Table of Contents Groundfish: Life History Descriptions *

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Groundfish: Life History Descriptions * TABLE OF CONTENTS GROUNDFISH: LIFE HISTORY DESCRIPTIONS * McCain, 2003* TITLE PAGE i INTRODUCTION 1 LEOPARD SHARK (Triakis semifasciata) 3 SOUPFIN SHARK (Galeorhinus zyopterus) 6 SPINY DOGFISH (Squalus acanthias) 8 BIG SKATE (Raja binoculata) 11 CALIFORNIA SKATE (Raja inornata) 13 LONGNOSE SKATE (Raja rhina) 15 RATFISH (Hydrolagus colliei) 19 FINESCALE CODLING (Antimora microlepis) 20 PACIFIC RATTAIL (Coryphaenoides acrolepis) 21 LINGCOD (Ophiodon elongatus) 23 CABEZON (Scorpaenichthys marmoratus) 27 KELP GREENLING (Hexagrammos decagrammus) 30 PACIFIC COD (Gadus macrocephalus) 33 PACIFIC WHITING (PACIFIC HAKE) (Merluccius productus) 36 SABLEFISH (Anoplopoma fimbria) 40 AURORA ROCKFISH (Sebastes aurora) 44 BANK ROCKFISH (Sebastes rufus) 45 BLACK ROCKFISH (Sebastes melanops) 47 BLACK-AND-YELLOW ROCKFISH (Sebastes chrysomelas) 51 BLACKGILL ROCKFISH (Sebastes melanostomus) 53 BLUE ROCKFISH (Sebastes mystinus) 55 BOCACCIO (Sebastes paucispinis) 58 BRONZESPOTTED ROCKFISH (Sebastes gilli) 61 BROWN ROCKFISH (Sebastes auriculatus) 62 CALICO ROCKFISH (Sebastes dalli) 65 CALIFORNIA SCORPIONFISH (Scorpaena guttata) 67 CANARY ROCKFISH (Sebastes pinniger) 69 CHILIPEPPER (Sebastes goodei) 72 CHINA ROCKFISH (Sebastes nebulosus) 74 COPPER ROCKFISH (Sebastes caurinus) 76 COWCOD (Sebastes levis) 80 DARKBLOTCHED ROCKFISH (Sebastes crameri) 82 DUSKY ROCKFISH (Sebastes ciliatus) 84 FLAG ROCKFISH (Sebastes rubrivinctus) 85 GOPHER ROCKFISH (Sebastes carnatus) 87 GRASS ROCKFISH (Sebastes rastrelliger) 90 GREENBLOTCHED ROCKFISH (Sebastes rosenblatti) 92 GREENSPOTTED ROCKFISH (Sebastes chlorostictus) 94 GREENSTRIPED ROCKFISH (Sebastes elongatus) 96 HARLEQUIN ROCKFISH (Sebastes variegatus) 98 HONEYCOMB ROCKFISH (Sebastes umbrosus) 99 KELP ROCKFISH (Sebastes atrovirens) 100 LONGSPINE THORNYHEAD (Sebastolobus altivelis) 103 MEXICAN ROCKFISH (Sebastes macdonaldi) 106 OLIVE ROCKFISH (Sebastes serranoides) 107 PACIFIC OCEAN PERCH (Sebastes alutus) 110 PINK ROCKFISH (Sebastes eos) 113 QUILLBACK ROCKFISH (Sebastes maliger) 114 REDBANDED ROCKFISH (Sebastes babcocki) 117 REDSTRIPE ROCKFISH (Sebastes proriger) 119 ROSETHORN ROCKFISH (Sebastes helvomaculatus) 121 ROSY ROCKFISH (Sebastes rosaceus) 123 ROUGHEYE ROCKFISH (Sebastes aleutianus) 125 SHARPCHIN ROCKFISH (Sebastes zacentrus) 127 SHORTBELLY ROCKFISH (Sebastes jordani) 129 SHORTRAKER ROCKFISH (Sebastes borealis) 132 SHORTSPINE THORNYHEAD (Sebastolobus alascanus) 134 SILVERGRAY ROCKFISH (Sebastes brevispinis) 137 SPECKLED ROCKFISH (Sebastes ovalis) 138 SPLITNOSE ROCKFISH (Sebastes diploproa) 140 SQUARESPOT ROCKFISH (Sebastes hopkinsi) 143 STARRY ROCKFISH (Sebastes constellatus) 145 STRIPETAIL ROCKFISH (Sebastes saxicola) 147 TIGER ROCKFISH (Sebastes nigrocinctus) 149 TREEFISH (Sebastes serriceps) 151 VERMILION ROCKFISH (Sebastes miniatus) 153 WIDOW ROCKFISH (Sebastes entomelas) 155 YELLOWEYE ROCKFISH (Sebastes ruberrimus) 158 YELLOWMOUTH ROCKFISH (Sebastes reedi) 160 YELLOWTAIL ROCKFISH (Sebastes flavidus) 161 ARROWTOOTH FLOUNDER (Atheresthes stomias) 164 BUTTER SOLE (Isopsetta isolepis) 166 CURLFIN SOLE (Pleuronichthys decurrens) 168 DOVER SOLE (Microstomus pacificus) 170 ENGLISH SOLE (Pleuronectes vetulus) 173 FLATHEAD SOLE (Hippoglossoides elassodon ) 177 PACIFIC SANDDAB (Citharichthys sordidus) 180 PETRALE SOLE (Eopsetta jordani) 183 REX SOLE (Errex zachirus) 186 ROCK SOLE (Lepidopsetta bilineata) 188 SAND SOLE (Psettichthys melanostictus) 191 STARRY FLOUNDER (Platichthys stellatus) 193 REFERENCES 196-241 * These life history profiles cover the 82 groundfish species managed by the Pacific Fishery Management Council. * This document, entitled ESSENTIAL FISH HABITAT WEST COAST GROUNDFISH DRAFT REVISED APPENDIX was prepared initially in June, 1998 by the National Marine Fisheries Service EFH Core Team for West Coast Groundfish: