Dispersion States and Surface Characteristics of Physically Blended Polyhedral Oligomeric Silsesquioxane/Polymer Hybrid Nanocomposites

Total Page:16

File Type:pdf, Size:1020Kb

Dispersion States and Surface Characteristics of Physically Blended Polyhedral Oligomeric Silsesquioxane/Polymer Hybrid Nanocomposites The University of Southern Mississippi The Aquila Digital Community Dissertations Fall 12-2008 Dispersion States and Surface Characteristics of Physically Blended Polyhedral Oligomeric Silsesquioxane/Polymer Hybrid Nanocomposites Rahul Misra University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Materials Chemistry Commons, and the Polymer Chemistry Commons Recommended Citation Misra, Rahul, "Dispersion States and Surface Characteristics of Physically Blended Polyhedral Oligomeric Silsesquioxane/Polymer Hybrid Nanocomposites" (2008). Dissertations. 1154. https://aquila.usm.edu/dissertations/1154 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi DISPERSION STATES AND SURFACE CHARACTERISTICS OF PHYSICALLY BLENDED POLYHEDRAL OLIGOMERIC SILSESQUIOXANE/POLYMER HYBRID NANOCOMPOSITES by Rahul Misra Abstract of a Dissertation Submitted to the Graduate Studies Office of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2008 COPYRIGHT BY RAHUL MISRA 2008 The University of Southern Mississippi DISPERSION STATES AND SURFACE CHARACTERISTICS OF PHYSICALLY BLENDED POLYHEDRAL OLIGOMERIC SILSESQUIOXANE/POLYMER HYBRID NANOCOMPOSITES by Rahul Misra A Dissertation Submitted to the Graduate Studies Office of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved: December 2008 ABSTRACT DISPERSION STATES AND SURFACE CHARACTERISTICS OF PHYSICALLY BLENDED POLYHEDRAL OLIGOMERIC SILSESQUIOXANE/POLYMER HYBRID NANOCOMPOSITES by Rahul Misra December 2008 Control of dispersion and segregation states of nanostructured additives is one of the biggest challenges in realizing the optimum potential of high performance hybrid polymer nanocomposites. Polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals, with their hybrid organic-inorganic nature and flexible functionalization with a variety of organic substituents, yield possibilities to control dispersion and tune compatibility in a wide range of polymer systems. The overall goal of this research is to investigate the fundamental parameters that influence the dispersion and segregation states of POSS nanostructured chemicals, and to understand chain dynamics and conformations in physically blended POSS hybrid polymer nanocomposites (HPNC's). Multiple structural and mechanical factors influencing macro to nano scale surface and bulk properties were successfully investigated and correlated. A strategy based on thermodynamic principles for selective control of POSS dispersion states in a given polymer matrix is developed and discussed. This dissertation consists of eight chapters. Chapter 1 provides a detailed introduction about the development and current research interest in POSS/polymer nanocomposites. This chapter also discusses limitations of current advanced nanoprobe techniques. Chapter 2 establishes the overall goal of this research and specific research ii objectives. Chapter 3 establishes the preferential surface migration behavior of physically dispersed, non-reactive, closed cage octaisobutyl POSS (Oib-POSS) in a non- polar polypropylene matrix. Furthermore, influence of POSS surface segregation on the surface properties, especially nano-tribomechanical behavior is also discussed. Chapter 4 expands the studies by melt blending two different types of POSS molecules, a non- reactive, closed cage Oib-POSS and an open cage trisilanolphenyl POSS (Tsp-POSS), in a nylon 6 matrix. This chapter discusses the morphology, nano-dispersion