 c 2011 T. Wiegand and H. Schwarz All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). -
Fundamental Limits of Video Coding: a Closed-Form Characterization of Rate Distortion Region from First Principles
1 Fundamental Limits of Video Coding: A Closed-form Characterization of Rate Distortion Region from First Principles Kamesh Namuduri and Gayatri Mehta Department of Electrical Engineering University of North Texas Abstract—Classical motion-compensated video coding minimum amount of rate required to encode video. On methods have been standardized by MPEG over the the other hand, a communication technology may put years and video codecs have become integral parts of a limit on the maximum data transfer rate that the media entertainment applications. Despite the ubiquitous system can handle. This limit, in turn, places a bound use of video coding techniques, it is interesting to note on the resulting video quality. Therefore, there is a that a closed form rate-distortion characterization for video coding is not available in the literature. In this need to investigate the tradeoffs between the bit-rate (R) paper, we develop a simple, yet, fundamental character- required to encode video and the resulting distortion ization of rate-distortion region in video coding based (D) in the reconstructed video. Rate-distortion (R-D) on information-theoretic first principles. The concept of analysis deals with lossy video coding and it establishes conditional motion estimation is used to derive the closed- a relationship between the two parameters by means of form expression for rate-distortion region without losing a Rate-distortion R(D) function [1], [6], [10]. Since R- its generality. Conditional motion estimation offers an D analysis is based on information-theoretic concepts, elegant means to analyze the rate-distortion trade-offs it places absolute bounds on achievable rates and thus and demonstrates the viability of achieving the bounds derives its significance. -
Error-Resilient Coding Tools in MPEG-4
I Error-Resilient Coding Tools In MPEG-4 t By CHENG Shu Ling A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF THE MASTER OF PHILOSOPHY DIVISION OF INFORMATION ENGnvfEERING THE CHINESE UNIVERSITY OF HONG KONG July 1997 • A^^s^ p(:^S31^^^ 4c—^w -v^ UNIVERSITY JgJ ' %^^y^^ s�,s^^ %^r::^v€X '^<"nii^Ji.^i:^'5^^ Acknowledgement I would like to thank my supervisor Prof. Victor K. W. Wei for his invaluable guidance and support throughout my M. Phil, study. He has given to me many fruitful ideas and inspiration on my research. I have been the teaching assistant of his channel coding and multimedia coding class for three terms, during which I have gained a lot of knowledge and experience. Working with Prof. Wei is a precious experience for me; I learnt many ideas on work and research from him. I would also like to thank my fellow labmates, C.K. Lai, C.W. Lam, S.W. Ng and C.W. Yuen. They have assisted me in many ways on my duties and given a lot of insightful discussions on my studies. Special thanks to Lai and Lam for their technical support on my research. Last but not least, I want to say thank you to my dear friends: Bird, William, Johnny, Mok, Abak, Samson, Siu-man and Nelson. Thanks to all of you for the support and patience with me over the years. ii Abstract Error resiliency is becoming increasingly important with the rapid growth of the mobile systems. The channels in mobile communications are subject to fading, shadowing and interference and thus have a high error rate. -
Beyond Traditional Transform Coding
Beyond Traditional Transform Coding by Vivek K Goyal B.S. (University of Iowa) 1993 B.S.E. (University of Iowa) 1993 M.S. (University of California, Berkeley) 1995 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering|Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Martin Vetterli, Chair Professor Venkat Anantharam Professor Bin Yu Fall 1998 Beyond Traditional Transform Coding Copyright 1998 by Vivek K Goyal Printed with minor corrections 1999. 1 Abstract Beyond Traditional Transform Coding by Vivek K Goyal Doctor of Philosophy in Engineering|Electrical Engineering and Computer Sciences University of California, Berkeley Professor Martin Vetterli, Chair Since its inception in 1956, transform coding has become the most successful and pervasive technique for lossy compression of audio, images, and video. In conventional transform coding, the original signal is mapped to an intermediary by a linear transform; the final compressed form is produced by scalar quantization of the intermediary and entropy coding. The transform is much more than a conceptual aid; it makes computations with large amounts of data feasible. This thesis extends the traditional theory toward several goals: improved compression of nonstationary or non-Gaussian signals with unknown parameters; robust joint source–channel coding for erasure channels; and computational complexity reduction or optimization. The first contribution of the thesis is an exploration of the use of frames, which are overcomplete sets of vectors in Hilbert spaces, to form efficient signal representations. Linear transforms based on frames give representations with robustness to random additive noise and quantization, but with poor rate–distortion characteristics. -
NERG 1994 Deel 59 Nr. 05
tijdschrift van het ---------------------- \ nederlands elektronica- en radiogenootschap s___________ > deel 59 1994 Nederlands Elektronica- en Radiogenootschap nederlands Correspondentie-adres: Postbus 39, 2260 AA Leidschendam. Gironummer 94746 t.n.v. Penningmeester NERG, Leidschendam. elektronica- HET GENOOTSCHAP De vereniging stelt zich ten doel het wetenschappelijk onderzoek op en het gebied van de elektronica en de informatietransmissie en -ver werking te bevorderen en de verbreiding en toepassing van de ver radiogenootschap worven kennis te stimuleren. Het genootschap is lid van de Convention of National Societies of Electrical Engineers of Western Europe (Eurel). BESTUUR Prof.Ir.J.H.Geels, voorzitter Ir.P.K.Tilburgs, secretaris Ir.O.B.P.Rikkert de Koe, penningmeester Ir.P.R.J.M.Smits, programma manager Ir.P.Baltus, vice voorzitter Prof.Dr.Ir.W.M.G.van Bokhoven, voorzitter onderwijscommissie Dr.Ir.R.C.den Duik Ir.C.Th.Koole Ir.P.P.M.van der Zalm Ir. W. van der Bijl LIDMAATSCHAP Voor lidmaatschap wende men zich via het correspondentie-adres tot de secretaris. Het lidmaatschap staat open voor academisch gegra dueerden en hen, wier kennis of ervaring naar het oordeel van het bestuur een vruchtbaar lidmaatschap mogelijk maakt. De contributie bedraagt ƒ 60,- per jaar. Leden jonger dan 30 jaar betalen gedurende maximaal 5 jaar de gereduceerde contributie van f 30,- per jaar. In bepaalde gevallen kunnen ook andere leden, na overleg met de penningmeester, voor deze gereduceerde contributie in aanmerking komen. Gevorderde stu denten komen in aanmerking voor een gratis lidmaatschap, en kun nen daartoe contact opnemen met een van de contactpersonen. De contributie is inclusief abonnement op het Tijdschrift van het NERG en deelname aan de werkvergaderingen.