The Impact of Multifrequency Observations on Our Knowledge of the Physics of the Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stable and Unstable Accretion in the Classical T Tauri Stars IM Lup and RU Lup As Observed by MOST
Mon. Not. R. Astron. Soc. 000, 000–000 (2015) Printed 27 August 2018 (MN LATEX style file v2.2) Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST Michal Siwak1⋆, Waldemar Ogloza1, Slavek M. Rucinski2, Anthony F. J. Moffat3, Jaymie M. Matthews4, Chris Cameron5, David B. Guenther6, Rainer Kuschnig4,9, Jason F. Rowe7, Dimitar Sasselov8, Werner W. Weiss9 1Mount Suhora Astronomical Observatory, Cracov Pedagogical University, ul. Podchorazych 2, 30-084 Cracov, Poland 2Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4, Canada 3D´epartment de Physique, Universit´ede Montr´eal, C.P.6128, Succursale: Centre-Ville, Montr´eal, QC, H3C 3J7, Canada 4Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., V6T 1Z1, Canada 5Department of Mathematics, Physics & Geology, Cape Breton University, 1250 Grand Lake Road, Sydney,NS, B1P 6L2, Canada 6Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Marys University, Halifax, N.S., B3H 3C3, Canada 7NASA Ames Research Center, Moffett Field, CA 94035, USA 8Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 9Universit¨at Wien, Institut f¨ur Astrophysik, T¨urkenschanzstrasse 17, A-1180 Wien, Austria Accepted 2015 December 2; Received 2015 November 11; in original form 2015 September 6 ABSTRACT Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilised: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the SAAO in April – May of 2013, (3) archival V - filter ASAS data for nine seasons, 2001 – 2009. -
Pos(MULTIF2017)001
Multifrequency Astrophysics (A pillar of an interdisciplinary approach for the knowledge of the physics of our Universe) ∗† Franco Giovannelli PoS(MULTIF2017)001 INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] We will discuss the importance of the "Multifrequency Astrophysics" as a pillar of an interdis- ciplinary approach for the knowledge of the physics of our Universe. Indeed, as largely demon- strated in the last decades, only with the multifrequency observations of cosmic sources it is possible to get near the whole behaviour of a source and then to approach the physics governing the phenomena that originate such a behaviour. In spite of this, a multidisciplinary approach in the study of each kind of phenomenon occurring in each kind of cosmic source is even more pow- erful than a simple "astrophysical approach". A clear example of a multidisciplinary approach is that of "The Bridge between the Big Bang and Biology". This bridge can be described by using the competences of astrophysicists, planetary physicists, atmospheric physicists, geophysicists, volcanologists, biophysicists, biochemists, and astrobiophysicists. The unification of such com- petences can provide the intellectual framework that will better enable an understanding of the physics governing the formation and structure of cosmic objects, apparently uncorrelated with one another, that on the contrary constitute the steps necessary for life (e.g. Giovannelli, 2001). -
The X-Ray Universe 2011 @ Berlin, 27-30 June 2011
The X-ray Universe 2011 @ Berlin, 27-30 June 2011 List of poster presentations: Topic A: Stars, star-forming regions, planetary and cometary studies Poster Title Author A01 Young stars around the Horsehead nebula Albacete Colombo A02 A very deep X-ray look into the young stellar cluster IC348 Alexander A03 X-ray emission from protostellar jet HH 154: first evidence of a diamond shock? Bonito A04 The nature and importance of the large spread in T Tauri X-ray luminosities Drake A05 The young open cluster around 25 Ori Franciosini A06 Chandra/ACIS-I study of the young stellar population of the Eagle Nebula Guarcello A07 Cluster members and disk fraction of CygnusOB2 Guarcello A08 Constraining the ages of X-ray sources in NGC 922 Jackson A09 An XMM-Newton vision of the NGC 2023 cluster and its surroundings Lopez-Garcia