and macro- to nanoscale tribomechanical characteristics in relation to the POSS structures. Chapter 5 probes the molecular miscibility, solution and solid-state chain dynamics in polystyrene solution blended with Oib- and Tsp-POSS based on classical thermodynamic principles. Chapter 6 extends the learnings from chapter 5 to utilize POSS as a dispersion aid to disperse Ti02 nanoparticles in polypropylene. Chapter 7 explores the surface properties of fluorinated and non-fluorinated POSS coated fabrics. Finally, chapter 8 explores a nature-inspired route to modify polymer surfaces utilizing hydrophobin proteins and their impact on surface morphology and nanotribological characteristics. in DEDICATION This dissertation is dedicated to my parents, especially my mother who has been a great source of motivation and inspiration from the beginning of my studies. My father always inspires me to follow my dreams and work hard to realize them. Also, this dissertation is dedicated to my wife who always stood by me and kept my spirit up during my toughest moments. Finally, this dissertation is also dedicated to my beautiful daughter Ayusha who means a world to me. IV ACKNOWLEDGEMENTS I would like to take this opportunity to thank my research advisor Dr. Sarah E. Morgan for her support, guidance, and encouragement throughout my graduate career. I would also like to thank the members of my graduate committee, Dr. Charles E. Hoyle, Dr. Robert Y. Lochhead, Dr. James Rawlins, Dr. Bruce X. Fu, and Dr. Sergei Magonov, for their guidance and valuable suggestions. I am thankful to the entire Morgan research group for their friendship and help throughout my studies, in particular, Alp Alidedeoglu, Chris Harris, Paul Jones, Kristin Hamilton, Brandon Drescher, Bobby Cook, and Chris Collins. I would also like to thank Dr. William Jarrett, Dr. Andreas Plagge, and Sara Bayley who helped me during these studies. In addition, I would like to acknowledge Velda Moore, Heatherly Edgar, Kim Wingo, and Erin Prince for their help. I am also thankful to Dr. Joe Lichtenhan for valuable discussions throughout my research. I am forever grateful to my parents, my wife, and my entire family, all of whom have provided encouragement and support throughout my life. The author also gratefully acknowledges the financial and material support for this research by National Science Foundation and Hybrid Plastics Inc., MS respectively. v TABLE OF CONTENTS ABSTRACT ii DEDICATION iv ACKNOWLEDGEMENTS v LIST OF ILLUSTRATIONS ix LIST OF TABLES xiv CHAPTER I. INTRODUCTION 1 Hybrid Polymer Nanocomposites Classification of Polymer Composites: Advantages and Challenges Polyhedral Oligomeric Silsesquioxane (POSS) Nanostructured Materials Developments in POSS/Polymer HPNC's Current Research Interests in POSS/Polymer HPNC's Thermodynamics of POSS Dispersion Tribology: Friction, Wear, and Adhesion Properties Friction Measurements for Polymeric Surfaces Quasi-static and Dynamic Nanomechanical Properties Motivation and Contribution of Current Research References II. OBJECTIVES OF RESEARCH 38 III. SURFACE ENERGETICS, DISPERSION AND NANOTRIBOMECHANICAL BEHAVIOR OF POSS/PP HYBRID NANOCOMPOSITES 40 Abstract Introduction Experimental Results and Discussion Conclusions Acknowledgements References VI IV. POSS-NYLON 6 NANOCOMPOSITES: INFLUENCE OF POSS STRUCTURE ON SURFACE AND BULK PROPERTIES 80 Abstract Introduction Experimental Results and Discussion Conclusions Acknowledgements References V. TAILORING MOLECULAR MISCIBILITY AND CHAIN DYNAMICS OF POSS/POLYSTYRENE BLENDS: CONTROL OF POSS PREFERENTIAL DISPERSION STATES 119 Abstract Introduction Experimental Results and Discussion Conclusions Acknowledgements References VI. POLYHEDRAL