Insects Injurious to the Onion Crop

Total Page:16

File Type:pdf, Size:1020Kb

Insects Injurious to the Onion Crop INSECTS INJURIOUS TO THE ONION CROP. By F. H. CHITTENDEN, SC. D., Bureau of Entomology, INTRODUCTION. The onion and other bulb crops of similar structure are very seriously affected by insects when growing in the field. About six species of plants are included in this group—^the common onion, Welsh onion, leek, garlic, chives or sives, and shallot. Of these only the common onion is grown to any extent in North America. Compara- tively few insects appear to be especially attached to onions, but of these several are very important pests. All are of foreign origin. The list includes forms such as the onion thrips, the root maggots, and such general pests as cutworms, army worms, wireworms, white grubs, and a few other species such as the strawberry thrips. Those listed as general pests are all more or less onmivorous. Doubt- less were it not for the pungent odor of the onion and its kind it would be resorted to for food by many insects other than those which have been mentioned. The most important of all of these insects is the onion thrips (Thrips tahaci Lind.). A census of the years 1908, 1909, and 1910 shows a steady increase in acreage devoted to onion growing in different regions. In one cen- tered about Stark County, Ind., the increase has been great. In 1910, 1,500 acres were planted to this crop, and in spite of serious injury sustained from the thrips and some other insects the growers realized such a high percentage of profit that the following year the acreage was doubled. As an example of the profit from onion growing in this region it was claimed by one prominent grower who farms in Indiana as well as in Illinois that his income on onions was 15 times as great as on wheat and com. The damage due to the onion thrips in the Stark County (Ind.) region was estimated at $54,000 in 1910, and with double the acreage for 1911 this would have caused a loss of $108,000 for this region alone. Fortunately, however, this loss was not realized, since the insects were not so numerous as in the previous year. THE ONION THRIPS. {Thrips talaci Lind.) Our most serious onion pest is of almost microscopic dimensions, generally known as the onion thrips or " thrip." It is also called the ol9 320 YEABBOOK OF THE DEPABTMENT OF AGBICULTURE. " onion louse." It causes injury to the onion crop practically through- out the country, producing a condition somewhat generally known as " white blast," " white blight," and '' silver top." It is also the cause of " scullions," or " thick-neck"—^undeveloped and unmarketable bulbs. In aggravated cases whole fields, and sometimes large areas, are ren- dered unproductive, and in extreme cases are completely destroyed. The whitened appearance of the onion leaves and tops is due to the ex- traction of the vital juice, first by rasping, followed by suction. In a short time after attack begins the leaves become peculiarly curled, crinkled, and twisted, and finally die down prematurely. (See Pis. XXIV and XXV, showing the difference between normal and thrips- infested onions.) The importance which this thrips has assumed since about 1904 is such that a considerable proportion of those who have been en- gaged in investigation of truck-crop insects in the Bureau of Ento- mology have devoted more or less time to its investigation and in the practical application of remedies. This work has to date cov- FiG. 1.—The onion thrips (Thrips tobad): a. Adult; h, enlarged antenna of same; Cj small nymph ; d, older nymph. All enlarged. (Reengraved after Howard.) ered five years. The principal work in the field has been done by Mr. H. M. Eussell in Florida, by Messrs. D. K. McMillan and H. O. Marsh in Texas, by Mr. Marsh in Colorado, and by Mr. M. M. High in Texas and Indiana. DESCEIPTION. The general appearance of both sexes of this thrips, which are very similar, is shown in figure 1, a, highly magnified. The adult insect is pale yellow in color, with the thorax somewhat darker. The wings are still paler yellow, with dusky fringes and bristles. A full- grown nymph or larva is shown at d^ and a younger one at o. The egg is bean-shaped, semitransparent, and is deposited by the female just beneath the epidermis of a leaf. HISTORY AND HABITS. Onion thrips may now be found in practically all cultivated fields in the United States, as well as in many uncultivated areas where INSECTS INJURIOUS TO THE ONION CROP. 321 suitable food plants for its sustenance are growing, so that there is always danger of infestation to onions and other susceptible crops, whether grown in new or in old land. Observations tend to demonstrate that in some localities, at least, it makes little difference