Organotitanium Chemistry (Merchant, 2017)
Total Page:16
File Type:pdf, Size:1020Kb
Baran Group Meeting Rohan Merchant Organotitanium Chemistry 08/04/2017 Ziegler Natta Catalysts First row transition metal Electron Configuration: [Ar]3d24s2 Common Oxidation States: +2, +3, +4 Highly oxophilic Highly resistant to corrosion Originally Ti-based catalysts used to prepare stereoregular polymers from propylene Highest strength-to-weight ratio of any metal One of the most important use of organotitanium complexes In unalloyed condition, titanium is as strong as Karl Ziegler and Giulio Natta awarded the Nobel Prize in chemistry in 1963 some steels Today, this class of catalysts has been expanded to include: 1. Solid supported Ti-based catalysts, often used in conjunction with organoaluminum cocatalysts (Kroll Process) 2. Metallocene catalysts, often of Ti, Zr, or Hf, and typically in conjuntion with MAO 250,000 tons per year of titanium made from TiCl4 3. Post-metallocene catalysts, various transition metals used with multidentate N and O based ligands, often use MAO Fun Facts about Titanium Worldwide production of polymers using these catalysts in 2010 >100 million tons British pastor William Gregor discovered titanium in 1791 This topic has not been covered in the interest of time. Named by German chemistry Martin Heinrich Klaproth after Titans of Greek mythology in 1795 See: "Polymer Chemistry" GM by D. Holte (2011) 9th most abundant element in the Earth's crust (0.63% of Earth's crust) 7th most abundant metal Common titanium complexes used in synthesis Pure sample isolated in 1910 by Matthew A. Hunter (Hunter Process) i 250,000 tons of titanium produced per year using Kroll process (William J. Kroll ca.1950s) Cl O Pr Ti Cl Ti Ti i 6700,000 tons of rutile and ilmenite (primary ores) produced per year Cl Cl iPrO O Pr Cl Top producer: Australia, South Africa, Canada, India, Mozambique Cl OiPr i titanocene dichloride Cost: $1/100g titanium tetrachloride (TiCl4) titanium tetraisopropoxide(Ti(OPr)4) (Cp TiCl ) Boeing 737 Dreamliner is made of 15% titanium colorless liquid colorless liquid 2 2 Aldrich (1.0 M DCM soln): $0.7/mL Aldrich: $0.09/mL bright red solid Most common use at TiO2 in paints and sunscreen Aldrich: $2.6/g Used to make surgical implants Outline of the group meeting: Phase II trial for human Titanium oxidises immediately on exposure to air forming passive oxide coating Pages 2–6 – transformations enabled by Ti(II)/Ti(IV) chemistry breast cancer Pages 6–10 – transformations enabled by Ti(III)/Ti(IV) chemistry Pages 10–12 – titanium carbene complexes Page 12 – organotitaniums in Ni– and Pd– cross–coupling Page 12 – miscellaneous Disclaimer: