Understanding Microstructural Evolution in Mixed Metal-Oxide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Phenolic Resin
e-Polymers 2021; 21: 316–326 Research Article Bing Wang, Minxian Shi, Jie Ding, and Zhixiong Huang* Polyhedral oligomeric silsesquioxane (POSS)-modified phenolic resin: Synthesis and anti-oxidation properties https://doi.org/10.1515/epoly-2021-0031 high hardness, high carbon residue yield, and flame resis- received January 24, 2021; accepted March 17, 2021 tance. It has been widely used in coatings, heat-barrier ( ) Abstract: In this work, octamercapto polyhedral oligo- materials, carbon material precursors, and adhesives 1 . meric silsesquioxane (POSS-8SH) and octaphenol poly- However, since phenolic groups and methylene groups in ’ ’ - - hedral oligomeric silsesquioxane (POSS-8Phenol) were PR s crosslinking structure, the PR shightemperature anti successfully synthetized. POSS-8Phenol was added into oxidation properties are always poor, and materials usually the synthesis process of liquid thermoset phenolic resin have cracks and deformation under the erosion of hot ( ) (PR) to obtain POSS-modified phenolic resin (POSS-PR). oxygen 2 . As the matrix resin of ablation materials or - Chemical structures of POSS-8SH, POSS-8Phenol, and refractory materials for aircraft or space shuttles, it is parti - POSS-PR were confirmed by FTIR and 1H-NMR. TG and cularly important to improve the anti oxidation properties ( ) DTG analysis under different atmosphere showed that of phenolic resins 3 . Previous works to modify phenolic char yield of POSS-PR at 1,000°C increased from 58.6% resin could be divided into two parts: one of the methods was to improve the molecular structure of PR, such as to 65.2% in N2, which in air increased from 2.3% to 26.9% at 700°C. -
Chemfiles Vol 1 No 6
ChemFilesChemFiles Vol.Vol. 1, 1, No. No. 6 6 •• 20012001 Hybrid inorganic–organic composites are an emerging class of new materials that hold significant promise.1 Materials are being designed with the good physical properties of ceramics and the excellent choice of functional group chemical reactivity associated with organic chemistry. New silicon-containing organic polymers, in general, and polysilsesquioxanes, in particular, have generated a great deal of interest because of their potential replacement for, and compatibility with silicon-based inorganics in the electronics, photonics, and other materials technologies.2-4 5,6 Hydrolytic condensation of trifunctional silanes yields network polymers or polyhedral clusters having the generic formula (RSiO1.5)n. Hence, they are known by the “not quite on the tip of the tongue” name silsesquioxanes. Each silicon atom is bound to an average of one and a half (sesqui) oxygen atoms and to one hydrocarbon group (ane). Typical functional groups that may be hydrolyzed/condensed include alkoxy- or chlorosilanes, silanols, and silanolates.7 Synthetic methodologies that combine pH control of hydrolysis/condensation kinetics, surfactant-mediated polymer growth, and molecular-templating mechanisms have been employed to control molecular–scale regularity and external morphology in the resulting inorganic-organic hybrids–from transparent nanocomposites, to mesoporous networks, to highly porous and periodic organosilica crystallites–all of which have the silsesquioxane 3,8-11 (or RSiO1.5) stoichiometry. These inorganic–organic hybrids offer a unique set of physical, chemical, and size–dependent properties that could not be realized from just ceramics or organic polymers alone; thus, silsesquioxanes are depicted as bridging the property space between these two component classes of materials. -
O/M Ratio Measurement in Pure and Mixed Oxide Fuels-Where Are We Now?