as to the previous crop. Nevertheless there can be no doubt that, taking the country at large, there is always grave danger of infestation to onion fields where crop rotation is not practiced and where onions follow onions or other susceptible plants, and where culls and other refuse from onion beds are allowed to accumulate in and near fields to be replanted in onions. There is little evidence available that the quality of the soil has in itself much bearing on the degree of infestation. Owing to the minute size of thrips, it is a matter of some diffi- culty to investigate their full life histories, and it is particularly difficult to generalize without knowing more of the habits of the important groups. The following, however, is approximate: The parent thrips is usually found on the lower side of leaves or embedded in flowers. The female, by means of a tiny saw-like organ with which she is provided near the end of the abdomen, cuts a slit, in a leaf or stem usually^ and in this deposits an egg^ generally in- serting it under the epidermis concealed from view. Here the egg hatches in a few days, and the young thrips works its WSLJ out and begins to feed. The thrips larvae suck the juices of the plants in the same manner as do the adults, and, since they feed continuously, their growth is rapid. In one or two weeks, depending upon the tempera- ture, they cease feeding and seek a suitable location in which to transform to the final stage of the nymph and from that stage to the adult. The life cycle from the time of deposition of the eggs until the maturing of the adult has been found to require, under the most favorable conditions—that is, in a warm temperature—about three weeks. Half a dozen or more generations might thus be produced during a season. It should be added in regard to the life history of this thrips that infestation may be complicated by the attacks of other insects, such as the red spider, when growing in greenhouses (see PL XXVI, middle figure) or by cutworms and wireworms in the field (see PI. XXXII). FOOD PLANTS. Besides onions and related plants, this thrips attacks cabbage, cauliflower, parsley, cucumber, melon, pumpkin, squash, kale, turnip, tomato, seed beets, blackberry, and strawberry. Of ornamental plants it does much injury to carnations and roses and more or less injury to aster, blanket flower {Gaillardia)^ honey- suckle {Lonicera)^ daisies, nasturtium, narcissus, mignonette, candy- 73029°—YBK 1912 ^21 322 YEAEBOOK OF THE DEPABTMENT OF AGEICULTUKB tuft {Iheria)^ four-o'clock (Mirahilis), and cone-flower or golden- glow {Eiidheckia). Very serious injury is frequently committed to cucumbers and carnations in greenhouses, the dam- age sometimes amount- ing to the destruction of entire plantings. Among field and forage crops, tobacco has been injured by this thrips in Europe, but not in America, so far as we know, and there are rec- ords of occurrences on FIG. 2.—The spotted ladybird (Megilla maculata) : a Larva ; hj empty pupal skin ; c^ beetle with en timothy and other grasses, larged antenna above. All enlarged. (Author's clover and sweet clover, illustration.) and wheat. It also breeds on a great variety of weeds, a list of which would fill considerable space. NATURAL CONTROL. It is well known that rain, and especially sudden and driving storms, frequently destroys great numbers of this insect. This has FIG. 3.—Thripoctenus russclU: Adult. Greatly enlarged, (From Russell.) come under the notice of practically everyone who has studied thrips. Among other methods of natural control are ladybirds of several species, the spotted ladybird {Megilla maculata De G.) (fig. 2) lead- ing in this respect. About second in importance is the so-called insidious flower bug {Triphleps insidiosus Say). There is also a INSECTS INJURIOUS TO THE ONION CKOP. 323 natural parasite which has only recently been discovered by Mr. Eu&° sell, of this bureau. It is known as Thripoctenus russelli Crawf. (See fig. 3.) A long list of other insect enemies might be added. TREATMENT. The methods of treating onion fields affected by the onion thrips are complicated. Kerosene emulsion, whale-oil or fish-oil soaps, and tobacco or nicotine extracts are good remedies. Because of their minute size thrips are diíBcult to reach except in their younger stages; hence remedial measures should be undertaken early in the season to act as preventives rather than cures. The habit of the thrips of concealing themselves in ñowers and other parts of plants, such as the sheaths of onion leaves, increases this difficulty. Too great stress can not be laid on the value of clean methods of field management, as the onion thrips feeds on nearly all vegetables and many flowering plants and is a pest in greenhouses.