OLIGOMERIC SILSESQUIOXANE (POSS) TRISILANOLS AS DISPERSANTS FOR TITANIUM OXIDE NANOPOWDER 158 Abstract Introduction Experimental Results and Discussion Conclusions Acknowledgements References VII. NON-WETTING, NON-ROLLING, STAIN RESISTANT POLYHEDRAL OLIGOMERIC SILSESQUIOXANE COATED TEXTILES 176 Abstract Introduction Experimental Results and Discussion Conclusions Acknowledgements References vu VIII. NANOSCALE REDUCTION IS SURFACE FRICTION OF POLYMER SURFACES MODIFIED WITH SC3 HYDROPHOBIN FROM SCHIZOPHYLLUM COMMUNE 199 Abstract Introduction Experimental Results and Discussion Conclusions Acknowledgements References CONCLUSIONS AND RECOMMENDED FUTURE WORK 227 vm LIST OF ILLUSTRATIONS Figure I-1. Schematic representation of various hybrid plastics networks 4 1-2. Molecular structure of POSS 7 1-3. Generalized POSS structure: A) open cage, B) closed (condensed) cage 8 1-4. Various molecular architectures obtained via covalent attachment of POSS.... 10 III-l. Schematic structure of Octaisobutyl POSS 45 III-2. Three dimensional AFM tapping mode height images and surface roughness analysis of melt pressed (A) Neat PP (B) 5% Oib-POSS/PP (C) 10% Oib- POSS/PP (Z Scale: 150 nm, Rq: Root mean square roughness, Ra: Mean roughness, Hmax: maximum height) 51 III-3. AFM phase images of melt pressed (A) Neat PP surface (B) 10% Oib-POSS/PP surface, and microtomed (C) Neat PP bulk (D) 10% Oib-POSS/PP bulk 52 III- 4. SEM/EDAX mapping of melt pressed (A) Neat PP surface (B) 10% Oib- POSS/PP Surface and microtomed (C) 10% Oib-POSS/PP Bulk Nanocomposite 54 III-5. TEM-EDAX elemental surface mapping of a microtomed 10% Oib-POSS/PP sample (A) Carbon (B) Oxygen (C) Silicon (D) Silicon Overlap 55 III-6. ATR-FTIR spectra of (A) Oib-POSS (B) Neat PP (C) 5% Oib-POSS/PP (D) 10% Oib-POSS/PP 56 III-7. Variable angle ATR-FTIR spectra of Oib-POSS/PP HPNC 58 III-8. Relative concentration as a function of depth in Oib-POSS/PP HPNC 58 III-9. Friction loops obtained via
Recommended publications
  • Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Phenolic Resin
    e-Polymers 2021; 21: 316–326 Research Article Bing Wang, Minxian Shi, Jie Ding, and Zhixiong Huang* Polyhedral oligomeric silsesquioxane (POSS)-modified phenolic resin: Synthesis and anti-oxidation properties https://doi.org/10.1515/epoly-2021-0031 high hardness, high carbon residue yield, and flame resis- received January 24, 2021; accepted March 17, 2021 tance. It has been widely used in coatings, heat-barrier ( ) Abstract: In this work, octamercapto polyhedral oligo- materials, carbon material precursors, and adhesives 1 . meric silsesquioxane (POSS-8SH) and octaphenol poly- However, since phenolic groups and methylene groups in ’ ’ - - hedral oligomeric silsesquioxane (POSS-8Phenol) were PR s crosslinking structure, the PR shightemperature anti successfully synthetized. POSS-8Phenol was added into oxidation properties are always poor, and materials usually the synthesis process of liquid thermoset phenolic resin have cracks and deformation under the erosion of hot ( ) (PR) to obtain POSS-modified phenolic resin (POSS-PR). oxygen 2 . As the matrix resin of ablation materials or - Chemical structures of POSS-8SH, POSS-8Phenol, and refractory materials for aircraft or space shuttles, it is parti - POSS-PR were confirmed by FTIR and 1H-NMR. TG and cularly important to improve the anti oxidation properties ( ) DTG analysis under different atmosphere showed that of phenolic resins 3 . Previous works to modify phenolic char yield of POSS-PR at 1,000°C increased from 58.6% resin could be divided into two parts: one of the methods was to improve the molecular structure of PR, such as to 65.2% in N2, which in air increased from 2.3% to 26.9% at 700°C.
