X-Rays from RU Lupi: Accretion and Winds in Classical T Tauri Stars

Total Page:16

File Type:pdf, Size:1020Kb

X-Rays from RU Lupi: Accretion and Winds in Classical T Tauri Stars A&A 473, 229–238 (2007) Astronomy DOI: 10.1051/0004-6361:20077644 & c ESO 2007 Astrophysics X-rays from RU Lupi: accretion and winds in classical T Tauri stars J. Robrade and J. H. M. M. Schmitt Universität Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: [email protected] Received 13 April 2007 / Accepted 18 June 2007 ABSTRACT Context. Low-mass stars are known to exhibit strong X-ray emission during their early evolutionary stages. This also applies to classical T Tauri stars (CTTS), whose X-ray emission differs from that of main-sequence stars in a number of aspects. Aims. We study the specific case of RU Lup, a well known accreting and wind-driving CTTS. In comparison with other bright CTTS we study possible signatures of accretion and winds in their X-ray emission. Methods. Using three XMM-Newton observations of RU Lup, we investigate its X-ray properties and their generating mechanisms. High-resolution X-ray spectra of RU Lup and other CTTS are compared to main-sequence stars. We examine the presence of a cool plasma excess and enhanced plasma density in relation to X-rays from accretion shocks and investigate anomalous strong X-ray absorption and its connection to winds or circumstellar material. Results. We find three distinguishable levels of activity among the observations of RU Lup. While no large flares are present, this variability is clearly of magnetic origin due to the corresponding plasma temperatures of around 30 MK; in contrast the cool plasma component at 2–3 MK is quite stable over a month, resulting in a drop of average plasma temperature from 35 MK down to 10 MK. Density analysis with the O vii triplet indicates high densities in the cool plasma, suggesting accretion shocks to be a significant contributor to the soft X-ray emission. No strong overall metal depletion is observed, with Ne being more abundant than Fe, that is at solar value, and especially O. Excess emission at 6.4 keV during the more active phase suggest the presence of iron fluorescence. Additionally RU Lup exhibits an extraordinary strong X-ray absorption, incompatible with estimates obtained at optical and UV wavelengths. Comparing spectra from a sample of main-sequence stars with those of accreting stars we find an excess of cool plasma as evidenced by lower O viii/O vii line ratios in all accreting stars. High density plasma appears to be only present in low-mass CTTS, while accreting stars with intermediate masses (2 M) have lower densities. Conclusions. In all investigated CTTS the characteristics of the cooler X-ray emitting plasma are influenced by the accretion process. We suspect different accretion rates and amounts of funnelling, possibly linked to stellar mass and radius, to be mainly responsible for the different properties of their cool plasma component. The exceptional X-ray absorption in RU Lup and other CTTS is probably related to the accretion flows and an optically transparent wind emanating from the star or the disk. Key words. stars: individual: RU Lupi – stars: pre-main sequence – stars: activity – stars: coronae – X-rays: stars 1. Introduction accreted from the stellar disk onto the star at almost free-fall ve- locity along magnetic field lines which disrupt the accretion disk T Tauri stars as a class, are very young low-mass stars. The mem- in the vicinity of the corotation radius. Upon impact, a strong bers of the subclass of so-called classical T Tauri stars (CTTS) shock is formed near the stellar surface and the funnelling of the are still accreting matter from a surrounding circumstellar disk. accreted matter by the magnetic field leads to “accretion spots" CTTS are thought to evolve first into weak-line T Tauri stars with filling factors at the percent level with respect to the stellar (WTTS), where they become virtually disk-less and no longer surface; therefore only a small fraction of the stellar surface is show signs of significant accretion, and eventually into solar- covered by the accretion spots. This accretion shock plasma is like star on the main sequence. Ongoing accretion in a CTTS expected to reach temperatures of up to a few MK and thus to is evidenced by an emission line spectrum and specifically, a lose a large fraction of its energy at UV and soft X-ray wave- large Hα equivalent width (EW > 10 Å). Further, the strong ob- lengths. The accreted plasma does not necessarily have to be at served infrared excess indicates the presence of a disk. In con- high density. However, if one wants to achieve the inferred