A10 Optical follow-up of the stellar content of the XBSS Lopez-Santiago A11 Quantifying the relation between UV and X-ray flux in nearby M stars Marino A12 X-ray emission from brown dwarf candidates in Cha I Martinez-Arnaiz A13 Star-planet interactions in X-rays - mimicked by selection effects? Poppenhaeger A14 The LETG spectrum of delta Ori Raassen A15 A look at the high Galactic latitude O-type star HD93521 with XMM-Newton Rauw A16 X-ray emission from protostellar jets Schneider A17 Giant HII regions in M 101: Hα-line spectra and X-ray property Sun A18 The decay of stellar dynamo activity and the rotation-activity relation Wright Topic B: Interacting binary systems, (Galactic) black holes & micro-quasars Poster Title Author -
Thunderkat: the Meerkat Large Survey Project for Image-Plane Radio Transients
ThunderKAT: The MeerKAT Large Survey Project for Image-Plane Radio Transients Rob Fender1;2∗, Patrick Woudt2∗ E-mail: [email protected], [email protected] Richard Armstrong1;2, Paul Groot3, Vanessa McBride2;4, James Miller-Jones5, Kunal Mooley1, Ben Stappers6, Ralph Wijers7 Michael Bietenholz8;9, Sarah Blyth2, Markus Bottcher10, David Buckley4;11, Phil Charles1;12, Laura Chomiuk13, Deanne Coppejans14, Stéphane Corbel15;16, Mickael Coriat17, Frederic Daigne18, Erwin de Blok2, Heino Falcke3, Julien Girard15, Ian Heywood19, Assaf Horesh20, Jasper Horrell21, Peter Jonker3;22, Tana Joseph4, Atish Kamble23, Christian Knigge12, Elmar Körding3, Marissa Kotze4, Chryssa Kouveliotou24, Christine Lynch25, Tom Maccarone26, Pieter Meintjes27, Simone Migliari28, Tara Murphy25, Takahiro Nagayama29, Gijs Nelemans3, George Nicholson8, Tim O’Brien6, Alida Oodendaal27, Nadeem Oozeer21, Julian Osborne30, Miguel Perez-Torres31, Simon Ratcliffe21, Valerio Ribeiro32, Evert Rol6, Anthony Rushton1, Anna Scaife6, Matthew Schurch2, Greg Sivakoff33, Tim Staley1, Danny Steeghs34, Ian Stewart35, John Swinbank36, Kurt van der Heyden2, Alexander van der Horst24, Brian van Soelen27, Susanna Vergani37, Brian Warner2, Klaas Wiersema30 1 Astrophysics, Department of Physics, University of Oxford, UK 2 Department of Astronomy, University of Cape Town, South Africa 3 Department of Astrophysics, Radboud University, Nijmegen, the Netherlands 4 South African Astronomical Observatory, Cape Town, South Africa 5 ICRAR, Curtin University, Perth, Australia 6 University -
The Loopy UV Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence
submitted to AJ The loopy UV line profiles of RU Lupi: accretion, outflows, and fluorescence Gregory J. Herczeg1, Frederick M. Walter2, Jeffrey L. Linsky1, G¨osta F. Gahm3, David R. Ardila4, Alexander Brown5, Christopher M. Johns-Krull6, Michal Simon2, Jeff A. Valenti7 ABSTRACT We present far-ultraviolet spectra of the classical T Tauri star RU Lupi covering the 912–1710 A˚ spectral range, as observed by the HST /STIS and FUSE satellites. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV ∼ 0.07 mag, which we confirm with other diagnostics. We estimate a mass −8 −1 accretion rate of (5 ± 2) × 10 M⊙ yr using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lupi’s spectrum varies significantly in the FUV; our STIS observations occurred when RU Lupi was brighter than several other observations in the FUV, possibly due to a high mass accretion rate. Subject headings: accretion, accretion disks — circumstellar matter — line: iden- tification — stars: individual (RU Lupi) — stars: pre-main sequence — ultraviolet: stars 1. INTRODUCTION Classical T Tauri stars (CTTSs) are likely prototypes of the young Sun when it was accreting arXiv:astro-ph/0504654v1 29 Apr 2005 material from its circumstellar disk. In the standard -
Gamma-Ray Emission from Microquasars
UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de F´isica Gamma-Ray Emission from Microquasars by Mar´ia Marina Kaufman Bernad´o Supervisor: Dr. Gustavo E. Romero arXiv:astro-ph/0504498v1 22 Apr 2005 Working Place: Instituto Argentino de Radioastronom´ia (I.A.R.) Thesis Work for PhD Degree issued by the University of Buenos Aires December 15th 2004 Abstract Microquasars, X-ray binary systems that generate relativistic jets, were discovered in our Galaxy in the last decade of the XXth century. Their name indicates that they are manifestations of the same physics as quasars but on a completely different scale. Parallel to this discovery, the EGRET instrument on board of the Compton Gamma Ray Observatory detected 271 point like gamma-ray sources 170 of which were not clearly identified with known objects. This marked the beginning of gamma-ray source population studies in the Galaxy. We present in this thesis models for gamma-ray production in microquasars with the aim to propose them as possible parent populations for different groups of EGRET unidentified sources. These models are developed for a variety of scenarios taking into account several possible combinations, i.e. black holes or neutron stars as the compact object, low mass or high mass stellar companions, as well as leptonic or hadronic gamma-ray production processes. We also show that the presented models for gamma-rays emitting microquasars can be used to explain observations from well known sources that are detected in energy ranges other than EGRET’s. Finally, we include an alternative gamma-ray producing situation that does not involve microquasars but a specific unidentified EGRET source possibly linked to a magnetized accreting pulsar. -
Where Are the Hot Ion Lines in Classical T Tauri Stars Formed?
Accretion, winds and jets: High-energy emission from young stellar objects Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universit¨at Hamburg vorgelegt von Hans Moritz G¨unther aus Hamburg Hamburg 2009 ii Gutachter der Dissertation: Prof. Dr. J. H. M. M. Schmitt Prof. Dr. E. Feigelson Gutachter der Disputation: Prof. Dr. P. H. Hauschildt Prof. Dr. G. Wiedemann Datum der Disputation: 13.03.2009 Vorsitzender des Pr¨ufungsausschusses: Dr. R. Baade Vorsitzender des Promotionsausschusses: Prof. Dr. R. Klanner Dekan der MIN Fakult¨at: Prof. Dr. A. Fr¨uhwald (bis 28.02.2009) Prof. Dr. H. Graener (ab 01.03.2009) iii Zusammenfassung Sterne entstehen durch Gravitationsinstabilit¨aten in molekularen Wolken. Wegen der Erhaltung des Drehimpulses geschieht der Kollaps nicht sph¨arisch, sondern das Material f¨allt zun¨achst auf eine Akkretionsscheibe zusammen. In dieser Doktorarbeit wird hochenergetische Strahlung von Sternen untersucht, die noch aktiv Material von ihrer Scheibe akkretieren, aber nicht mehr von einer Staub- und Gash¨ulle verdeckt sind. In dieser Phase nennt man Sterne der Spektraltypen A und B Herbig Ae/Be (HAeBe) Sterne, alle sp¨ateren Sterne heißen klassische T Tauri Sterne (CTTS); eigentlich werden beide Typen ¨uber spektroskopische Merkmale definiert, aber diese fallen mit den hier genannten Entwicklungsstadien zusammen. In dieser Arbeit werden CTTS und HAeBes mit hochaufl¨osender Spektroskopie im R¨ontgen- und UV-Bereich untersucht und Simulationen f¨ur diese Stadien gezeigt. F¨ur zwei Sterne werden R¨ontgenspektren reduziert und vorgestellt: Der CTTS V4046 Sgr wurde mit Chandra f¨ur 100 ks beobachtet. Die Lichtkurve dieser Beobachtung zeigt einen Flare und die Triplets der He Isosequenz (Si xiii, Ne ix und O vii) deuten auf hohe Dichten im emittierenden Plasma hin. -
Infrared Study of H1743-322 in Outburst: a Radio-Quiet and NIR-Dim
Astronomy & Astrophysics manuscript no. h1743˙vsubm-final c ESO 2021 June 13, 2021 Infrared study of H 1743-322 in outburst: a radio-quiet and NIR-dim microquasar⋆ S. Chaty1,2, A.J. Mu˜noz Arjonilla3, and G. Dubus4,5 1 AIM (UMR-E 9005 CEA/DSM-CNRS-Universit´eParis Diderot), Irfu/Service d’Astrophysique, Centre de Saclay, FR-91191 Gif- sur-Yvette Cedex, France, e-mail: [email protected] 2 Institut Universitaire de France, 103, boulevard Saint-Michel 75005 Paris, France 3 Grupo de Investigaci´on FQM-322, Universidad de Ja´en, Campus Las Lagunillas s/n A3-065, E-23071 - Ja´en, Spain, e-mail: [email protected] 4 Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France, e-mail: [email protected] 5 CNRS, IPAG, F-38000 