FR0200369 K -_£*- to 0/M RATIO MEASUREMENT IN PURE AND MIXED OXIDE FUELS - WHERE ARE WE NOW? J. RUBIN (1), K. CHIDESTER (2), M. THOMPSON (2), Los Alamos National Laboratory (1) Mail Stop E-574, (2) Mail Stop E530, Los Alamos, New Mexico 87545-USA E-mail: [email protected] KEYWORDS: Chemistry, Methods, Fuel INTRODUCTION The scale-down in the US and Russian nuclear weapons stockpiles has produced a surplus of weapons grade plutonium and highly enriched uranium. According to a recent National Academy of Sciences Report "Some 10,000-20,000 warheads in the United States and at least a similar number in the former Soviet Union are likely to fall into this [excess] category, depending on the ultimate scope of reductions and decisions concerning the size of non-deployed reserves. These excess nuclear weapons on the two sides could contain well over 100 metric tons of plutonium, and perhaps 1,000 metric tons of HEU, much of which may also be declared excess to military needs."[1] This excess weapons Pu is considered to be a threat for potential proliferation and various disposal options have been examined. The currently favored disposition routes for surplus weapons-grade Pu are (1) incorporation into mixed-oxide fuel (MOX), and "burning" in civilian nuclear reactors, and (2) immobilization of the Pu together with intensely radioactive fission products in glass. The use of MOX as a nuclear reactor fuel is well established, particularly in Europe and Japan. There are, however, no MOX fuel fabrication facilities in the US, owing to the fact that there are no domestic electricity generators using MOX fuel. -
Catalysis Science of Bulk Mixed Oxides Israel E
Perspective pubs.acs.org/acscatalysis Catalysis Science of Bulk Mixed Oxides Israel E. Wachs* and Kamalakanta Routray Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States ABSTRACT: Bulk mixed oxide catalysts are widely used for various applications (selective oxidation catalysts, electro- catalysts for solid oxide fuel cells, and solid oxide electrolyzers for the production of hydrogen), but fundamental under- standing of their structure−performance relationships have lagged in the literature. The absence of suitable surface composition and surface structural characterization techniques and methods to determine the number of catalytic active sites, with the latter needed for determination of specific reaction rates (e.g., turnover frequency (1/s)), have hampered the development of sound fundamental concepts in this area of heterogeneous catalysis. This Perspective reviews the traditional concepts that have been employed to explain catalysis by bulk mixed oxides (molybdates, vanadates, spinels, perovskites, and several other specific mixed oxide systems) and introduces a modern perspective to the fundamental surface structure−activity/selectivity relationships for bulk mixed oxide catalysts. The new insights have recently been made available by advances in surface characterization techniques (low-energy ion scattering, energy-resolved XPS, and CH3OH-IR) that allow for direct analysis of the outermost surface layer of bulk mixed metal oxide catalysts. The new findings sound a note of caution for the accepted hypotheses and concepts, and new catalysis models need to be developed that are based on the actual surface features of bulk mixed oxide catalysts. KEYWORDS: catalysts, oxides, bulk, one component, mixed, vanadates, molybdates, spinels, perovskites, spectroscopy, in situ, Raman, IR, TPSR, LEIS, SIMS, XPS I. -
Sio2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability
coatings Article SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability Massimiliano D’Arienzo 1,*, Sandra Dirè 2,3,* , Elkid Cobani 1, Sara Orsini 1, Barbara Di Credico 1 , Carlo Antonini 1 , Emanuela Callone 2,3, Francesco Parrino 2, Sara Dalle Vacche 4,5 , Giuseppe Trusiano 4 , Roberta Bongiovanni 4,5 and Roberto Scotti 1 1 Department of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy; [email protected] (E.C.); [email protected] (S.O.); [email protected] (B.D.C.); [email protected] (C.A.); [email protected] (R.S.) 2 Department Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; [email protected] (E.C.); [email protected] (F.P.) 3 “Klaus Müller” Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy 4 Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; [email protected] (S.D.V.); [email protected] (G.T.); [email protected] (R.B.) 5 Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy * Correspondence: [email protected] (M.D.); [email protected] (S.D.) Received: 11 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Abstract: The present study explores the exploitation of ladder-like polysilsesquioxanes (PSQs) bearing reactive functional groups in conjunction with SiO2 nanoparticles (NPs) to produce UV-curable nanocomposite coatings with increased hydrophobicity and good thermal resistance. -