The primary focus of this group meeting is on the use of organotitanium complexes in chemical synthesis. In the interest of time, transformations such as Sharpless Asymetric Epoxidation, Diels–Alder, Mukaiyama Aldol and others where titanamium complexes behave primarily as Lewis acids have not been included. Baran Group Meeting Rohan Merchant Organotitanium Chemistry 08/04/2017 2 i Generation of divalent titanium complexes First isolated organotitanium(II) Generation of (η -alkyne)Ti(O Pr)2 complex and its reactions TMS H TMS H Cp2TiCl2 + Na or Mg "TiCp2" PhCHO (1.1 eq.) I2 (2 eq.) Cp2TiCl2 + CO + reductant Cp2Ti(CO)2 (C5Me5)2Ti JACS 1999, 121, 2931 C6H13 C6H13 I Cp TiCl + PMe + Mg Cp Ti(PMe ) OH 74% [97:3] 2 2 3 2 3 2 First isolable alkenetitanium "hydrotitanation" complex 84% [98:2] (ArO)2TiCl2 + Na(Hg) "Ti(OAr)2" Cp2TiCl2 + 2 EtMgBr TiCp2 C–C bond length [X-ray]: 1.438(5) A Ti(OiPr)4 (1.25 eq.), s-BuOH TMS Ethylene C–C bond length: 1.337(2) A iPrMgCl (2.5 eq.), TMS (1.1 eq.), TMS H TMS TMS –50 ºC, 2h i –50 ºC, 1h JACS 1983, 105, 1136 Ti(O Pr)2 Cp TiCl + + Mg TiCp 2 2 2 C6H13 C6H13 TiX3 For all references: C6H13 inverse selectivity [97:3 - 98:2] TMS TMS Sato, F. and Urabe, H. (2002) (1 eq.) observed Me Titanium(II) Alkoxides in Organic i i Synthesis, in Titanium and Zirconium in other proton sources TMS H Ti(OPr)4 + 2 PrMgCl Ti(OiPr) afforded less TMS H cat. Cu 2 Organic Synthesis (ed I.Marek) O Tet. Lett. 1995, 36, 3203 Chem. Rev. 2000, 100, 2835 satisfactory results Br C6H13 82% C6H13 tBu O R R [>99:1] O H R R O +L O LnTi Ln–1Ti Ln–1Ti LnTi – R Me O tBu (1.1 eq.) 53% –L β–H elimination R R R [98:2] reductive elimination thermally unstable dialkyltitanium Cyclotrimerization t t Ti(OiPr)4 (1.25 eq.), CO2 Bu CO2 Bu metallocyclopropane more accurate presentation compared to alkene π-complex R iPrMgCl (2.5 eq.), tBuO2C C6H13 C6H13 –50 ºC, 5h i (2nd) JACS 1985, 107, 5027 LnTi Ti(O Pr)2 Ti(OiPr)2 Et2O, C H C6H13 –50 ºC, 3 h General entry into preparation and reactions of Ti(II) complexes (Tet. Lett. 1995, 36, 3203) 6 13 C6H13 (1st) Me SO2Tol iPrMgCl, 1. El1 rt, 3 h i R1 R1 El1 "Metalative Reppe Reaction" (3rd) 2 1 Ti(O Pr)2 2. El2 t R R i CO2 Bu t Ti(OiPr) Ti(O Pr)2 JACS 2001, 123, 7925 CO2 Bu 4 Et O, Me C H I 2 R2 [one-pot] R2 El2 6 13 C H TiX –78 ºC, 2.5 h i I2 6 13 3 Ti(O Pr)2 Me highly chemo– and (Practical method) 1,2-bisdianion di–, tri–, or tetra 56% equivalents regioselective substituted alkenes cyclotrimerization Reactions often more sluggish with the Cp Ti(alkyne) complex C6H13 2 C6H13 single compound Regioselectivity Chart <2 7 86 90 98 49% PhCHO TMS Bu3Sn Ph TMS tBuO C tBuO C Tet. Lett. 1995, 36, 3203 2 2 Synlett 1997, 821 