Ed Casillas, Lee Crockett, Yvonne deReynier, Jim Glock, Mark Helvey, Ben Meyer, Cyreis Schmitt, and Mary Yoklavich and staff: Allison Bailey, Ben Chao, Brad Johnson, and Tami Pepperell. It has been updated by Bruce McCain of the Habitat/Ecosystem Team for West Coast Groundfish, Northwest Fisheries Science Center, National Marine Fisheries Service (NOAA Fisheries), 2725 Montlake Blvd. E.,Seattle, WA 98112 ESSENTIAL FISH HABITAT WEST COAST GROUNDFISH DRAFT REVISED APPENDIX Prepared Initially in June, 1998 by EFH Core Team for West Coast Groundfish: Ed Casillas, Lee Crockett, Yvonne deReynier, Jim Glock, Mark Helvey. Ben Meyer, Cyreis Schmitt, and Mary Yoklavich and staff: Allison Bailey, Ben Chao, Brad Johnson, and Tami Pepperell Updated January, 2003 by Bruce McCain of the Habitat/Ecosystem Team for West Coast Groundfish Northwest Fisheries Science Center National Marine Fisheries Service 2725 Montlake Blvd. E. Seattle, WA 98112 INTRODUCTION The 1996 Sustainable Fisheries Act significantly amended the Magnuson-Stevens Act by requiring the Fishery Management Councils and the Secretary of Commerce, through the National Marine Fisheries Service (NMFS), to include provisions in fisheries management plans that describe, identify, conserve, and enhance essential fish habitat (EFH). In 1998 the NMFS recommended to the (Pacific Fisheries Management Council (PFMC) that the fisheries management plan for Pacific Coast Groundfish be amended to include a limited number of composite EFHs for all Pacific Coast groundfish and attach an appendix document to the amendment that describes the life histories and EFH designations for each of the 83 individual species that the FMP manages. The appendix was prepared by a team led by Cyreis Schmitt (at the time, affiliated with the Northwest Fisheries Science Center), and the primary sources of information for the life history descriptions and habitat associations were published reports and gray literature. Geographic information system (GIS) maps of species and life stage distributions generated in the format of the ArcView were included. The appendix was intended to be a "living" document that could be changed as new information on particular fish species arise, without using the cumbersome FMP amendment process. The EFH regulations state that the Councils and NMFS should periodically review and revise the EFH components of FMPs at least once every 5 years. Such review should include information regarding the description and identification of EFH, threats to EFH from fishing and non-fishing activities, and measures that could be taken to minimize those threats. In response to this requirement for periodic review, the life history descriptions were recently updated. The following draft of the updated Appendix was prepared by Bruce McCain with assistance from Stacey Miller and Robin Gintner of the NMFS, Northwest Fisheries Science Center. The draft was compiled by conducting literature searches using the Cambridge Scientific Abstracts Internet Database Service, and by reviewing recently completed summary documents, for example the California Department of Fish and Game=s Nearshore Fishery Management, a draft nearshore fishes synopsis in a section of the Oregon Department of Fish and Wildlife=s Nearshore Fisheries Management Plan, and the book The rockfishes of the Northeast Pacific by Love et al. published in 2002. Within the updated Appendix, the current 82 FMP groundfish species are sequenced alphabetically according to the common names. This document also includes nine summary tables and a list of references cited. This updated Appendix is being presented to the PFMC in draft form so that NMFS can consider appropriate comments prior to its inclusion in the EIS. Specifically, comments are being sought on the types of habitat preferred by various life history stages of the FMP species, and on species- 1 habitat relationships not adequately addressed in this draft. 