    [Show full text]
  • Chemfiles Vol 1 No 6
    ChemFilesChemFiles Vol.Vol. 1, 1, No. No. 6 6 •• 20012001 Hybrid inorganic–organic composites are an emerging class of new materials that hold significant promise.1 Materials are being designed with the good physical properties of ceramics and the excellent choice of functional group chemical reactivity associated with organic chemistry. New silicon-containing organic polymers, in general, and polysilsesquioxanes, in particular, have generated a great deal of interest because of their potential replacement for, and compatibility with silicon-based inorganics in the electronics, photonics, and other materials technologies.2-4 5,6 Hydrolytic condensation of trifunctional silanes yields network polymers or polyhedral clusters having the generic formula (RSiO1.5)n. Hence, they are known by the “not quite on the tip of the tongue” name silsesquioxanes. Each silicon atom is bound to an average of one and a half (sesqui) oxygen atoms and to one hydrocarbon group (ane). Typical functional groups that may be hydrolyzed/condensed include alkoxy- or chlorosilanes, silanols, and silanolates.7 Synthetic methodologies that combine pH control of hydrolysis/condensation kinetics, surfactant-mediated polymer growth, and molecular-templating mechanisms have been employed to control molecular–scale regularity and external morphology in the resulting inorganic-organic hybrids–from transparent nanocomposites, to mesoporous networks, to highly porous and periodic organosilica crystallites–all of which have the silsesquioxane 3,8-11 (or RSiO1.5) stoichiometry. These inorganic–organic hybrids offer a unique set of physical, chemical, and size–dependent properties that could not be realized from just ceramics or organic polymers alone; thus, silsesquioxanes are depicted as bridging the property space between these two component classes of materials.
    [Show full text]
  • Sio2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability
    coatings Article SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability Massimiliano D’Arienzo 1,*, Sandra Dirè 2,3,* , Elkid Cobani 1, Sara Orsini 1, Barbara Di Credico 1 , Carlo Antonini 1 , Emanuela Callone 2,3, Francesco Parrino 2, Sara Dalle Vacche 4,5 , Giuseppe Trusiano 4 , Roberta Bongiovanni 4,5 and Roberto Scotti 1 1 Department of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy; [email protected] (E.C.); [email protected] (S.O.); [email protected] (B.D.C.); [email protected] (C.A.); [email protected] (R.S.) 2 Department Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; [email protected] (E.C.); [email protected] (F.P.) 3 “Klaus Müller” Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy 4 Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; [email protected] (S.D.V.); [email protected] (G.T.); [email protected] (R.B.) 5 Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy * Correspondence: [email protected] (M.D.); [email protected] (S.D.) Received: 11 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Abstract: The present study explores the exploitation of ladder-like polysilsesquioxanes (PSQs) bearing reactive functional groups in conjunction with SiO2 nanoparticles (NPs) to produce UV-curable nanocomposite coatings with increased hydrophobicity and good thermal resistance.
    [Show full text]
  • Developments of Polyhedral Oligomeric Silsesquioxanes (Pass), Pass Nanocomposites and Their Applications: a Review
    Journal of Scientific & Industrial Research Vol. 68, June 2009, pp.437-464 Developments of polyhedral oligomeric silsesquioxanes (PaSS), pass nanocomposites and their applications: A review D Gnanasekaran, K Madhavan and B S R Reddy* Industrial Chemistry Laboratory, Central Leather Research Institute, Chennai-600 020, India Received 01 September 2008; revised 24 February 2009; accepted 13 March 2009 This review presents a brief account of recent developments in synthesis and properties of organic-inorganic hybrids using polyhedral oligomeric silsesquioxanes (POSS) nanoparticIe, and applications of POSS monomers and nanocomposites. Therma], rheology and mechanical properties of polyimides, epoxy polymers, polymethymethacrylate, polyurethanes, and various other polymer nanocomposites are discussed. Keywords: Nanocomposites, Polyhedral oligomeric silsesquioxanes, Therma] and mechanical properties Introduction extremely complex mixtures of silsesquioxanes. Later in A variety of physical property enhancements 1946, pass were isolated along with other volatile (processability, toughness, thermal and oxidative stability) compounds through thermolysis of polymeric products are expected to result from incorporation of an inorganic obtained from methyltrichlorosilane and component into an organic polymer matrix. Many dimethylchlorosilane cohydrolysisl6. A variety of pass organic-inorganic hybrid materiels have shown dramatic nanostructured chemicals contain one or more covalently improvement in macroscopic properties compared with bonded reactive