Ti(OiPr) Ti(OiPr) Ti(OiPr) Ti(OiPr) i i C H 2 2 2 2 Ti(O Pr)2 Ti(O Pr)2 Tet. Lett. 1996, 37, 7275 6 13 O C H Me C H 6 13 6 13 C6H13 TMS Tet. Lett. 1997, 38, 4619 93 exclusive 14 >98 ACIE 2000, 39, 3290 O EtO OEt 10 2 C H + + + + + + 6 13 E = PhCHO E = PhCHO E = c-C6H11CHO E = PhCHO E = EtCHO E = PhCHO Ph Baran Group Meeting Rohan Merchant Organotitanium Chemistry 08/04/2017 Reactions with Imines TMS complete γ-selectivity n Ti(OiPr) , Pr R 4 (PrO)2Ti R C6H13 TMS I 2 iPrMgCl R X E+ NHBn (PrO)2Ti R Tet. Lett. 1995, 36, 5913 nPr X X (0.7 eq.) E + C6H13 (1.0 eq.) H 83% I2 β–elimination + NBn NHBn X = Cl, Br, OAc, OCO2Et, E = aldehydes, ketones, 76% OP(O)(OEt)2, OTs, OPh JACS 1995, 117 , 3881 imines, NCS, I2 R (0.8 eq.) TMS Ti(OiPr) TMS 2 Application to an "allyl protecting group" i –50 ºC, 1 h NBn Ti(O Pr)2 Ti(OiPr)2 R = Et or nPr C6H13 Ti(OiPr)4, C6H13 CO2Et R CO2Et complete R 2 iPrMgCl O OEt H2O CO2 (1 atm), R regioselectivity CO Et >90% CO Et CO (1 atm), 74% rt, 24 h O 2 2 67% rt, 24 h TMS R = Bn, C H , I-(CH ) -, R CO2Et addition into aldehydes or mechanism? 9 19 2 4 JOC 1996, 61, 2266 ketones gives oxatitanacycles NBn CH2=C(Me)CH2CH2- TMS C H Tet. Lett. 1996, 37, 7787 NBn 6 13 Et R1 1 1 C6H13 Tet. Lett. 1997, 38, 6849 R Ti(OiPr)4, (PrO) Ti (PrO)2Ti R 2 2 + Et R2 2 iPrMgCl R X E R2 Reactions with Nitriles 1 R X 2 1 1 R1 X R E R Ti(OiPr) , R H R3 4 2 X = Cl, Br, OAc, OCO Et, + R SO Tol R2 2 E = aldehydes, ketones, iPrMgBr (2 eq.) 2 OP(O)(OEt) , OMs + 2 imines, NCS, I2 Ti(OiPr)2 (0.8 eq.) Ti Tet. Lett. 1995, 36, 3207 N 2 N R3 R3 N SO Tol Stereospecific preparation of allenyl alcohols R (0.8 eq.) 2 Me JACS 2000, 122, 7138 Me JACS 2005, 127, 7474 N N Ph 4 TMS MeO R CHO 1 i R Ti(OiPr)4, Ti(O Pr)2 HN * P 2 iPrMgCl Et h H+(D+) R2 * TMS * * Et TMS Et2O:THF E+ Me (1:1) Me R R1 R1 3 El 2 R R1 R N SO2Tol Me R2 2 TiX3 E or Z enynes react selectively with aldeydes, ketones or E+ = H+; 67%, 95:5 dr H(D) + 3 imines in regioselective and stereospecific way E = Me2CO; 45%, 93:7 dr R N CHO R3 R4 R3 O O H R1 Reaction of haloalkyne R CHO Constructing cyclobutenes R2 Synthesis 2000, 917 HO nBu nBuTi(OiPr) , Me Me R = I 85% 4 nBu OCO Et 2 iPrMgCl 2 nBu 3 i Ti(OiPr) R N TiX3 Me Me OCO Et 87% Ti(O Pr)2 3 2 –50 ºC Cl Ti(OiPr) , nBu El+ 4 Ti(OiPr) nBu 2 iPrMgCl 2 Cl(PrOi)2Ti R JACS 2001, 123, 7937 –50 ºC to rt –78 ºC Cl R –50 ºC, R1 R 2h i E Yield n nBu Ti(O Pr) + D D nBu Bu nBu R2 2 D H 47 E+ E Ti(OR)3 Ti(OiPr) , D 46 (97%D) Synlett 1999, 1939 4 Cl(PrO)2Ti R D R PhCH(OH) 51 (1.5:1 dr) R3 N El 2 iPrMgCl R = C8H17, 93% (>95% d3) Baran Group Meeting Rohan Merchant Organotitaniums in synthesis 08/04/2017 Kulinkovich Reaction Asymmetric Kulinkovich (JACS 1994, 116 , 9345) Ar Ar H 1.