small trast, WTTS have much weaker Hα emission and little or no filling factors at the percent level and the otherwise determined −8 −7 −1 IR-excess. The increasing dominance of the underlying contin- mass accretion rates of 10 –10 M yr , the infalling gas must uum emission over the optical stellar absorption line spectrum then be at rather high density (n > 1011 cm−3). The accretion gives rise to another sub-classification into moderate, veiled and process is accompanied by outflows from the star and possibly extreme T Tauri stars. However, these strict subdivisions are also from the disk, which probably also play an important role somewhat arbitrary and blurred since for example Hα emis- in the transport of angular momentum. Different mass accretion sion is highly variable and differs also within the CTTS class rates and filling factors, different stellar properties such as mass, by more than an order of magnitude. A detailed account of the rotation and activity and different viewing angles, naturally lead pre-main sequence stellar evolution of low-mass stars is given to the observed variety of the different CTTS phenomena. by Feigelson & Montmerle (1999). X-ray emission from T Tauri stars has already been detected In the commonly accepted magnetospheric accretion model with the Einstein and ROSAT observatories, and both types are for CTTS (Calvet & Gullbring 1998) material is assumed to be found to be copious and variable X-ray emitters. The origin of Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20077644 230 J. Robrade and J. H. M. M. Schmitt: X-rays from RU Lupi: accretion and winds in classical T Tauri stars the observed X-ray emission is currently the subject of some de- Table 1. Observing log of the XMM-Newton RU Lup exposures. bate. Since all main-sequence “cool stars”, i.e. stars with outer convection zones, are surrounded by X-ray emitting coronae Observation MOS (filt.) OM (Schmitt & Liefke 2004), some kind of magnetic activity is Date Time Dur.(ks) Exp.(no.) also expected for their pre-main sequence counterparts with their August 08 2005 04:19–12:54 30(28) 6 deep outer convection zones. Indeed, large sample studies such August 17 2005 09:17–17:02 27(15) 6 as COUP (Chandra Orion Ultradeep Project) showed that most Sept. 06/07 2005 18:30–02:16 27(22) 6 of their observed X-ray emission is of coronal origin (Preibisch et al. 2005). Further, magnetic fields, connecting star and disk, −1 have been invoked to explain the huge flares observed in CTTS both infalls and outflows with velocities up to 300–400 km s . (Favata et al. 2005a). Specifically, Lamzin (2000) attributes the origin of the observed On the other hand, the presence of accretion streams and lines profiles in the HST UV spectra to accretion shocks and outflows opens up additional possibilities for the generation of stellar winds. X-rays. Collimated winds have been observed as X-ray jets in From optical high-resolution spectra, Stempels & Piskunov ∼ Herbig-Haro objects (Pravdo et al. 2001; Favata et al. 2006) and (2002) determined mass and radius of RU Lup to M 0.8 M ∼ in CTTS such as DG Tau (Güdel et al. 2005). Accretion shocks and R 1.7 R. They further derived a projected rotational ve- = −1 are expected to generate plasma at a significantly higher density locity of v sin(i) 9kms and detected variability on short time scales of 1h. Together with various proposed periods (0.8– than stellar coronal plasma and their soft X-ray emission can ◦ ◦ be traced by density sensitive line ratios, e.g. between forbidden 3.7 d) this suggests an inclination between 3 and 16 ,i.e.a and intercombination lines in the He-like triplets of O vii and system that is viewed nearly pole-on with rather high intrinsic Ne ix. Anomalously low ratios of these lines have been observed rotation. Finally, they derived an interstellar absorption column = × 19 −2 for several CTTS, e.g. TW Hya (Kastner et al. 2002; Stelzer & towards RU Lup with a corresponding N(H) 6.3 10 cm . Schmitt 2004), BP Tau (Schmitt et al. 2005), CR Cha (Robrade Combining literature data with results derived from FUV data / & Schmitt 2006), V4046 Sgr (Günther et al. 2006) and MP Mus obtained with FUSE and HST STIS, Herczeg et al. (2005) es- (Argiroffi et al. 2007), and the inferred high plasma densities timated RU Lup to be an 0.6–0.7 M star with an age of ∼ × −8 suggest the presence of X-ray emission from shocks as postu- 2–3 Myr and a mass accretion rate of 5 10 M. Their de- = ± −2 lated in the magnetospheric accretion scenario. rived hydrogen column density of log N(H) 20.1 0.2cm , ∼ However, not all accreting stars seem to show high density corresponding to an extinction of AV 0.07, is again quite low.
