Proceedings of the 95Th Annual Virginia Academy of Science

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the 95Th Annual Virginia Academy of Science Virginia Journal of Science Note: This manuscript has been accepted for publication and is online Volume 68, Issue 1 & 2 ahead of print. It will undergo copyediting, typesetting, and review of the Spring & Summer 2017 resulting proof before it is published in its final form. doi: 10.25778/mhc9-zj49 PROCEEDINGS OF THE 95TH ANNUAL MEETING Virginia Academy of Science Virginia Commonwealth University May 17-19, 2017 Contents PROCEEDINGS OF THE 95TH ANNUAL MEETING ............................................................................................ 1 Agriculture, Forestry, and Aquaculture ........................................................................................................ 1 Astronomy, Mathematics and Physics with Materials Sciences ................................................................... 2 Biology with Microbiology and Molecular Biology ....................................................................................... 7 Biomedical and General Engineering .......................................................................................................... 23 Botany ......................................................................................................................................................... 28 Chemistry .................................................................................................................................................... 34 Data Science, Computing and Statistics ...................................................................................................... 37 Education .................................................................................................................................................... 38 Entomology ................................................................................................................................................. 41 Environmental Science ................................................................................................................................ 46 Medical Sciences ......................................................................................................................................... 50 Natural History and Biodiversity ................................................................................................................. 61 Psychology .................................................................................................................................................. 65 Structural Biology, Biochemistry and Biophysics ........................................................................................ 69 Agriculture, Forestry, and Aquaculture Posters SEEING IS BELIEVING: THE IMPORTANCE OF HANDS ON EXPERIENCES IN THE DIVERSE WORLD OF MODERN AGRICULTURE. R. Spencer Irby & Tim C. Durham, Agriculture Program, Ferrum College, Ferrum, VA 24088. Education can be delivered through auditory, visual, and kinesthetic modalities. However, there is often a disconnect between theory and practice in agricultural education, elevating the latter in importance. A hands-on approach 1 Virginia Journal of Science, Vol. 68, No. 1, 2017 https://digitalcommons.odu.edu/vjs/vol68/iss1 allows students to better grasp abstract concepts. This bridges and actualizes the theories broached in class. Accordingly, courses such as AGS 218: Regional Experiences in Agriculture at Ferrum College are an intuitive and beneficial complement to an educational curriculum, particularly for students in the midst of major coursework. In the aforementioned course, students observed and participated in a wide variety of agricultural exercises within the Commonwealth, while gaining firsthand experiences in a nontraditional, open air classroom setting. The course also provided a platform for students to converse directly with individuals in industry employment sectors of interest, with a particular focus on alumni mentoring. Perhaps most importantly, the course challenged and contextualized student perspectives on the global dilemma of resource scarcity and a growing population. Astronomy, Mathematics and Physics with Materials Sciences K-KINGS IN PRODUCTS OF DIGRAPHS. Morgan Norge & Peter LaBarr, Virginia Commonwealth University, Richmond, VA 23284-2014. A k-king in a digraph D is a vertex that can reach every other vertex in D by a directed path of length at most k. We consider k-kings in the strong product of digraphs. In particular, we determine the relationship between k-kings in the strong product of digraphs and k-kings in the factors of the product. STOPPING POWER OF LEAD FOR ATMOSPHERIC MUONS. B. Murphy, C. Barazandeh & W. Majewski, Div. of Mathematics, Science & Engineering, NVCC. Our muon experiment is very distinct from most other experiments, as it has but a single