Grenoble, France Received March 15, 2013; accepted April 15, 2013 ABSTRACT Context. Microquasars are accreting Galactic sources that are commonly observed to launch relativistic jets. One of the most important issues regarding these sources is the energy budget of ejections relative to the accretion of matter. Aims. The X-ray binary, black hole candidate, and microquasar H 1743-322 exhibited a series of X-ray outbursts between 2003 and 2008. We took optical and near-infrared (OIR) observations with the ESO/NTT telescope during three of these outbursts (2003, 2004, and 2008). The goals of these observations were to investigate the presence of a jet, and to disentangle the various contributions constituting the spectral energy distribution (SED): accretion, ejection, and stellar emission. Methods. Photometric and spectroscopic OIR observations allowed us to produce a high time-resolution lightcurve in Ks-band, to analyze emission lines present in the IR spectra, to construct a multiwavelength SED including radio, IR, and X-ray data, and to complete the OIR vs X-ray correlation of black hole binaries with H 1743-322 data points. -
The Sun: the First 4.6 Gyr Color of Frederick M
ado. The Sun: The First 4.6 Gyr Color of Frederick M. Walter1 Abstract. I present an overview of some observations of young and active solar- University like stars with non-solar-like characteristics. I ask whether the solar anal- ogy can be extrapolated to explain very active stars without violating 2003 simple geometrical constraints. Is a young and active star merely an ex- treme version of today's Sun, with the same atmospheric structures but Sun, with ¯lling factors reaching (or exceeding) unity? In light of evidence for large scale quasi-dipolar magnetic topologies on the young and restless The stars, maybe it is time to rethink our paradigms. & There is something fascinating about science. One gets such whole- Systems, sale returns of conjecture out of such a trifling investment of fact. Mark Twain ¡¡ Life on the Mississippi lar Stel Despite appearances, this is not a review of the evolution of stellar magnetic activity. It is, rather, a set of variations on a theme: the solar analogy, as a guide to the interpretation of the coronae and chromospheres of the most active Stars, stars, needs to be reconsidered. You may alternatively consider this an extended ol introduction and overview, designed to set the scene for the contributed papers Co in this session. To that end, making no pretense of being complete or unbiased, on I present a series of observations focussed on non-solar-like properties in active cool stars, intended to provoke discussion. Our paradigm has long been that stellar magnetic activity is just like solar magnetic activity, only ever-so-much-more-so. -
The UV Perspective of Low-Mass Star Formation
galaxies Review The UV Perspective of Low-Mass Star Formation P. Christian Schneider 1,* , H. Moritz Günther 2 and Kevin France 3 1 Hamburger Sternwarte, University of Hamburg, 21029 Hamburg, Germany 2 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research; Cambridge, MA 02109, USA; [email protected] 3 Department of Astrophysical and Planetary Sciences Laboratory for Atmospheric and Space Physics, University of Colorado, Denver, CO 80203, USA; [email protected] * Correspondence: [email protected] Received: 16 January 2020; Accepted: 29 February 2020; Published: 21 March 2020 Abstract: The formation of low-mass (M? . 2 M ) stars in molecular clouds involves accretion disks and jets, which are of broad astrophysical interest. Accreting stars represent the closest examples of these phenomena. Star and planet formation are also intimately connected, setting the starting point for planetary systems like our own. The ultraviolet (UV) spectral range is particularly suited for studying star formation, because virtually all relevant processes radiate at temperatures associated with UV emission processes or have strong observational signatures in the UV range. In this review, we describe how UV observations provide unique diagnostics for the accretion process, the physical properties of the protoplanetary disk, and jets and outflows. Keywords: star formation; ultraviolet; low-mass stars 1. Introduction Stars form in molecular clouds. When these clouds fragment, localized cloud regions collapse into groups of protostars. Stars with final masses between 0.08 M and 2 M , broadly the progenitors of Sun-like stars, start as cores deeply embedded in a dusty envelope, where they can be seen only in the sub-mm and far-IR spectral windows (so-called class 0 sources). -