Recommended publications
  • Stable and Unstable Accretion in the Classical T Tauri Stars IM Lup and RU Lup As Observed by MOST
    Mon. Not. R. Astron. Soc. 000, 000–000 (2015) Printed 27 August 2018 (MN LATEX style file v2.2) Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST Michal Siwak1⋆, Waldemar Ogloza1, Slavek M. Rucinski2, Anthony F. J. Moffat3, Jaymie M. Matthews4, Chris Cameron5, David B. Guenther6, Rainer Kuschnig4,9, Jason F. Rowe7, Dimitar Sasselov8, Werner W. Weiss9 1Mount Suhora Astronomical Observatory, Cracov Pedagogical University, ul. Podchorazych 2, 30-084 Cracov, Poland 2Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4, Canada 3D´epartment de Physique, Universit´ede Montr´eal, C.P.6128, Succursale: Centre-Ville, Montr´eal, QC, H3C 3J7, Canada 4Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., V6T 1Z1, Canada 5Department of Mathematics, Physics & Geology, Cape Breton University, 1250 Grand Lake Road, Sydney,NS, B1P 6L2, Canada 6Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Marys University, Halifax, N.S., B3H 3C3, Canada 7NASA Ames Research Center, Moffett Field, CA 94035, USA 8Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 9Universit¨at Wien, Institut f¨ur Astrophysik, T¨urkenschanzstrasse 17, A-1180 Wien, Austria Accepted 2015 December 2; Received 2015 November 11; in original form 2015 September 6 ABSTRACT Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilised: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the SAAO in April – May of 2013, (3) archival V - filter ASAS data for nine seasons, 2001 – 2009.
    [Show full text]
  • Pos(MULTIF2017)001
    Multifrequency Astrophysics (A pillar of an interdisciplinary approach for the knowledge of the physics of our Universe) ∗† Franco Giovannelli PoS(MULTIF2017)001 INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] We will discuss the importance of the "Multifrequency Astrophysics" as a pillar of an interdis- ciplinary approach for the knowledge of the physics of our Universe. Indeed, as largely demon- strated in the last decades, only with the multifrequency observations of cosmic sources it is possible to get near the whole behaviour of a source and then to approach the physics governing the phenomena that originate such a behaviour. In spite of this, a multidisciplinary approach in the study of each kind of phenomenon occurring in each kind of cosmic source is even more pow- erful than a simple "astrophysical approach". A clear example of a multidisciplinary approach is that of "The Bridge between the Big Bang and Biology". This bridge can be described by using the competences of astrophysicists, planetary physicists, atmospheric physicists, geophysicists, volcanologists, biophysicists, biochemists, and astrobiophysicists. The unification of such com- petences can provide the intellectual framework that will better enable an understanding of the physics governing the formation and structure of cosmic objects, apparently uncorrelated with one another, that on the contrary constitute the steps necessary for life (e.g. Giovannelli, 2001).
    [Show full text]
  • The Loopy UV Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence
    submitted to AJ The loopy UV line profiles of RU Lupi: accretion, outflows, and fluorescence Gregory J. Herczeg1, Frederick M. Walter2, Jeffrey L. Linsky1, G¨osta F. Gahm3, David R. Ardila4, Alexander Brown5, Christopher M. Johns-Krull6, Michal Simon2, Jeff A. Valenti7 ABSTRACT We present far-ultraviolet spectra of the classical T Tauri star RU Lupi covering the 912–1710 A˚ spectral range, as observed by the HST /STIS and FUSE satellites. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV ∼ 0.07 mag, which we confirm with other diagnostics. We estimate a mass −8 −1 accretion rate of (5 ± 2) × 10 M⊙ yr using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lupi’s spectrum varies significantly in the FUV; our STIS observations occurred when RU Lupi was brighter than several other observations in the FUV, possibly due to a high mass accretion rate. Subject headings: accretion, accretion disks — circumstellar matter — line: iden- tification — stars: individual (RU Lupi) — stars: pre-main sequence — ultraviolet: stars 1. INTRODUCTION Classical T Tauri stars (CTTSs) are likely prototypes of the young Sun when it was accreting arXiv:astro-ph/0504654v1 29 Apr 2005 material from its circumstellar disk. In the standard
    [Show full text]
  • Where Are the Hot Ion Lines in Classical T Tauri Stars Formed?