detector instead of two in stereo. We with our single detector may identify stopped muons by their unique decay signature. In addition to measuring the muon lifetime, our detector also was permitted to measure the kinetic energy distribution of the muons (up to 140 MeV) as they come to be stopped in our detector, and the energy spectrum of the electrons created in the decay. In our presentation, we present them as graphs and interpret their shape. Our detector measures properties of not only stoppable low- energy muons with energy below 140 MeV but also of those muons passing through, with average energy as high as 4 GeV. An important property we discovered about them is their flux: the number of cosmic ray muons that hit the Earth’s surface per unit area per unit time. Muons make a major part of the natural background ionizing radiation, with the average value of about 10,000 muons per square meter per minute at the Earth’s surface. Because they are highly penetrating, reaching down through a kilometer or so of rock, we measured the attenuation of their flux by different layers of lead shielding, up to 25 cm thickness, of lead plates and bricks. Our results are expressed in terms of the lead stopping power – the energy a muon loses as it passes through 1 cm of lead. AIP Grant. MUON LIFETIME AND ITS STANDARD MODEL OF PARTICLE IMPLICATIONS. C. Barazandeh & W. Majewski, Div. of Mathematics, Science & Engineering, NVCC. The NOVA Chapter of the Society of Physics Students for years was using its Muon Detector to register the arrival and stopping of a muon as a voltage pulse as an investigation into different aspects of cosmic radiation. This may detect a second pulse after a time delay of about two microseconds, which occurs from the electron created in the decay. From the distribution of the individual muons’ lifetimes, we found the mean muon lifetime at rest, in agreement with the accepted data. From this measured lifetime, we calculated the strength of the Weak Nuclear Force – one of the four fundamental forces of nature. Using an SM relation, we found from our totally non-electric 2 Virginia Journal of Science, Vol. 68, No. 1, 2017 https://digitalcommons.odu.edu/vjs/vol68/iss1 experiment the value of the elementary electric charge e, and so the strength of the Electromagnetic Force. This turned out to be a number close (error 7.5%) to the value 1.6E -19 C which we see in our introductory physics textbooks! Finally, from our simple muon lifetime experiment, we found the vacuum expectation value v (error of 4% from the accepted value) of the recently discovered fundamental Higgs field. This field pervades all space and determines the masses of all known particles of the visible Universe, including the Higgs particle mass itself. This is an amazing result, showing how powerful and mathematically consistent is the Standard Model of Particles. Supported: EF Grant. PHYSICS OF PROPULSION & LEVITATION OF SELF-DRIVEN ELECTRODYNAMIC WHEELS. Jorge Del Carpio, Vincent Cordrey, Brady Murphy, Sepehr Samiei & Walerian Majewski, Department of Physics, Northern Virginia Community College, Annandale, VA. The NOVA Society of Physics Students chapter constructed an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube Nd magnets attached to the rim of the wheel with one inch wooden spacing blocks between magnets. The radial magnetic field on the outer rim of the wheel is maximized by arranging the magnets in a series of Halbach arrays. The wheel is being upgraded to 76 magnets directly in contact with one another, doubling both angular rotation of the magnetic field and the density of pole reversals. In this talk, we describe a method of mounting magnets on the wheel which overcomes the repulsion forces which can be up to 70 lbs. The rotation of a wheel with alternating magnetic poles along the rim creates a time-varying magnetic field in the vicinity of the rim. When a conductive metal track is immersed in this area of strong reversing magnetic flux, the time-dependent flux induces eddy currents in the track, generating both lift (levitation) and drag (propulsion) forces on the wheel’s magnets which can be measured with force gauges. Measurements of the low-density interim 38 magnet non-Halbach state of the upgraded wheel showed partial levitation can be achieved with non-Halbach systems. Electrodynamic wheels may have applications in magnetic levitation (Maglev) transportation, since multiple electrodynamic wheels could be used on a vehicle to produce lift, traction, and guidance forces via simple rotation of the wheels above conductive tracks. (Supported by: Society of Physics Students Sigma Pi Sigma research grants and The Virginia Academy of
Recommended publications
  • Reassessment of Historical Sections from the Paleogene Marine Margin of the Congo Basin Reveals an Almost Complete Absence of Danian Deposits