Recommended publications
  • Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve
    SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Alberta Species at Risk Report No. 159 SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Doug Macaulay Alberta Species at Risk Report No.159 Project Partners: i ISBN 978-1-4601-3449-8 ISSN 1496-7146 Photo: Doug Macaulay of Pale Yellow Dune Moth ( Copablepharon grandis ) For copies of this report, visit our website at: http://www.aep.gov.ab.ca/fw/speciesatrisk/index.html This publication may be cited as: Macaulay, A. D. 2016. Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve. Alberta Species at Risk Report No.159. Alberta Environment and Parks, Edmonton, AB. 31 pp. ii DISCLAIMER The views and opinions expressed are those of the authors and do not necessarily represent the policies of the Department or the Alberta Government. iii Table of Contents ACKNOWLEDGEMENTS ............................................................................................... vi EXECUTIVE SUMMARY ............................................................................................... vi 1.0 Introduction ................................................................................................................... 1 2.0 STUDY AREA ............................................................................................................. 2 3.0 METHODS ................................................................................................................... 6 4.0 RESULTS ....................................................................................................................
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Tobacco Cutworms
    TECHNICAL BULLETIN NO. 88 MAY, 1929 TOBACCO CUTWORMS BY S. E. CRUMB Entomologist, Division of Truck-Crop Insects Bureau of Entomology LIBRARY! RECEIVED \ • AUG3 0 1929 •! UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. 0. S. «OVEllliMElIT PI(IMT1N6 OFPlCBt Itt» TECHNICAL BULLETIN NO. 88 MAY, 1929 UNITED STATES DEPARTMENT OF AGRICULTURE • WASHINGTON, D. C TOBACCO CUTWORMS By S'. E. CRUMB Entomologist, Division of Truck-Crop Insects, Bureau of Entomology ^ CONTENTS Page Page -General consideration of tobacco cut- Consideration of the species 52 worms 1 The Feltia group __. 52 Distribution 3 The Euxoa group 86 Coloration of larvae 6 Genus Polia 115 Anatomy of larvae 7 The C-nigrum group 132 Outline for description of a cut- Genus Prodenia 142 worm 26 Remedial control of cutworms 156 Key to the cutworms which at- Poisons applied to plants 156 tack tobacco 26 Poisoned baits 158 Eggs and first-instar larvae 29 Other control methods 171 Pupae of tobacco cutworms 31 Literature cited 176 Breeding methods 33 Seasonal history 37 Natural control of cutworms 38 GENERAL CONSIDERATION OF TOBACCO CUTWORMS Tobacco is one of those crops, grown in plant beds and trans- planted to the open field, which are especially vulnerable to cut- worm attack.» Agricultural practice has accentuated its liability to injury by supplying conditions in the preceding crop (clover, grass, or weeds) which favor the multiplication of cutworms. With some types of tobacco it is desirable that all of the plants in a field ripen at about the same time. In such cases cutworm damage at trans- plajiting time may be unusually important.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • Testing a Popular Indicator Taxon at Local Scales
    Biological Conservation 103 (2002) 361–370 www.elsevier.com/locate/biocon Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales Taylor H. Ricketts*, Gretchen C. Daily, Paul R. Ehrlich Department of Biological Sciences, Gilbert Hall, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA Received 23 July 2000; received in revised form 2 May 2001; accepted 10 June 2001 Abstract Indicator taxa are often proposed as efficient ways of identifying conservation priorities, but the correlation between putative indicators and other taxa has not been adequately tested. We examined whether a popular indicator taxon, the butterflies, could provide a useful surrogate measure of diversity in a closely related but relatively poorly known group, the moths, at a local scale relevant to many conservation decisions (100–101 km2). We sampled butterflies and moths at 19 sites representing the three major terrestrial habitats in sub-alpine Colorado: meadows, aspen forests, and conifer forests. We found no correlation between moth and butterfly diversity across the 19 sites, using any of five different diversity measures. Correlations across only meadow sites (to test for correlation within a single, species-rich habitat) were also not significant. Butterflies were restricted largely to meadows, where their host plants occur and thermal environment is favorable. In contrast, all three habitats contained substantial moth diversity, and several moth species were restricted to each habitat. These findings suggest that (1) butterflies are unlikely to be useful indica- tors of moth diversity at a local scale; (2) phylogenetic relatedness is not a reliable criterion for selecting appropriate indicator taxa; and (3) a habitat-based approach would more effectively conserve moth diversity in this landscape and may be preferable in many situations where indicator taxa relationships are untested.