Developments of Polyhedral Oligomeric Silsesquioxanes (Pass), Pass Nanocomposites and Their Applications: a Review
Journal of Scientific & Industrial Research Vol. 68, June 2009, pp.437-464 Developments of polyhedral oligomeric silsesquioxanes (PaSS), pass nanocomposites and their applications: A review D Gnanasekaran, K Madhavan and B S R Reddy* Industrial Chemistry Laboratory, Central Leather Research Institute, Chennai-600 020, India Received 01 September 2008; revised 24 February 2009; accepted 13 March 2009 This review presents a brief account of recent developments in synthesis and properties of organic-inorganic hybrids using polyhedral oligomeric silsesquioxanes (POSS) nanoparticIe, and applications of POSS monomers and nanocomposites. Therma], rheology and mechanical properties of polyimides, epoxy polymers, polymethymethacrylate, polyurethanes, and various other polymer nanocomposites are discussed. Keywords: Nanocomposites, Polyhedral oligomeric silsesquioxanes, Therma] and mechanical properties Introduction extremely complex mixtures of silsesquioxanes. Later in A variety of physical property enhancements 1946, pass were isolated along with other volatile (processability, toughness, thermal and oxidative stability) compounds through thermolysis of polymeric products are expected to result from incorporation of an inorganic obtained from methyltrichlorosilane and component into an organic polymer matrix. Many dimethylchlorosilane cohydrolysisl6. A variety of pass organic-inorganic hybrid materiels have shown dramatic nanostructured chemicals contain one or more covalently improvement in macroscopic properties compared with bonded reactive -
Heterogeneous Catalysis on Metal Oxides
catalysts Review Heterogeneous Catalysis on Metal Oxides Jacques C. Védrine ID Laboratoire de Réactivité de Surface, Université P. & M. Curie, Sorbonne Université, UMR-CNRS 7197, 4 Place Jussieu, F-75252 Paris, France; [email protected]; Tel.: +33-1-442-75560 Received: 8 October 2017; Accepted: 27 October 2017; Published: 10 November 2017 Abstract: This review article contains a reminder of the fundamentals of heterogeneous catalysis and a description of the main domains of heterogeneous catalysis and main families of metal oxide catalysts, which cover acid-base reactions, selective partial oxidation reactions, total oxidation reactions, depollution, biomass conversion, green chemistry and photocatalysis. Metal oxide catalysts are essential components in most refining and petrochemical processes. These catalysts are also critical to improving environmental quality. This paper attempts to review the major current industrial applications of supported and unsupported metal oxide catalysts. Viewpoints for understanding the catalysts’ action are given, while applications and several case studies from academia and industry are given. Emphases are on catalyst description from synthesis to reaction conditions, on main industrial applications in the different domains and on views for the future, mainly regulated by environmental issues. Following a review of the major types of metal oxide catalysts and the processes that use these catalysts, this paper considers current and prospective major applications, where recent advances in the science -
Selective Tripodal Titanium Silsesquioxane Catalysts for the Epoxidation of Unactivated Olefins
University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2015 SELECTIVE TRIPODAL TITANIUM SILSESQUIOXANE CATALYSTS FOR THE EPOXIDATION OF UNACTIVATED OLEFINS Sarah M. Peak University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Peak, Sarah M., "SELECTIVE TRIPODAL TITANIUM SILSESQUIOXANE CATALYSTS FOR THE EPOXIDATION OF UNACTIVATED OLEFINS" (2015). Theses and Dissertations--Chemistry. 52. https://uknowledge.uky.edu/chemistry_etds/52 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. -
Synthesis and Use of Metallized Polyhedral Oligomeric Silsesquioxane Catalyst Compositions
(19) TZZ Z_T (11) EP 2 865 704 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.04.2015 Bulletin 2015/18 C08G 77/58 (2006.01) C08G 77/04 (2006.01) B01J 31/02 (2006.01) B01J 31/12 (2006.01) (2006.01) (2006.01) (21) Application number: 13190523.4 B01J 31/16 B01J 31/38 C08G 18/61 (2006.01) C08G 18/22 (2006.01) (22) Date of filing: 28.10.2013 (84) Designated Contracting States: • Huntsman (Europe) BVBA AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 3078 Everberg (BE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (72) Inventor: The designation of the inventor has not Designated Extension States: yet been filed BA ME (74) Representative: Van den Broeck, Kristel Alice et al (71) Applicants: Huntsman (Europe) BVBA • HUNTSMAN INTERNATIONAL LLC Intellectual Property Department Salt Lake