    Geoscience Frontiers 10 (2019) 1039e1063 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper Reassessment of historical sections from the Paleogene marine margin of the Congo Basin reveals an almost complete absence of Danian deposits Floréal Solé a,*, Corentin Noiret b, Delphine Desmares c, Sylvain Adnet d, Louis Taverne a, Thierry De Putter e, Florias Mees e, Johan Yans b, Thomas Steeman f, Stephen Louwye f, Annelise Folie g, Nancy J. Stevens h, Gregg F. Gunnell i,1, Daniel Baudet e, Nicole Kitambala Yaya j, Thierry Smith a a Royal Belgian Institute of Natural Sciences (RBINS), Operational Directorate Earth and History of Life, Rue Vautier 29, 1000, Brussels, Belgium b University of Namur (UNamur), Department of Geology, Rue de Bruxelles 61, 5000, Namur, Belgium c Sorbonne Université, UPMC Paris 06, UMR 7207 (CR2P), MNHN-UPMC e CNRS, 75005, Paris, France d UMR 5554 e Institut des Sciences de l’Evolution, Université Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France e Royal Museum for Central Africa (RMCA), Geodynamics and Mineral Resources, Leuvensesteenweg 13, 3080, Tervuren, Belgium f Ghent University (UGent), Department of Geology, Krijgslaan 281/S8, 9000, Ghent, Belgium g Royal Belgian Institute of Natural Sciences (RBINS), Heritage Scientific Survey, Rue Vautier 29, 1000, Brussels, Belgium h Ohio University, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall 228, Athens, OH, USA i Duke University Lemur Center, Division of Fossil Primates (DFP), 1013 Broad Street, Durham, NC 27705, USA j Centre de Recherches Géologiques et Minières (CRGM), 44, av.
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • A Diverse Snake Fauna from the Early Eocene of Vastan Lignite Mine, Gujarat, India
    A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India JEAN−CLAUDE RAGE, ANNELISE FOLIE, RAJENDRA S. RANA, HUKAM SINGH, KENNETH D. ROSE, and THIERRY SMITH Rage, J.−C., Folie, A., Rana, R.S., Singh, H., Rose, K.D., and Smith, T. 2008. A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica 53 (3): 391–403. The early Eocene (Ypresian) Cambay Formation of Vastan Lignite Mine in Gujarat, western India, has produced a di− verse assemblage of snakes including at least ten species that belong to the Madtsoiidae, Palaeophiidae (Palaeophis and Pterosphenus), Boidae, and several Caenophidia. Within the latter taxon, the Colubroidea are represented by Russel− lophis crassus sp. nov. (Russellophiidae) and by Procerophis sahnii gen. et sp. nov. Thaumastophis missiaeni gen. et sp. nov. is a caenophidian of uncertain family assignment. At least two other forms probably represent new genera and spe− cies, but they are not named; both appear to be related to the Caenophidia. The number of taxa that represent the Colubroidea or at least the Caenophidia, i.e., advanced snakes, is astonishing for the Eocene. This is consistent with the view that Asia played an important part in the early history of these taxa. The fossils come from marine and continental levels; however, no significant difference is evident between faunas from these levels. The fauna from Vastan Mine in− cludes highly aquatic, amphibious, and terrestrial snakes. All are found in the continental levels, including the aquatic palaeophiids, whereas the marine beds yielded only two taxa.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • Latest Early-Early Middle Eocene Deposits of Algeria
    MONOGRAPH Latest Early-early Middle Eocene deposits of Algeria (Glib Zegdou, HGL50), yield the richest and most diverse fauna of amphibians and squamate reptiles from the Palaeogene of Africa JEAN-CLAUDE RAGEa †, MOHAMMED ADACIb, MUSTAPHA BENSALAHb, MAHAMMED MAHBOUBIc, LAURENT MARIVAUXd, FATEH MEBROUKc,e & RODOLPHE TABUCEd* aCR2P, Sorbonne Universités, UMR 7207, CNRS, Muséum National d’Histoire Naturelle, Université Paris 6, CP 38, 57 rue Cuvier, 75231 Paris cedex 05, France bLaboratoire de Recherche n°25, Université de Tlemcen, BP. 119, Tlemcen 13000, Algeria cLaboratoire de Paléontologie, Stratigraphie et Paléoenvironnement, Université d’Oran 2, BP. 1524, El M’naouer, Oran 31000, Algeria dInstitut des Sciences de l’Evolution de Montpellier (ISE-M), UMR 5554 CNRS/UM/ IRD/EPHE, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5, France eDépartement des Sciences de la Terre et de l’Univers, Faculté des Sciences de la Nature et de la Vie, Université Mohamed Seddik Ben Yahia - Jijel, BP. 98 Cité Ouled Aïssa, 18000 Jijel, Algeria * Corresponding author: [email protected] Abstract: HGL50 is a latest Early-early Middle Eocene vertebrate-bearing locality located in Western Algeria. It has produced the richest and most diverse fauna of amphibians and squamate reptiles reported from the Palaeogene of Africa. Moreover, it is one of the rare faunas including amphibians and squamates known from the period of isolation of Africa. The assemblage comprises 17 to 20 taxa (one gymnophionan, one probable caudate, three to six anurans, seven ‘lizards’, and five snakes). Two new taxa were recovered: the anuran Rocekophryne ornata gen. et sp. nov. and the snake Afrotortrix draaensis gen.