2 LIFE HISTORY DESCRIPTIONS LEOPARD SHARK (Triakis semifasciata) Range Leopard sharks are found from southern Oregon to Baja California, Mexico including the Gulf of California (Adams 1986, Castro 1983, Compagno 1984, Emmett et al. 1991, Eschmeyer et al. 1983, Kusher, et al. 1992, Lineaweaver and Backus 1984, Love 1991, Miller and Lea 1972, Roedel and Ripley 1950, Russo 1975, Smith and Abramson 1990, Talent 1976). Fishery Leopard sharks can be caught by set lines, rod and reel, trawls, gill nets, and spearfishing (Castro 1983, de Wit 1975, Kusher, et al. 1992, Love 1991, Russo 1975, Smith 1984, Smith and Abramson 1990, Talent 1976). They are caught and sold commercially year-round and have been targeted by small-scale commercial line fisheries in San Francisco Bay (Compagno 1984, Emmett et al. 1991). From Eureka southward, the commercial fishery takes leopard sharks with gillnets and longlines (Love 1991), and occasionally with trawls (Susan Smith 2001). Recreational landings are larger than those of the commercial landings (Compagno 1984, Ebert 1986). Habitat A neritic species, the leopard shark is most abundant in California bays and estuaries and along southern California beaches. Although they are common in enclosed, muddy bays, other habitats of the leopard shark are flat, sandy areas, mud flats, sandy and muddy bottoms strewn with rocks near rocky reefs, and kelp beds (Compagno 1984, Emmett et al. 1991, Eschmeyer et al. 1983, Ferguson and Cailliet 1990, Love 1991, Smith 2001). It is common in littoral waters (Castro 1983, Compagno 1984, Ebert 1976, Emmett et al. 1991, Eschmeyer et al. 1983, Love 1991, Russo 1975) and around jetties and piers (Emmett et al. 1991). It is also known to congregate around warmwater outfalls of power plants (Smith 2001). The leopard shark occurs in polyhaline-euhaline
Recommended publications
  • Alaska Responsible Fishery Management Certification 3Rd
    Alaska Responsible Fishery Management Certification 3rd Surveillance Report For The Alaska Pacific Sablefish (Black Cod) Commercial Fishery Client ‘Eat on the Wild Side’ (FVOA) Facilitated By Alaska Seafood Marketing Institute (ASMI) Assessors: Dr. Ivan Mateo, Lead Assessor Mr. Vito Romito, Assessor Report Code: AK/SAB/002.3/2019 Published Date: 30th August 2019 SAI Global 3rd Floor, Block 3, Quayside Business Park, Mill Street, Dundalk, Co. Louth, Ireland. T: + 353 42 932 0912 www.saiglobal.com Foreword This report is the 3rd Surveillance Report for the Alaska sablefish federal and state commercial fisheries following initial certification award against this AK RFM Program, awarded on October 11th 2011, and recertification on 9th January 2017. The objective of the Surveillance Assessment and Report is to monitor for any changes/updates in the management regime, regulations and their implementation since the previous assessment; in this case, the Final Report of Full Assessment (re-certification) completed in January 2017. The report determines whether these changes and current practices remain consistent with the overall scorings of the fishery allocated during re- certification. High conformance was demonstrated by the fishery with regards to the Fundamental Clause. No corrective action plans with regards non-conformances were identified. The certification covers the Alaskan sablefish (Anoplopoma fimbria) commercial fishery employing demersal longline, pot and trawl gear within Alaska jurisdiction (200 nautical miles EEZ) under federal [National Marine Fisheries Service (NMFS)/North Pacific Fishery Management Council (NPFMC)] and state [Alaska Department of Fish and Game (ADFG) and Board of Fisheries (BOF)] management. The surveillance assessment was conducted according to the Global Trust Certification ISO 65 accredited procedures for FAO – Based Responsible Fisheries Management Certification using the Alaska FAO – Based RFM Conformance Criteria Version 1.3 fundamental clauses as the assessment framework.