    [Show full text]
  • Negative Per Capita Effects of Two Invasive Plants, Lythrum Salicaria and Phalaris Arundinacea, Volume 99 on the Moth Diversity of Wetland Communities 229 Issue 3 L.L
    Online submission at: www.editorialmanager.com/ber Bulletin of Entomological Volume 99 Issue 3 Research June 2009 Bulletin of Research Papers Bulletin of K. Kishimoto-Yamada, T. Itioka, S. Sakai, K. Momose, T. Nagamitsu, H. Kaliang, P. Meleng, L. Chong, A.A. Hamid Karim, S. Yamane, M. Kato, C.A.M. Reid, T. Nakashizuka and T. Inoue Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual Entomological Research environmental changes in a Bornean rainforest 217 Entomological S.S. Schooler, P.B. McEvoy, P. Hammond and E.M. Coombs Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, Volume 99 on the moth diversity of wetland communities 229 Issue 3 L.L. Stelinski and L.J. Gut June 2009 Delayed mating in tortricid leafroller species: simultaneously aging both sexes prior to mating Research is more detrimental to female reproductive potential than aging either sex alone 245 Z. Lei, T.-X. Liu and S.M. Greenberg Feeding, oviposition and survival of Liriomyza trifolii (Diptera: Agromyzidae) on Bt and non-Bt cottons 253 99 Issue 3 June 2009 Volume S.J. Castle, N. Prabhaker, T.J. Henneberry and N.C. Toscano Host plant influence on susceptibility of Bemisia tabaci (Hemiptera: Aleyrodidae) to insecticides 263 M. Jonsson, S.D. Wratten, K.A. Robinson and S.A. Sam The impact of floral resources and omnivory on a four trophic level food web 275 R. Kahuthia-Gathu, B. Löhr, H.M. Poehling and P.K. Mbugua Diversity, distribution and role of wild crucifers in major cabbage and kale growing areas of Kenya 287 J.
    [Show full text]
  • An Annotated Checklist of the Lepidoptera of the Beaver Island Archipelago, Lake Michigan
    The Great Lakes Entomologist Volume 24 Number 2 - Summer 1991 Number 2 - Summer Article 5 1991 June 1991 An Annotated Checklist of the Lepidoptera of the Beaver Island Archipelago, Lake Michigan. Dennis Profant Central Michigan University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Profant, Dennis 1991. "An Annotated Checklist of the Lepidoptera of the Beaver Island Archipelago, Lake Michigan.," The Great Lakes Entomologist, vol 24 (2) Available at: https://scholar.valpo.edu/tgle/vol24/iss2/5 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Profant: An Annotated Checklist of the Lepidoptera of the Beaver Island Ar 1991 THE GREAT LAKES ENTOMOLOGIST 85 AN ANNOTATED CHECKLIST OF THE LEPIDOPTERA OF THE BEAVER ISLAND ARCHIPELAGO, LAKE MICHIGAN. Dennis Profantl ABSTRACT A survey of Lepidoptera was conducted in 1987 and 1988 on Beaver Island, Lake Michigan. When combined with a 1930 survey of the Beaver Island Archipelago, 757 species from 41 families have now been recorded from these islands. Only one study has been published on the Lepidoptera of Beaver Island and the surrounding islands of Garden, High, Hog, Whiskey, Squaw, Trout, Gull, and Hat (Moore 1930). The present study has produced a more complete inventory of lepi­ dopteran species on Beaver Island. Collecting was done in a variety of habitats using several different light sources.
