Arxiv:1908.05395V1 [Math.MG] 15 Aug 2019
Draft version August 16, 2019 Typeset using LATEX default style in AASTeX62 Envelope Polyhedra J. Richard Gott, III1 1Department of Astrophysical Sciences Princeton University Princeton, NJ 08544, USA ABSTRACT This paper presents an additional class of regular polyhedra|envelope polyhedra|made of regular polygons, where the arrangement of polygons (creating a single surface) around each vertex is identical; but dihedral angles between faces need not be identical, and some of the dihedral angles are 0◦ (i.e., some polygons are placed back to back). For example, squares{6 around a point f4,6g is produced by deleting the triangles from the rhombicuboctahedron, creating a hollow polyhedron of genus 7 with triangular holes connecting 18 interior and 18 exterior square faces. An empty cube missing its top and bottom faces becomes an envelope polyhedron, squares{4 around a point f4,4g with a toroidal topology. This definition leads to many interesting finite and infinite multiply connected regular polygon networks, including one infinite network with squares{14 around a point f4,14g and another with triangles{18 around a point f3,18g. These are introduced just over 50 years after my related paper on infinite spongelike pseudopolyhedra in American Mathematical Monthly (Gott, 1967). Keywords: geometry, polyhedra 1. INTRODUCTION|PSEUDOPOLYHEDRA My work on envelope polyhedra grows directly out of my earlier work on pseudopolyhedra, which I will describe first. This was my high school science fair project which won 1st Place in mathematics at the (May, 1965) National Science Fair International (now the Intel International Science and Engineering Fair). A picture of this project appears in my book The Cosmic Web (2016), along with a description.
[Show full text]