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Keys to the Hawaiian Marine Gammaridea, 0-30 Meters
    J. LAURENS BARNt Keys to the Hawaiian Marine Gammaridea, 0-30 Meters SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 58 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Z0°l°iy Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. Each publica- tion is distributed by mailing lists to libraries, laboratories, institutes, and interested specialists throughout the world. Individual copies may be obtained from the Smith- sonian Institution Press as long as stocks are available. S. DILLON RIPLEY Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 58 j.
    [Show full text]
  • Fish Behaviour in Relation To; Fishing Operations
    ICES mar. Sei. Symp., 196: 211-215. 1993 Management implications of changes in by-catch rates of Pacific halibut and crab species caused by diel behaviour of groundfish in the Bering Sea Sara A. Adlerstein and Robert J. Trumble Adlerstein, S. A ., and Trumble, R. J. 1993. Management implications of changes in by-catch rates of Pacific halibut and crab species caused by diel behaviour of groundfish in the Bering Sea. - ICES mar. Sei. Symp., 196: 211-215. This study compares day and night by-catch rates of prohibited species (ratio of prohibited species to groundfish catch) in US domestic bottom-trawl fisheries for Pacific cod (Gadus macrocephalus) and walleye pollock ( Theragra chalcogramma) in the Bering Sea to identify management options to reduce by-catch. Bottom trawl fisheries in the Bering Sea cause significant by-catch mortality of Pacific halibut (Hippoglossus stenolepis) and other prohibited species such as king crab (Paralithodes camtschatica) and Tanner crabs (Chionoecetes spp.) By-catch rates are higher during night hours than during the day. We propose that by-catch differences are caused by diel vertical migration and other behavioural characteristics of the species that result in fluctuations of their relative abundance near the seabed between the two time periods. Avoiding night bottom fishing in the Pacific cod and walleye pollock fisheries may permit by-catch rate reduction. Fishing exclusively during day hours could produce total savings from 13 to 16% of the observed by-catch of halibut, king crab, and T anner crabs. Sara A. Adlerstein and Robert J. Trumble: International Pacific Halibut Commission, PO Box 95009 Seattle WA 98145-2009, USA.
    [Show full text]
  • Nocturnal Feeding of Pacific Hake and Jack Mackerel Off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation Robert L
    This article was downloaded by: [Oregon State University] On: 16 August 2011, At: 13:01 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Transactions of the American Fisheries Society Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utaf20 Nocturnal Feeding of Pacific Hake and Jack Mackerel off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation Robert L. Emmett a & Gregory K. Krutzikowsky b a Northwest Fisheries Science Center, NOAA Fisheries, 2030 South Marine Science Drive, Newport, Oregon, 97365, USA b Cooperative Institute of Marine Resource Studies, Oregon State University, 2030 South Marine Science Drive, Newport, Oregon, 97365, USA Available online: 09 Jan 2011 To cite this article: Robert L. Emmett & Gregory K. Krutzikowsky (2008): Nocturnal Feeding of Pacific Hake and Jack Mackerel off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation, Transactions of the American Fisheries Society, 137:3, 657-676 To link to this article: http://dx.doi.org/10.1577/T06-058.1 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
    U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S.