    [Show full text]
  • The Cutworm Moths of Ontario and Quebec
    The Cutworm Moths of Ontario and Quebec Eric W. Rockburne and J. Donald Lafontaine Biosystematics Research Institute Ottawa, Ontario Photographs by Thomas H. Stovell Research Branch Canada Department of Agriculture Publication 1593 1976 © Minister of Supply and Services Canada 1976 Available by mail from Printing and Publishing Supply and Services Canada Ottawa, Canada K 1A 089 or through your bookseller. Catalogue No. A43-1593/1976 Price: Canada: $ 8.50 ISBN 0-660-00514-X Other countries: $10.20 Price subject to change without notice. 01 A05-6-38481 The Cutworm Moths of Ontario and Quebec INTRODUCTION The cutworm, or owlet, moths constitute a family belonging to the order Lepidoptera. This order consists of all the moths and butterflies. Cutworm moths are common throughout the world. In Canada and the United States over three thousand species are represented, from the Arctic tundra to the arid deserts of southwestern United States. Many species are found in eastern North America, but the family is best represented in the mountains and on the plateaus of western North America. CLASSIFICATION AND NOMENCLATURE In zoology, classification is the systematic arrangement of animals into related groups and categories, and nomenclature is the system of names given to these groups. The cutworm moths are insects that belong in the class Insecta. Insecta is divided into several orders: Diptera, the true flies: Hymenoptera. the wasps, bees, and ants: Coleoptera. the beetles, and so on. The order Lepidoptera includes all the moths and butterflies. Each order is divided into a number of families, and the Noctuidae family, which includes all the cutworm moths, is a family of the Lepidoptera.
    [Show full text]
  • 2002 D Contents 10\ ~1/' ------'------~~
    NSECTS THE NEWSJOURNALOF THE TORONTO ENTOMOLOGISTS' ASSOCIATION VOLUME 7, NUMBER2 JANUARY2002 D Contents 10\ ~1/' ----------'-----------------~~ From the Editor's Desk 25 Announcements 25 Upcoming Meetings 26 Meeting Reports 28 Field TripReports 29 Tiger Beetles of the Bruce Peninsula by Steve Marshall ; 30 Cicindela hirticollis • new to Pelee Island by Mike Gurr 34 Results of the 2001 Pelee Island Butterfly and Odonate Counts by Bob Bowles 34 Butterflies in the Publication "Wild Species 2000" • worse than it looks by Paul Catling : 36 Results of the 2001 Carden and Orillia ButterflyC()untsby Bob Bowles 38 Results of the 2001 Carden Odonate Count by Bob Bowles 39 Sixth Annual Algonquin Odonate Count by Colm D. Jones 40 The Insect Net 42 The Bookworm 43 T.E.A. Lepidoptera and Odonata Summaries 44 Flea Market (Classitieds) .Inside Back Cover Items for Sale throught the T.E.A Back Cover Front Cover Photograph:· BeachDune Tiger Beetle (Cicindella hirticollis) at Rondeau Provincial Park. Photo taken by Dr. Steve Marshall of the University of Guelph. Issue Date: January 23, 2002 ISSN: l:lL'j-j~~) DEADLINE INFORMATION· Members Please Note: The deadline for submissions to the May 2002 issue of Ontario Insects is April 1. Late submissions may be added at the discretion of the Editor after that date. Ifthere are any questions or concerns regarding submissions, please feel free to contact Colin Jones at the address below. Please remember when submitting electronic information to minimize formatting and send documents as plain text wherever possible. OntarioInsects the significant finds we made, or of some of the interesting Notes from the Editor's Desk observations we witnessed.
    [Show full text]
  • Species on the Menu of a Generalist
    Molecular Ecology (2009) 18, 2532–2542 doi: 10.1111/j.1365-294X.2009.04184.x SpeciesBlackwell Publishing Ltd on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey ELIZABETH L. CLARE,* ERIN E. FRASER,† HEATHER E. BRAID*, M. BROCK FENTON† and PAUL D. N. HEBERT* *Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G2W1, †Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7 Abstract One of the most difficult interactions to observe in nature is the relationship between a predator and its prey. When direct observations are impossible, we rely on morphological classification of prey remains, although this is particularly challenging among generalist predators whose faeces contain mixed and degraded prey fragments. In this investigation, we used a poly- merase chain reaction and sequence-based technique to identify prey fragments in the guano of the generalist insectivore, the eastern red bat (Lasiurus borealis), and evaluate several hypotheses about prey selection and prey defences. The interaction between bats and insects is of significant evolutionary interest because of the adaptive nature of insect hearing against echolocation. However, measuring the successes of predator tactics or particular prey defences is limited because we cannot normally identify these digested prey fragments beyond order or family. Using a molecular approach, we recovered sequences from 89% of the fragments tested, and through comparison to a reference database of sequences, we were able to identify 127 different species of prey. Our results indicate that despite the robust jaws of L. borealis, most prey taxa were softer-bodied Lepidoptera.