    [Show full text]
  • Middle Eocene Vertebrate Fauna from the Aridal Formation, Sabkha of Gueran, Southwestern Morocco
    geodiversitas 2021 43 5 e of lif pal A eo – - e h g e r a p R e t e o d l o u g a l i s C - t – n a M e J e l m a i r o DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (Muséum national d’Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d’Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d’Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d’Histoire naturelle, Paris) Sevket Sen (Muséum national d’Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité) COUVERTURE / COVER : Réalisée à partir des Figures de l’article/Made from the Figures of the article. Geodiversitas est
    [Show full text]
  • G Iant Snakes
    Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Giant Giant Snakes A Natural History John C. Murphy & Tom Crutchfield Snakes, particularly venomous snakes and exceptionally large constricting snakes, have haunted the human brain for a millennium. They appear to be responsible for our excellent vision, as well as the John C. Murphy & Tom Crutchfield & Tom C. Murphy John anxiety we feel. Despite the dangers we faced in prehistory, snakes now hold clues to solving some of humankind’s most debilitating diseases. Pythons and boas are capable of eating prey that is equal to more than their body weight, and their adaptations for this are providing insight into diabetes. Fascination with snakes has also drawn many to keep them as pets, including the largest species. Their popularity in the pet trade has led to these large constrictors inhabiting southern Florida. This book explores what we know about the largest snakes, how they are kept in captivity, and how they have managed to traverse ocean barriers with our help. Copyrighted Material Some pages are omitted from this book preview. Copyrighted Material Some pages are omitted from this book preview. Giant Snakes A Natural History John C. Murphy & Tom Crutchfield Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Copyright © 2019 by John C. Murphy & Tom Cructhfield All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means including information storage and retrieval systems, without permission in writing from the publisher. Printed in the United States of America First Printing March 2019 ISBN 978-1-64516-232-2 Paperback ISBN 978-1-64516-233-9 Hardcover Published by: Book Services www.BookServices.us ii Copyrighted Material Some pages are omitted from this book preview.
    [Show full text]
  • Adaptation of the Vertebral Inner Structure to an Aquatic Life
    G Model PALEVO-1117; No. of Pages 17 ARTICLE IN PRESS C. R. Palevol xxx (2019) xxx–xxx Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) Adaptation of the vertebral inner structure to an aquatic life in snakes: Pachyophiid peculiarities in comparison to extant and extinct forms Adaptation de la structure interne vertébrale à la vie aquatique chez les serpents : particularités des achyophiides en comparaison des formes actuelles et éteintes a,∗ a a,b Alexandra Houssaye , Anthony Herrel , Renaud Boistel , c Jean-Claude Rage a UMR 7179 CNRS, Département “Adaptations du Vivant”, Muséum national d’histoire naturelle (MNHN), 57, rue Cuvier, CP 55, 75005 Paris, France b IPHEP-UMR CNRS 6046, UFR SFA, Université de Poitiers, 40, avenue du Recteur-Pineau, 86022 Poitiers, France c UMR 7207 CNRS, Sorbonne Université, Département “Origines et Évolution”, Muséum national d’histoire naturelle (MNHN), 57, rue Cuvier, CP 38, 75005 Paris, France a b s t r a c t a r t i c l e i n f o Article history: Bone microanatomy appears strongly linked with the ecology of organisms. In amniotes, Received 22 March 2019 bone mass increase is a microanatomical specialization often encountered in aquatic Accepted after revision 29 May 2019 taxa performing long dives at shallow depths. Although previous work highlighted the Available online xxx rather generalist inner structure of the vertebrae in snakes utilising different habitats, microanatomical specializations may be expected in aquatic snakes specialised for a sin- Handled by Michel Laurin gle environment. The present description of the vertebral microanatomy of various extinct aquatic snakes belonging to the Nigerophiidae, Palaeophiidae, and Russelophiidae enables Keywords: to widen the diversity of patterns of vertebral inner structure in aquatic snakes.