    [Show full text]
  • Rockfish (Sebastes) That Are Evolutionarily Isolated Are Also
    Biological Conservation 142 (2009) 1787–1796 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing Karen Magnuson-Ford a,b, Travis Ingram c, David W. Redding a,b, Arne Ø. Mooers a,b,* a Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 b IRMACS, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 c Department of Zoology and Biodiversity Research Centre, University of British Columbia, #2370-6270 University Blvd., Vancouver, Canada V6T 1Z4 article info abstract Article history: In an age of triage, we must prioritize species for conservation effort. Species more isolated on the tree of Received 23 September 2008 life are candidates for increased attention. The rockfish genus Sebastes is speciose (>100 spp.), morpho- Received in revised form 10 March 2009 logically and ecologically diverse and many species are heavily fished. We used a complete Sebastes phy- Accepted 18 March 2009 logeny to calculate a measure of evolutionary isolation for each species and compared this to their Available online 22 April 2009 morphology and imperilment. We found that evolutionarily isolated species in the northeast Pacific are both larger-bodied and, independent of body size, morphologically more distinctive. We examined Keywords: extinction risk within rockfish using a compound measure of each species’ intrinsic vulnerability to Phylogenetic diversity overfishing and categorizing species as commercially fished or not. Evolutionarily isolated species in Extinction risk Conservation priorities the northeast Pacific are more likely to be fished, and, due to their larger sizes and to life history traits Body size such as long lifespan and slow maturation rate, they are also intrinsically more vulnerable to overfishing.
    [Show full text]
  • HAKES of the WORLD (Family Merlucciidae)
    ISSN 1020-8682 FAO Species Catalogue for Fishery Purposes No. 2 HAKES OF THE WORLD (Family Merlucciidae) AN ANNOTATED AND ILLUSTRATED CATALOGUE OF HAKE SPECIES KNOWN TO DATE FAO Species Catalogue for Fishery Purposes No. 2 FIR/Cat. 2 HAKES OF THE WORLD (Family Merlucciidae) AN ANNOTATED AND ILLUSTRATED CATALOGUE OF HAKE SPECIES KNOWN TO DATE by D. Lloris Instituto de Ciencias del Mar (CMIMA-CSIC) Barcelona, Spain J. Matallanas Facultad de Ciencias Universidad Autónoma de Barcelona Bellaterra, Barcelona, Spain and P. Oliver Instituto Español de Oceanografia Palma de Mallorca, Spain FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2005 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN 92-5-104984-X All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy by e-mail to [email protected] © FAO 2005 Hakes of the World iii PREPARATION OF THIS DOCUMENT his catalogue was prepared under the FAO Fisheries Department Regular Programme by the Species Identification and TData Programme in the Marine Resources Service of the Fishery Resources Division.
    [Show full text]
  • Southwest Guide: Your Use to Word
    BEST CHOICES GOOD ALTERNATIVES AVOID How to Use This Guide Arctic Char (farmed) Clams (US & Canada wild) Bass: Striped (US gillnet, pound net) Bass (US farmed) Cod: Pacific (Canada & US) Basa/Pangasius/Swai Most of our recommendations, Catfish (US) Crab: Southern King (Argentina) Branzino (Mediterranean farmed) including all eco-certifications, Clams (farmed) Lobster: Spiny (US) Cod: Atlantic (gillnet, longline, trawl) aren’t on this guide. Be sure to Cockles Mahi Mahi (Costa Rica, Ecuador, Cod: Pacific (Japan & Russia) Cod: Pacific (AK) Panama & US longlines) Crab (Asia & Russia) check out SeafoodWatch.org Crab: King, Snow & Tanner (AK) Oysters (US wild) Halibut: Atlantic (wild) for the full list. Lobster: Spiny (Belize, Brazil, Lionfish (US) Sablefish/Black Cod (Canada wild) Honduras & Nicaragua) Lobster: Spiny (Mexico) Salmon: Atlantic (BC & ME farmed) Best Choices Mahi Mahi (Peru & Taiwan) Mussels (farmed) Salmon (CA, OR & WA) Octopus Buy first; they’re well managed Oysters (farmed) Shrimp (Canada & US wild, Ecuador, Orange Roughy and caught or farmed responsibly. Rockfish (AK, CA, OR & WA) Honduras & Thailand farmed) Salmon (Canada Atlantic, Chile, Sablefish/Black Cod (AK) Squid (Chile & Peru) Norway & Scotland) Good Alternatives Salmon (New Zealand) Squid: Jumbo (China) Sharks Buy, but be aware there are Scallops (farmed) Swordfish (US, trolls) Shrimp (other imported sources) Seaweed (farmed) Tilapia (Colombia, Honduras Squid (Argentina, China, India, concerns with how they’re Shrimp (US farmed) Indonesia, Mexico & Taiwan) Indonesia,