    Accretion, winds and jets: High-energy emission from young stellar objects Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universit¨at Hamburg vorgelegt von Hans Moritz G¨unther aus Hamburg Hamburg 2009 ii Gutachter der Dissertation: Prof. Dr. J. H. M. M. Schmitt Prof. Dr. E. Feigelson Gutachter der Disputation: Prof. Dr. P. H. Hauschildt Prof. Dr. G. Wiedemann Datum der Disputation: 13.03.2009 Vorsitzender des Pr¨ufungsausschusses: Dr. R. Baade Vorsitzender des Promotionsausschusses: Prof. Dr. R. Klanner Dekan der MIN Fakult¨at: Prof. Dr. A. Fr¨uhwald (bis 28.02.2009) Prof. Dr. H. Graener (ab 01.03.2009) iii Zusammenfassung Sterne entstehen durch Gravitationsinstabilit¨aten in molekularen Wolken. Wegen der Erhaltung des Drehimpulses geschieht der Kollaps nicht sph¨arisch, sondern das Material f¨allt zun¨achst auf eine Akkretionsscheibe zusammen. In dieser Doktorarbeit wird hochenergetische Strahlung von Sternen untersucht, die noch aktiv Material von ihrer Scheibe akkretieren, aber nicht mehr von einer Staub- und Gash¨ulle verdeckt sind. In dieser Phase nennt man Sterne der Spektraltypen A und B Herbig Ae/Be (HAeBe) Sterne, alle sp¨ateren Sterne heißen klassische T Tauri Sterne (CTTS); eigentlich werden beide Typen ¨uber spektroskopische Merkmale definiert, aber diese fallen mit den hier genannten Entwicklungsstadien zusammen. In dieser Arbeit werden CTTS und HAeBes mit hochaufl¨osender Spektroskopie im R¨ontgen- und UV-Bereich untersucht und Simulationen f¨ur diese Stadien gezeigt. F¨ur zwei Sterne werden R¨ontgenspektren reduziert und vorgestellt: Der CTTS V4046 Sgr wurde mit Chandra f¨ur 100 ks beobachtet. Die Lichtkurve dieser Beobachtung zeigt einen Flare und die Triplets der He Isosequenz (Si xiii, Ne ix und O vii) deuten auf hohe Dichten im emittierenden Plasma hin.
    [Show full text]
  • The Sun: the First 4.6 Gyr Color of Frederick M
    ado. The Sun: The First 4.6 Gyr Color of Frederick M. Walter1 Abstract. I present an overview of some observations of young and active solar- University like stars with non-solar-like characteristics. I ask whether the solar anal- ogy can be extrapolated to explain very active stars without violating 2003 simple geometrical constraints. Is a young and active star merely an ex- treme version of today's Sun, with the same atmospheric structures but Sun, with ¯lling factors reaching (or exceeding) unity? In light of evidence for large scale quasi-dipolar magnetic topologies on the young and restless The stars, maybe it is time to rethink our paradigms. & There is something fascinating about science. One gets such whole- Systems, sale returns of conjecture out of such a trifling investment of fact. Mark Twain ¡¡ Life on the Mississippi lar Stel Despite appearances, this is not a review of the evolution of stellar magnetic activity. It is, rather, a set of variations on a theme: the solar analogy, as a guide to the interpretation of the coronae and chromospheres of the most active Stars, stars, needs to be reconsidered. You may alternatively consider this an extended ol introduction and overview, designed to set the scene for the contributed papers Co in this session. To that end, making no pretense of being complete or unbiased, on I present a series of observations focussed on non-solar-like properties in active cool stars, intended to provoke discussion. Our paradigm has long been that stellar magnetic activity is just like solar magnetic activity, only ever-so-much-more-so.
    [Show full text]
  • The UV Perspective of Low-Mass Star Formation
    galaxies Review The UV Perspective of Low-Mass Star Formation P. Christian Schneider 1,* , H. Moritz Günther 2 and Kevin France 3 1 Hamburger Sternwarte, University of Hamburg, 21029 Hamburg, Germany 2 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research; Cambridge, MA 02109, USA; [email protected] 3 Department of Astrophysical and Planetary Sciences Laboratory for Atmospheric and Space Physics, University of Colorado, Denver, CO 80203, USA; [email protected] * Correspondence: [email protected] Received: 16 January 2020; Accepted: 29 February 2020; Published: 21 March 2020 Abstract: The formation of low-mass (M? . 2 M ) stars in molecular clouds involves accretion disks and jets, which are of broad astrophysical interest. Accreting stars represent the closest examples of these phenomena. Star and planet formation are also intimately connected, setting the starting point for planetary systems like our own. The ultraviolet (UV) spectral range is particularly suited for studying star formation, because virtually all relevant processes radiate at temperatures associated with UV emission processes or have strong observational signatures in the UV range. In this review, we describe how UV observations provide unique diagnostics for the accretion process, the physical properties of the protoplanetary disk, and jets and outflows. Keywords: star formation; ultraviolet; low-mass stars 1. Introduction Stars form in molecular clouds. When these clouds fragment, localized cloud regions collapse into groups of protostars. Stars with final masses between 0.08 M and 2 M , broadly the progenitors of Sun-like stars, start as cores deeply embedded in a dusty envelope, where they can be seen only in the sub-mm and far-IR spectral windows (so-called class 0 sources).