    [Show full text]
  • Butterflies and Moths of the Yukon
    Butterflies and moths of the Yukon FRONTISPIECE. Some characteristic arctic and alpine butterflies and moths from the Yukon. Upper, males of the nymphalid butterflies Oeneis alpina Kurentzov (left) and Boloria natazhati (Gibson) (right), normally encountered on rocky tundra slopes; Middle, males of the alpine arctiid moths Pararctia yarrowi (Stretch) (left), typically on dry rocky slopes with willow, and Acsala anomala Benjamin (right), confined to the Yukon and Alaska and shown here on the characteristic dry rocky habitat of the lichen-feeding larvae; Lower, (left) female of the arctiid moth Dodia kononenkoi Chistyakov and Lafontaine from dry rocky tundra slopes, and (right) a mated pair of the noctuid moth Xestia aequeva (Benjamin), showing the reduced wings of the female. All species were photographed at Windy Pass, Ogilvie Mountains (see book frontispiece), except for B. natazhati (Richardson Mountains). Forewing length of these species is about 2 cm (first 3 species) and 1.5 cm (last 3). 723 Butterflies and Moths (Lepidoptera) of the Yukon J.D. LAFONTAINE and D.M. WOOD Biological Resources Program, Research Branch, Agriculture and Agri-Food Canada K.W. Neatby Bldg., Ottawa, Ontario, Canada K1A 0C6 Abstract. An annotated list of the 518 species of Lepidoptera known from the Yukon is presented with a zoogeographic analysis of the fauna. Topics discussed are: historical review of Yukon collecting and research; the expected size of the Yukon fauna (about 2000 species); zoogeographic affinities; special features of Yukon fauna (endemic species, disjunct species, biennialism, flightless species). There are 191 species of Lepidoptera (37% of the fauna) in the Yukon that occur in both Nearctic and Palaearctic regions.
    [Show full text]
  • Biological Control Pacific Prospects - Supplement 2 Plate 1 Top Line: 1
    Biological Control Pacific Prospects - Supplement 2 Plate 1 Top line: 1. Bactrocera tryoni ovipositing in an apple. 2. Fopius arisanus probing a banana for tephritid eggs. 3. Diachasmimorpha longicaudata probing for lephritid larvae. Middle li ne: 4. Icerya aegyptiaca on a breadfruit leaf (D.P.A. Sands). 5. Adult I. aegyptiaca with wax filaments displaced by blowing lightly (G.S. Sandhu). 6. Larvae of Rodolia attacking I. aegyptiaca (D.P.A. Sands). Bottom line: 7. Coconut palm with bark channels of Neotermes rainbowi (M. Lenz). 8. Coconut palm stump following loss of lOp (M. Lenz). 9. Bark channels characteristic of N. rainbowi (M. Lenz). Plate 2 Top line: 1. Thicket of Clerodendrum chineme in Western Samoa. 2. Roadside thicket of C. chinense in Fiji CD .P.A. Sands). Middle line: 3. Flower head of C. chinense CD.P.A. Sands). 4. Phyllocharis undulata and damage to Clerodendrum leaf CB. Napompeth). Bottom line: 5. Young prostrate plant of Portulaca oleracea (J.T. Swarbrick). 6. P. oleracea in flower CW.A. Whistler). Biological Control Pacific Prospects - Supplement 2 D.F. Waterhouse Australian Centre for International Agricultural Research Canberra 1993 The Australian Centre for International Agricultural Research (AClAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in devcloping countrics and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by AClAR, or deemed relevaI1lto AClAR's research objectives.
    [Show full text]