City, Utah 84108 (US) Everslaan 45 3078 Everberg (BE) (54) Synthesis and use of metallized polyhedral oligomeric silsesquioxane catalyst compositions (57) The present invention relates to a method to form a polyurethane material, a catalyst composition comprising metalized polyhedral oligomeric silsesquioxanes (POMS) compounds in combination with reactive compounds suitable to be used to provide a polyurethane material and the polyurethane material obtained using the catalyst composition. EP 2 865 704 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 865 704 A1 Description FIELD OF INVENTION 5 [0001] The present invention relates to a novel catalyst composition comprising metallized polyhedral oligomeric silsesquioxanes (referred to as POMS) suitable for use as a catalyst in forming polyurethane materials. -
Functional Open-Cage Silsesquioxanes As Specific Polymer Modifiers
polymers Article Preparation of Tri(alkenyl)functional Open-Cage Silsesquioxanes as Specific Polymer Modifiers Katarzyna Mituła 1,2, Michał Dutkiewicz 2,3 , Julia Duszczak 1,2, Monika Rzonsowska 1,2 and Beata Dudziec 1,2,* 1 Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Pozna´nskiego 8, 61-614 Poznan, Poland; [email protected] (K.M.); [email protected] (J.D.); [email protected] (M.R.) 2 Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Pozna´nskiego10, 61-614 Poznan, Poland; [email protected] 3 Adam Mickiewicz University Foundation, Rubiez 46, 61-612 Poznan, Poland * Correspondence: [email protected]; Tel.: +48-6-1823-1878 Received: 3 April 2020; Accepted: 30 April 2020; Published: 6 May 2020 Abstract: The scientific reports on polyhedral oligomeric silsesquioxanes are mostly focused on the formation of completely condensed T8 cubic type structures and recently so-called double-decker derivatives. Herein, we report on efficient synthetic routes leading to trifunctionalized, open-cage silsesquioxanes with alkenyl groups of varying chain lengths from -vinyl to -dec-9-enyl and two types of inert groups (iBu, Ph) at the silsesquioxane core. The presented methodology was focused on hydrolytic condensation reaction and it enabled obtaining titled compounds with high yields and purity. A parallel synthetic methodology that was based on the hydrosilylation reaction was also studied. Additionally, a thorough characterization of the obtained compounds was performed, also in terms of their thermal stability, melting and crystallization temperatures (TGA and DSC) in order to show the changes in the abovementioned parameters dependent on the type of reactive as well as inert groups at Si-O-Si core. -
Mixed Molybdenum Oxide Based Partial Oxidation Catalyst 2
Journal of Molecular Catalysis A: Chemical, 174 (2001) 1-2, 169-185 Mixed molybdenum oxide based partial oxidation catalyst 2. Combined X-ray diffraction, electron microscopy and Raman investigation of the phase stability of (MoVW)5O14-type oxides M. Dieterle1, G. Mestl1*, J. Jäger1, Y. Uchida1, H. Hibst2 and R. Schlögl1 1 Department of Inorganic Chemistry, Fritz-Haber-Institute of the MPG, Faradayweg 4-6, 14195 Berlin, Germany 2 BASF AG, ZAK/F – M301, 67056 Ludwigshafen * Corresponding author: e-mail [email protected], phone +49 30 8413 4440, fax +49 30 8413 4401 Received 20 November 2000; accepted 19 January 2001 Abstract Thermal activation of a nanocrystalline Mo5O14-type Mo0.64V0.25W0.09Ox catalyst leads to enhanced catalytic performance in the partial oxidation of methanol, propylene and acrolein. This thermal activation process was investigated by X-ray diffraction, transmission electron microscopy and Raman microspectroscopy. Thermal activation of the nanocrystalline Mo0.64V0.25W0.09Ox precursor oxide in inert atmospheres induces partial crystallization of a Mo5O14-type oxide only in a narrow temperature range ending at 818 K. The Raman spectrum of the crystalline Mo5O14 oxide was identified by statistical analysis and by comparison with XRD and TEM results. The observed Raman bands in the M=O stretching mode regime were attributed to the different Mo=O bond distances in Mo 5O15. A fraction of the precursor oxide remains nanocrystalline after activation as shown by Raman spectroscopy. HRTEM identified amorphous surface layers on top crystalline cores. Above 818 K, the Mo5O14-type structure disproportionates into the stable phases MoO 2 and MoO3. -
Silsesquioxane Lego Chemistry : Catalytic Receptor Ensembles for Alkene Epoxidation
Silsesquioxane lego chemistry : catalytic receptor ensembles for alkene epoxidation Citation for published version (APA): Gerritsen, G. (2011). Silsesquioxane lego chemistry : catalytic receptor ensembles for alkene epoxidation. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR719867 DOI: 10.6100/IR719867 Document status and date: Published: 01/01/2011 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.