    [Show full text]
  • Market Update
    MIXED PROGRESS IN 2008 ALASKA FLATFISH FISHERIES When the North Pacific Fishery Management Council (the Council) cut the 2008 Bering Sea pollock quotas by 28%, it supplemented the total all-species quota in the Bering Sea with major increases to quotas of various flatfish species. Although these flatfish species command lower prices than pollock or Pacific cod, the Council felt increased flatfish quotas could somewhat offset quota holders for the lost pollock revenue. Here is a table showing the 2008 quotas of several major Alaskan groundfish species: ALASKA GROUNDFISH TOTAL ALLOWABLE CATCH (TAC) 2007-2008 all figures in metric tons (MT) % 2007 2008 change Species BSAI GOA Total BSAI GOA Total Total Pollock 1,413,010 68,307 1,481,317 1,019,010 60,180 1,079,190 (27.1%) Pacific cod 171,000 52,264 223,264 170,720 50,269 220,989 (1.0%) Yellowfin sole 136,000 136,000 225,000 225,000 65.4% Arrowtooth flounder 20,000 43,000 63,000 75,000 43,000 118,000 87.3% Northern rock sole 55,000 55,000 75,000 75,000 36.4% Flathead sole 30,000 9,148 39,148 50,000 11,054 61,054 56.0% Alaska plaice 25,000 25,000 50,000 50,000 100.0% Atka mackerel 63,000 1,500 64,500 60,700 1,500 62,200 (3.6%) All other species 87,315 95,693 183,008 112,915 96,823 209,738 14.6% Total 2,000,325 269,912 2,270,237 1,838,345 262,826 2,101,171 (7.4%) Notes BSAI Bering Sea / Aleutian Islands area GOA Gulf of Alaska area Stalled yellowfin sole fishery Despite the quota increases, trawlers in Alaska have yet to fill their pollock shortfall with flatfish, due mainly to a slow start to the yellowfin sole fishery.
    [Show full text]
  • (Crustacea : Amphipoda) of the Lower Chesapeake Estuaries
    W&M ScholarWorks Reports 1971 The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries James Feely Virginia Institute of Marine Science Marvin L. Wass Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Feely, J., & Wass, M. L. (1971) The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries. Special papers in marine science No.2. Virginia Institute of Marine Science, College of William and Mary. http://doi.org/10.21220/V5H01D This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 VIRGIN IA INSTITUTE OF MARINE SC IE NCE Gloucester Point, Virginia 23062 1971 THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER 1 CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 1971 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 This document is in part a thesis by James B. Feeley presented to the School of Marine Science of the College of William and Mary in Virginia in partial fulfillment of the requirements for the degree of Master of Arts.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Reconstructing historical baseline catches along Highway 101: U.S. West Coast marine fisheries, 1950-2017 Dirk Zellera,*, Matthew Ansella, Vania Andreolia, Haley Harguthb; Will Figueirac; Darcy Dunstand, Lekelia D. Jenkinse a Sea Around Us – Indian Ocean, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia b School of Marine and Environmental Affairs, University of Washington, Seattle, WA, USA c School of Life and Environmental Sciences, University of Sydney, NSW, Australia d Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada e School for the Future of Innovation in Society, Arizona State University, Tempe, AZ, USA We detail the methods and data sources used for reconstructing marine fisheries catches along the U.S. continental Pacific coast, i.e., for the U.S. West Coast states of California, Oregon and Washington for 1950-2017, based on the original technical report for 1950-2010 by Doherty et al. (2015) and as updated to 2017 by Dunstan et al. (2020). Much of the below materials and descriptions focus heavily on earlier periods, for which fewer contiguous data time series or formal sources are available, compared to the more recent years. We derived time series estimates for all sources of unreported marine fisheries catches (landed and discarded) and combined these with the landings data reported by the National Marine Fisheries Service (NOAA-NMFS) to the FAO on behalf of the USA. Thus, we follow the general ‘catch reconstruction’ methodology and process of Zeller et al. (2016). We define ‘reported catch’ as that catch that is included in official national and hence international FAO data.
    [Show full text]