    [Show full text]
  • Face to Phase with RU Lupi ? G
    Astronomy & Astrophysics manuscript no. ArxivGahm © ESO 2021 September 14, 2021 Face to phase with RU Lupi ? G. F. Gahm1, H. C. Stempels2, F. M. Walter3, P. P. Petrov4, and G. J. Herczeg5 1 Stockholm Observatory, AlbaNova University Centre, SE-10691 Stockholm, Sweden, email: [email protected] 2 Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden 3 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA 4 Crimean Astrophysical Observatory, p/o Nauchny, Crimea, 98409 Ukraine 5 The Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian Qu, Beijing 100871, P. R. China ABSTRACT Context. Some classical T Tauri stars, with intense line and continuous excess emission, show extremely complex spectral variations. Aims. We aim to map and interpret the spectral variations in one such extreme T Tauri star, namely RU Lupi, and to explore how the changes are related to stellar brightness and rotational phase. Methods. We followed the star over three observing runs, each covering a few days, collecting high-resolution optical spectra. In connection to the third run, complementary NIR spectra, multicolour photometric data, and X-ray observations were obtained. Results. The stellar photospheric absorption line spectrum is weakened by superimposed emission, and this veiling becomes ex- tremely high on occasion. Interpreted as a variable continuous excess emission, its contribution would amount to several times the stellar continuum brightness. However, the stellar brightness does not change much when the veiling changes, and we conclude that the veiling is dominated by narrow line emission that fills in the photospheric lines.
    [Show full text]
  • ATNF News Issue No
    ATNF News Issue No. 66, April 2009 ISSN 1323-6326 See Compact Array Broadband Backend (CABB) article on page 6. Left to right: CABB Project Leader Dr Warwick Wilson, CSIRO Chief Executive Offi cer Megan Clark and ATNF Acting Director Dr Lewis Ball, with a CABB signal processing board in front of two antennas of the Australia Telescope Compact Array. Photo: Paul Mathews Photographics Removing the “spaghetti” of ribbon cable that fed the old correlator, from left to right, Matt Shields (obscured), Brett Hiscock, Scott Munting, Mark Leach, and Peter Mirtschin. Photo: CSIRO Cover page images CABB Project—team photo. Back row, left to right: Warwick Wilson (Project Leader), Paul Roberts, Grant Hampson, Peter Axtens, Yoon Chung. Middle row: Aaron Sanders, Dick Ferris (Project Engineer), Matt Shields, Mark Leach (Project Manager). Front row: Troy Elton, Andrew Brown, Raji Chekkala, Evan Davis. Other contributors (not in photo): Scott Saunders. (See article on page 6.) Photo: Tim Wheeler, April 2009 The Sunrise television crew prepare to broadcast live from the grounds of the CSIRO Parkes Observatory. Photo: Tim Ruckley, CSIRO Installation of a 300 – 900-MHz receiver on the Parkes 64-m radio telescope. (See article on page 28.) Photo: Maik Wolleben, CSIRO 2 ATNF News, Issue 66, April 2009 Contents Editorial.............................................................................................................................................................................3 From the Director ......................................................................................................................................................4
    [Show full text]
  • THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 151 — 20 May 2005 Editor: Bo Reipurth ([email protected]) Abstracts of recently accepted papers Lithopanspermia in Star Forming Clusters Fred C. Adams1 and David N. Spergel2 1 Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109, USA 2 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA E-mail contact: [email protected] This paper considers the lithopanspermia hypothesis in star forming groups and clusters, where the chances of biological material spreading from one solar system to another is greatly enhanced (relative to action in the field) due to the close proximity of the systems and lower relative velocities. These effects more than compensate for the reduced time spent in such crowded environments. This paper uses ∼ 300, 000 Monte Carlo scattering calculations to determine the cross sections for rocks to be captured by binaries and provides fitting formulae for other applications. We assess the odds of transfer as a function of the ejection speed vej and number N? of members in the birth aggregate. The odds of any given ejected meteroid being recaptured by another solar system are relatively low, about 1 in 103 − 106 over the expected range of ejection speeds and cluster sizes. Because the number of ejected rocks (with mass m> 10 kg) 16 per system can be large, NR ∼ 10 , virtually all solar systems are likely to share rocky ejecta with all of the other solar systems in their birth cluster. The number of ejected rocks that carry living microorganisms is much smaller and 7 less certain, but we estimate that NB ∼ 10 rocks can be ejected from a biologically active solar system.