    [Show full text]
  • Selective Tripodal Titanium Silsesquioxane Catalysts for the Epoxidation of Unactivated Olefins
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2015 SELECTIVE TRIPODAL TITANIUM SILSESQUIOXANE CATALYSTS FOR THE EPOXIDATION OF UNACTIVATED OLEFINS Sarah M. Peak University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Peak, Sarah M., "SELECTIVE TRIPODAL TITANIUM SILSESQUIOXANE CATALYSTS FOR THE EPOXIDATION OF UNACTIVATED OLEFINS" (2015). Theses and Dissertations--Chemistry. 52. https://uknowledge.uky.edu/chemistry_etds/52 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Synthesis and Use of Metallized Polyhedral Oligomeric Silsesquioxane Catalyst Compositions
    (19) TZZ Z_T (11) EP 2 865 704 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.04.2015 Bulletin 2015/18 C08G 77/58 (2006.01) C08G 77/04 (2006.01) B01J 31/02 (2006.01) B01J 31/12 (2006.01) (2006.01) (2006.01) (21) Application number: 13190523.4 B01J 31/16 B01J 31/38 C08G 18/61 (2006.01) C08G 18/22 (2006.01) (22) Date of filing: 28.10.2013 (84) Designated Contracting States: • Huntsman (Europe) BVBA AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 3078 Everberg (BE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (72) Inventor: The designation of the inventor has not Designated Extension States: yet been filed BA ME (74) Representative: Van den Broeck, Kristel Alice et al (71) Applicants: Huntsman (Europe) BVBA • HUNTSMAN INTERNATIONAL LLC Intellectual Property Department Salt Lake City, Utah 84108 (US) Everslaan 45 3078 Everberg (BE) (54) Synthesis and use of metallized polyhedral oligomeric silsesquioxane catalyst compositions (57) The present invention relates to a method to form a polyurethane material, a catalyst composition comprising metalized polyhedral oligomeric silsesquioxanes (POMS) compounds in combination with reactive compounds suitable to be used to provide a polyurethane material and the polyurethane material obtained using the catalyst composition. EP 2 865 704 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 865 704 A1 Description FIELD OF INVENTION 5 [0001] The present invention relates to a novel catalyst composition comprising metallized polyhedral oligomeric silsesquioxanes (referred to as POMS) suitable for use as a catalyst in forming polyurethane materials.
    [Show full text]
  • Functional Open-Cage Silsesquioxanes As Specific Polymer Modifiers
    polymers Article Preparation of Tri(alkenyl)functional Open-Cage Silsesquioxanes as Specific Polymer Modifiers Katarzyna Mituła 1,2, Michał Dutkiewicz 2,3 , Julia Duszczak 1,2, Monika Rzonsowska 1,2 and Beata Dudziec 1,2,* 1 Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Pozna´nskiego 8, 61-614 Poznan, Poland; [email protected] (K.M.); [email protected] (J.D.); [email protected] (M.R.) 2 Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Pozna´nskiego10, 61-614 Poznan, Poland; [email protected] 3 Adam Mickiewicz University Foundation, Rubiez 46, 61-612 Poznan, Poland * Correspondence: [email protected]; Tel.: +48-6-1823-1878 Received: 3 April 2020; Accepted: 30 April 2020; Published: 6 May 2020 Abstract: The scientific reports on polyhedral oligomeric silsesquioxanes are mostly focused on the formation of completely condensed T8 cubic type structures and recently so-called double-decker derivatives. Herein, we report on efficient synthetic routes leading to trifunctionalized, open-cage silsesquioxanes with alkenyl groups of varying chain lengths from -vinyl to -dec-9-enyl and two types of inert groups (iBu, Ph) at the silsesquioxane core. The presented methodology was focused on hydrolytic condensation reaction and it enabled obtaining titled compounds with high yields and purity. A parallel synthetic methodology that was based on the hydrosilylation reaction was also studied. Additionally, a thorough characterization of the obtained compounds was performed, also in terms of their thermal stability, melting and crystallization temperatures (TGA and DSC) in order to show the changes in the abovementioned parameters dependent on the type of reactive as well as inert groups at Si-O-Si core.