    [Show full text]
  • Snake Venoms and Envenomations
    SNAKE VENOMS AND ENVENOMATIONS Jean-Philippe Chippaux Translation by F. W. Huchzermeyer KRIEGER PUBLISHING COMPANY Malabar, Florida 2006 Original French Edition Venins des"pent et enuenimations 2002 Translated from the original French by F. W. Huchzermeyer Copyright © English Edition 2006 by IRD Editions. France Original English Edition 2006 Printed and Published by KRIEGER PUBLISHING COMPANY KRIEGER DRIVE MAlABAR. FLORIDA 32950 Allrights reserved. No part of this book may be reproduced in any form or by any means. electronic or mechanical. including information storate and retrieval systems without permission in writing from the publisher. No liabilityisassumed with respect to the useofthe inftrmation contained herein. Printed in the United States of America. Library of Congress Cataloging-in-Publication Data FROM A DECLARATION OF PRINCIPLES JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS: This publication is designed to provide accurqate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering legal, accounting. or other professional service. If legal advice or other expert assistance is required. the services of a competent professional person should be sought. Chippaux, Jean-Philippe. [Venins de serpent et envenirnations, English] Snake venoms and envenomations I Jean-Philippe Chippaux ; translation by F.W. Huchzermeyer. p. cm. Includes bibliographical references and index. ISBN 1-57524-272-9 (hbk. : a1k. paper) 1. Venom. 2. Snakes. 3. Toxins. I. TIde. QP235.C4555 2006 615.9'42---<ic22 2005044486 10 9 8 7 6 5 4 3 2 Contents Glossary v Preface vii Introduction ix PART I ZOOLOGY 1.
    [Show full text]
  • Post-Gondwana Africa and the Vertebrate History of the Angolan Atlantic Coast
    Memoirs of Museum Victoria 74: 343–362 (2016) Published 2016 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast LOUIS L. JACOBS1,*, MICHAEL J. POLCYN1, OCTÁVIO MATEUS2, ANNE S. SCHUlp3, ANTÓNIO OLÍmpIO GONÇALVES4 AND MARIA LUÍSA MORAIS4 1 Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States ([email protected]; [email protected]) 2 GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, and Museu da Lourinhã, Rua João Luis de Moura, 2530-157, Lourinhã, Portugal ([email protected]) 3 Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands; Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, The Netherlands; Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands ([email protected]) 4 Departamento de Geologia, Faculdade de Ciências, Universidade Agostinho Neto, Avenida 4 de Fevereiro 7, Luanda, Angola ([email protected]; [email protected]) * To whom correspondence should be addressed. E-mail: [email protected] Abstract Jacobs, L.L., Polcyn, M.J., Mateus, O., Schulp, A.S., Gonçalves, A.O. and Morais M.L. 2016. Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria 74: 343–362. The separation of Africa from South America and the growth of the South Atlantic are recorded in rocks exposed along the coast of Angola. Tectonic processes that led to the formation of Africa as a continent also controlled sedimentary basins that preserve fossils.