    [Show full text]
  • National Newsletter
    L33 NATIONAL NEWSLETTER Fig. 1—This wooden yoke mounting easily supports the weight of an eight-foot long 12” Newtonian telescope. See Richard Berry’s article for more details concerning this type of mounting. L34 Fig. 2—This cross-axis mounting carries a 24” focal length astrocamera. The mount- ing has been left on farms in areas where there are good skies outside of Toronto. The camera was brought to the site for observing nights during the dark of the moon. Fig. 3—A 6” reflector is easily carried by this yoke mounting. The extra long tube shields the optics for deep sky observation. The same mount carried an 8” f/10 re- flector for several years. L35 Mounting Design for Amateur Telescopes Providing a satisfactory mounting for medium and large amateur telescopes is as important as making good quality optics, and often more difficult; for while the optics are literally made by hand, a good mounting may involve machine-shop work, close tolerances, and expensive materials. But by carefully designing to allow low tolerances, inexpensive materials, and fabrication by hand, I have constructed several mountings that perform very well and are adaptable to telescopes up to 20 inches or so. In this article I shall discuss three “English” type telescope mountings, and some of their advantages and disadvantages, also describing ways in which mountings in general may be designed better. The three mountings, a small yoke mount, a cross-axis mount- ing, and a 12” yoke mount, are “observatory” instruments, intended to be kept in one place for long periods of time.
    [Show full text]
  • 251 — 8 November 2013 Editor: Bo Reipurth ([email protected]) List of Contents
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 251 — 8 November 2013 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 4 My Favorite Object ............................ 6 Editor: Bo Reipurth [email protected] Perspective ................................... 12 Technical Editor: Eli Bressert Abstracts of Newly Accepted Papers .......... 15 [email protected] Abstracts of Newly Accepted Major Reviews . 50 Technical Assistant: Hsi-Wei Yen Dissertation Abstracts ........................ 51 [email protected] New Jobs ..................................... 52 Editorial Board Summary of Upcoming Meetings ............. 54 Short Announcements ........................ 55 Joao Alves Alan Boss Jerome Bouvier Lee Hartmann Thomas Henning Paul Ho Cover Picture Jes Jorgensen Charles J. Lada This image shows the reflection nebula NGC 1579 Thijs Kouwenhoven located in the dark cloud L1482 at an approximate Michael R. Meyer distance of 700 pc. The nebulosity is illuminated Ralph Pudritz by the peculiar object LkHα 101, which is a heavily Luis Felipe Rodr´ıguez reddened massive star in a very early evolutionary Ewine van Dishoeck stage (seen as a faint optical star just south of the Hans Zinnecker brightest part of the reflection nebula). The figure is a composite of B-, V-, and R-band images, and The Star Formation Newsletter is a vehicle for covers approximately 6×7 arcmin,
    [Show full text]
  • Seeing the Light: the Art and Science of Astronomy
    Chapter 1 Seeing the Light: The Art and Science of Astronomy In This Chapter ▶ Understanding the observational nature of astronomy ▶ Focusing on astronomy’s language of light ▶ Weighing in on gravity ▶ Recognizing the movements of objects in space tep outside on a clear night and look at the sky. If you’re a city dweller Sor live in a cramped suburb, you see dozens, maybe hundreds, of twin- kling stars. Depending on the time of the month, you may also see a full Moon and up to five of the eight planets that revolve around the Sun. A shooting star or “meteor” may appear overhead. What you actually see is the flash of light from a tiny piece of comet dust streaking through the upper atmosphere. Another pinpoint of light moves slowly and steadily across the sky. Is it a space satellite, such as the Hubble Space Telescope, or just a high-altitude airliner? If you have a pair of binoculars, you may be able to see the difference. Most air- liners have running lights, and their shapes may be perceptible. If you liveCOPYRIGHTED in the country — on the seashore MATERIAL away from resorts and develop- ments, on the plains, or in the mountains far from any floodlit ski slope — you can see thousands of stars. The Milky Way appears as a beautiful pearly swath across the heavens. What you’re seeing is the cumulative glow from millions of faint stars, individually indistinguishable with the naked eye. At a great observation place, such as Cerro Tololo in the Chilean Andes, you can see even more stars.
    [Show full text]