    [Show full text]
  • Silsesquioxane Lego Chemistry : Catalytic Receptor Ensembles for Alkene Epoxidation
    Silsesquioxane lego chemistry : catalytic receptor ensembles for alkene epoxidation Citation for published version (APA): Gerritsen, G. (2011). Silsesquioxane lego chemistry : catalytic receptor ensembles for alkene epoxidation. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR719867 DOI: 10.6100/IR719867 Document status and date: Published: 01/01/2011 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Understanding Microstructural Evolution in Mixed Metal-Oxide
    Understanding Microstructural Evolution in Mixed Metal-Oxide in Mixed Evolution MicrMicrostructural Understanding Silsesquioxane Glasses Through Wet-Chemical Synthesis Wet-Chemical Glasses Through SilsesquioSilsesquioxane Understanding Microstructural Uitnodiging xane Glasses Thr xane Evolution in Mixed Metal-Oxide ostructural Evolution in Mix Evolution ostructural Silsesquioxane Glasses Through Graag nodig in u en uw partner uit voor het bijwonen van de ough Wet-Chemic Wet-Chemical Synthesis openbare verdediging van mijn proefschrift: Understanding Microstructural Evolution in Mixed Metal-oxide al Synthesis Silsesquioxane Glasses Through ed Metal-Oxide Wet-Chemical Synthesis op vrijdag 28 maart 2014 om 12:45 h in de prof. dr. G Berkhoff-zaal (Collegezaal 4) van het gebouw de Waaier van de Universiteit Twente. Voorafgaand zal ik om 12:30 h mijn proefschrift in het kort toelichten. Aanluitend aan de verdediging is er een receptie ter plaatse Rogier Besselink2014 Rogier Vanaf 20:30 h bent u eveneens van harte welkom op het feest op Boerderij Bosch Rogier Besselink [email protected] Paranimfen: Tomasz Stawski Wouter Maijenburg ISBN: 978-90-365-3637-0 Rogier Besselink UNDERSTANDING MICROSTRUCTURAL EVOLUTION OF MIXED METAL OXIDE SILSESQUIOXANE GLASSES THROUGH WET-CHEMICAL SYNTHESIS Rogier Besselink PhD committee Chairman and secretary: Prof. dr. ir. J.W.M. Hilgenkamp University of Twente Supervisor: Prof. dr. ir. J.E. ten Elshof University of Twente Members: Prof. dr. L. van Wüllen University of Ausburg Prof. dr. A. Nijmeijer University of Twente Prof. dr. ing. D.H.A Blank University of Twente Prof. dr. A.J.A. Winnubst University of Science and Technology of China, Hefei / University of Twente Referent: Dr. A.
    [Show full text]
  • Composition Comprising Silylated Polymers and Polyhedral Oligomeric Metallo Silsesquioxane
    (19) TZZ ¥_T (11) EP 2 796 493 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.10.2014 Bulletin 2014/44 C08K 5/549 (2006.01) C08L 43/04 (2006.01) C08G 18/22 (2006.01) (21) Application number: 13165285.1 (22) Date of filing: 25.04.2013 (84) Designated Contracting States: • Huntsman (Europe) BVBA AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 3078 Everberg (BE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (72) Inventor: The designation of the inventor has not Designated Extension States: yet been filed BA ME (74) Representative: Swinnen, Anne-Marie et al (71) Applicants: Huntsman (Europe) BVBA • HUNTSMAN INTERNATIONAL LLC Intellectual Property Department Salt Lake City, Utah 84108 (US) Everslaan 45 3078 Everberg (BE) (54) Composition comprising silylated polymers and polyhedral oligomeric metallo silsesquioxane (57) The present invention relates to a composition composition comprising a silylated polymer comprising comprising at least one silylated polymer and at least one the step of: contacting a silylated polymer with a polyhe- polyhedral oligomeric metallo silsesquioxane. The dral oligomeric metallo silsesquioxane. present invention also relates to a process of curing a EP 2 796 493 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 796 493 A1 Description FIELD OF INVENTION 5 [0001] This invention relates to a composition comprising silylated polymers comprising alkoxysilyl and/or silanol moieties, and more specifically silylated polyurethanes and to a process to prepare such compositions.