Face to Phase with RU Lupi ? G
Astronomy & Astrophysics manuscript no. ArxivGahm © ESO 2021 September 14, 2021 Face to phase with RU Lupi ? G. F. Gahm1, H. C. Stempels2, F. M. Walter3, P. P. Petrov4, and G. J. Herczeg5 1 Stockholm Observatory, AlbaNova University Centre, SE-10691 Stockholm, Sweden, email: [email protected] 2 Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden 3 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA 4 Crimean Astrophysical Observatory, p/o Nauchny, Crimea, 98409 Ukraine 5 The Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian Qu, Beijing 100871, P. R. China ABSTRACT Context. Some classical T Tauri stars, with intense line and continuous excess emission, show extremely complex spectral variations. Aims. We aim to map and interpret the spectral variations in one such extreme T Tauri star, namely RU Lupi, and to explore how the changes are related to stellar brightness and rotational phase. Methods. We followed the star over three observing runs, each covering a few days, collecting high-resolution optical spectra. In connection to the third run, complementary NIR spectra, multicolour photometric data, and X-ray observations were obtained. Results. The stellar photospheric absorption line spectrum is weakened by superimposed emission, and this veiling becomes ex- tremely high on occasion. Interpreted as a variable continuous excess emission, its contribution would amount to several times the stellar continuum brightness. However, the stellar brightness does not change much when the veiling changes, and we conclude that the veiling is dominated by narrow line emission that fills in the photospheric lines. -
Ultra-Luminous X-Ray Sources: an Overview of Discussion on Their Origins and Nature M
Report for the Stellar Astrophysics unit (AST80016) at Swinburne Astronomy Online Preprint typeset using LATEX style emulateapj v. 12/16/11 ULTRA-LUMINOUS X-RAY SOURCES: AN OVERVIEW OF DISCUSSION ON THEIR ORIGINS AND NATURE M. Usatov1 Report for the Stellar Astrophysics unit (AST80016) at Swinburne Astronomy Online ABSTRACT The subject of the nature and origins of ultra-luminous X-ray sources (ULXs) remains at the frontier of modern research. Existing data allows to fit a wide range of interpretations, including those based on stellar-mass black holes (sMBHs) and intermediate-mass black holes (IMBHs), accretion-powered pulsars, microquasars, and so on. The research of the ULXs is of cosmological and astrophysical importance, as they may become evidence of the existence of IMBHs that may be intimately connected to the formation of first active galactic nuclei engines at z & 6:4. Although more recent research favors ULX interpretation based on stellar origins, the presence of IMBHs cannot be ruled out completely. In particular, hyper-luminous X-ray sources (HLXs), which comprise the brightest subset of the ULXs 41 −1 with X-ray luminosities LX & 10 erg s , are considered to be the strongest cases for harboring black holes of that type. This report will overview some of the observations and general properties of ULXs and will serve as an introduction to the discussion on the underlying physical models. In addition to ULX models based on black holes of both types, alternative interpretations will be reviewed. Within the sMBH framework, in particular, the importance of interpreting short timescale variations of ULXs is emphasized as a good diagnostic for revealing the underlying super-Eddington emission mechanisms.