    [Show full text]
  • Windows Into Mississippi's Geologic Past
    WINDOWS INTO MISSISSIPPI'S GEOLOGIC PAST David T. Dockery III Illustrations by Katie Lightsey CIRCULAR 6 MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL OUALITY OFFICE OF GEOLOGY S. Cragin Knox Director Jackson, Mississippi 1997 WINDOWS INTO MISSISSIPPI'S GEOLOGIC PAST David T. Dockery III 5^: Illustrations by Katie Lightsey CIRCULAR 6 MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY OFFICE OF GEOLOGY S. Cragin Knox Director Jackson, Mississippi 1997 Cover: A look into the past with something looking back at us. A Triassic dinosaur peering through foliage at Lake, Mississippi, 220 million years ago as drawn by Katie Lightsey. Illustrations: Most of the illustrations in this book are by Katie Lightsey, a student at St. Andrew's Episcopal School, Ridgeland, Mississippi. The pictures were drawn while she was in the 5th and 6th grades under the supervision and encour agement of her science teacher John D. Davis. Suggested cataloging by the Office of Geology: Dockery, David T. Ill Windows into Mississippi's geologic past Jackson, MS: Mississippi Department of Environmental Quality, Office of Geology, 1997 (Circular: 6) 1. Geology—Mississippi. 2. Earth science education. QE129 MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY COMMISSIONERS Alvis Hunt, Chairman Jackson Bob Hutson Brandon Henry Weiss, Vice Chairman Columbus Henry F. Laird, Jr. Gulfport R. B. (Dick) Flowers Tunica C. Gale Singley Pass Christian Thomas L. Goldman Meridian EXECUTIVE DIRECTOR J. I. Palmer, Jr. OFFICE OF GEOLOGY Administration Energy and Coastal Geology S. Cragin Knox Director and State Geologist Jack S. Moody Division Director Michael B. E. Bograd Assistant Director Stephen D. Champlin Geologist Jean Inman Business Manager Rick L. Ericksen Geologist Margaret F.
    [Show full text]
  • Paleurafrica Origin of the European Modern Faunas Through Palaeogene Central Africa Collections
    PalEurAfrica Origin of the European modern faunas through Palaeogene Central Africa collections BR/121/A3/PalEurAfrica Thierry SMITH (Royal Belgian Institute of Natural Sciences, Belgium) - Thierry DE PUTTER (Royal Museum for Central Africa, Belgium) - Stephen LOUWYE (Ghent University, Ghent, Belgium) - Johan YANS (Namur University, Namur, Belgium) - Nancy STEVENS (Ohio University, Athens, USA) - Annelise FOLIE (Royal Belgian Institute of Natural Sciences, Belgium) Axis 3: Cultural, historical and scientific heritage 11 Project BR/121/A3/PalEurAfrica - Origin of the European modern faunas through Palaeogene Central Africa collections NETWORK PROJECT PALEURAFRICA Origin of the European modern faunas through Palaeogene Central Africa collections Contract - BR/121/A3/PalEurAfrica FINAL REPORT PROMOTORS: Thierry SMITH (Royal Belgian Institute of Natural Sciences, Belgium) Thierry DE PUTTER (Royal Museum for Central Africa, Belgium) Stephen LOUWYE (Ghent University, Ghent, Belgium) Johan YANS (Namur University, Namur, Belgium) Gregg F. GUNNELL† (Duke University, Durham, USA) Nancy STEVENS (Ohio University, Athens, USA) AUTHORS: Thierry SMITH (RBINS), Thierry DE PUTTER (RMCA), Stephen LOUWYE (UGhent), Johan YANS (UNamur), Nancy STEVENS (Ohio Univ.), Annelise FOLIE (RBINS) BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 2 Project BR/121/A3/PalEurAfrica - Origin of the European modern faunas through Palaeogene Central Africa collections Published in 2021 by the Belgian Science Policy Office WTCIII Simon Bolivarlaan 30 Boulevard Simon Bolivar B-1000 Brussels Belgium Tel: +32 (0)2 238 34 11 - Fax: +32 (0)2 230 59 12 http://www.belspo.be http://www.belspo.be/brain-be Contact person: Maaike VANCAUWENBERGHE Tel: +32 (0)2 238 36 78 Neither the Belgian Science Policy Office nor any person acting on behalf of the Belgian Science Policy Office is responsible for the use which might be made of the following information.
    [Show full text]