    [Show full text]
  • Research Article Iron Oxide Arrays Prepared from Ferrocene- and Silsesquioxane-Containing Block Copolymers
    Hindawi Publishing Corporation International Journal of Polymer Science Volume 2012, Article ID 692604, 10 pages doi:10.1155/2012/692604 Research Article Iron Oxide Arrays Prepared from Ferrocene- and Silsesquioxane-Containing Block Copolymers Raita Goseki, Tomoyasu Hirai, Masa-aki Kakimoto, and Teruaki Hayakawa Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-36 Ookayama, Meguro-ku, Tokyo 152-8552, Japan Correspondence should be addressed to Teruaki Hayakawa, [email protected] Received 13 August 2012; Accepted 11 October 2012 Academic Editor: Maki Itoh Copyright © 2012 Raita Goseki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Arrays of iron oxides as precursors of iron clusters were prepared by oxygen plasma treatment of block copolymer microphase- separated nanostructures in thin films. Block copolymers composed of ferrocene-containing and silsesquioxane-containing polymethacrylate (PMAPOSS-b-PMAHFC) were successfully prepared, with different molecular weights and compositions and narrow molecular weight distributions, by living anionic polymerization. The formed microphase-separated nanostructures in the bulk were characterized by wide- and small-angle X-ray scattering (WAXS and SAXS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Thin films were prepared from a solution of PMAPOSS-b-PMAHFC in tetrahydrofuran by spin coating onto silicon wafers. Fingerprint-type line nanostructures were formed in the PMAPOSS-b-PMAHFCs thin films after solvent annealing with carbon disulfide. Oxygen plasma treatment provided the final line arrays of iron oxides based on the formed nanostructural patterns.
    [Show full text]
  • Atomistic Simulations of Octacyclopentyl Polyhedral Oligomeric Silsesquioxane Polyethylene Nanocomposites
    Atomistic Simulations of Octacyclopentyl Polyhedral Oligomeric Silsesquioxane Polyethylene Nanocomposites by Franco M. Capaldi M.S. Mechanical Engineering Massachusetts Institute of Technology, 2001 B.S. Mechanical Engineering Brown University, 1999 SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTORATE OF PHILOSOPHY IN MECHANICAL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2005 MASSACHUSETTS INSTI UTE OF TECHNOLOGY 0 Franco M. Capaldi. All rights reserved. JU 62005 The author hereby grants to MIT permission to reproduce And to distribute publicly paper and electronic LIBRARIES copies of this thesis document in whole or in part. Signature of Author: Department of Mechanical Engineering 005 Certified by: . nOyce Professor of Mechanical Engineering ory C. Rutledge tical Engineering Accepted by: Lallit Anand Chairman, vepartmen Lommittee on Graduate Students BARKER Atomistic Simulations of Octacyclopentyl Polyhedral Oligomeric Silsesquioxane Polyethylene Nanocomposites Franco M. Capaldi Submitted to the Department of Mechanical Engineering On March 14, 2005 in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy in Mechanical Engineering As the scientific community develops the ability to create composites which incorporate nanoscopic filler particles, the detailed atomic arrangement and atomic interactions become significant in determining the composite properties. Nanoscopic fillers such as carbon nanotubes, polyhedral oligomeric
    [Show full text]