ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development

Total Page:16

File Type:pdf, Size:1020Kb

ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development G C A T T A C G G C A T genes Review ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development Liem Minh Phan 1,* and Abdol-Hossein Rezaeian 2,* 1 Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA 2 Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, The University of South Carolina, Columbia, SC 29208, USA * Correspondence: [email protected] (L.M.P.); [email protected] (A.-H.R.) Abstract: ATM is among of the most critical initiators and coordinators of the DNA-damage response. ATM canonical and non-canonical signaling pathways involve hundreds of downstream targets that control many important cellular processes such as DNA damage repair, apoptosis, cell cycle arrest, metabolism, proliferation, oxidative sensing, among others. Of note, ATM is often considered a major tumor suppressor because of its ability to induce apoptosis and cell cycle arrest. However, in some advanced stage tumor cells, ATM signaling is increased and confers remarkable advantages for cancer cell survival, resistance to radiation and chemotherapy, biosynthesis, proliferation, and metastasis. This review focuses on addressing major characteristics, signaling pathways and especially the diverse roles of ATM in cellular homeostasis and cancer development. Citation: Phan, L.M.; Rezaeian, A.-H. ATM: Main Features, Signaling Keywords: ATM; cancer; DNA damage repair; DNA damage response; oxidative sensing; autophagy; Pathways, and Its Diverse Roles in hypoxia; pexophagy; mitophagy; cellular homeostasis DNA Damage Response, Tumor Suppression, and Cancer Development. Genes 2021, 12, 845. https://doi.org/10.3390/ 1. Introduction genes12060845 During the past three decades, the study of ATM (ataxia telangiectasia mutated) has Academic Editors: Junya Kobayashi played a central role in advancing our understanding of the mammalian DNA damage and Qiu-Mei Zhang-Akiyama response, cancer initiation and progression as well as redox signaling pathways. Numer- ous recent publications additionally reported the varied roles and influences of ATM in Received: 3 May 2021 multiple cellular processes, for instance, growth, metabolism, energy production, oxidative Accepted: 27 May 2021 homeostasis, chromatin remodeling, and genomic integrity, which are all important pro- Published: 30 May 2021 cesses in tumor development and progression. Although ATM should be considered as a tumor suppressor because its mutations often lead to cancer, there are mounting evidence Publisher’s Note: MDPI stays neutral showing that ATM’s functions and signaling pathways may also contribute to cancer cells’ with regard to jurisdictional claims in resistance to radiation, chemotherapy, and even assist tumor progression in some scenarios. published maps and institutional affil- In this review, we will cover the major features, roles, and signaling pathways of ATM, iations. especially its diverse roles in tumor suppression and cancer progression. 2. The Structure and Domain Mapping of ATM The ATM gene consists of 66 exons and is located on chromosome 11 (11q22-23) [1]. In Copyright: © 2021 by the authors. its active monomeric form, ATM has a large size of 370 kDa. ATM is an important member Licensee MDPI, Basel, Switzerland. of the PI3K-related protein kinase family (PIKK) [2]. Other members of this family include This article is an open access article DNA-dependent protein kinase catalytic subunit (DNA-PKcs), ataxia-telangiectasia and distributed under the terms and Rad3-related (ATR), mammalian target of rapamycin (mTOR), SMG-1, TRRAP, among conditions of the Creative Commons others [3–5]. Similar to these members, ATM possesses a kinase domain whose structure Attribution (CC BY) license (https:// shares significant homology to that of the phosphatidyl inositol 3 kinase (PI3K). Thanks creativecommons.org/licenses/by/ to this domain, ATM is an active serine/threonine kinase. Besides, ATM also has a FAT 4.0/). Genes 2021, 12, 845. https://doi.org/10.3390/genes12060845 https://www.mdpi.com/journal/genes Genes 2021, 12, x FOR PEER REVIEW 2 of 11 Genes 2021, 12, 845 2 of 11 (PI3K). Thanks to this domain, ATM is an active serine/threonine kinase. Besides, ATM al(FRAPso has (FK506-bindinga FAT (FRAP (FK506 protein-binding 12-rapamycin-associated protein 12-rapamycin protein-associated (mTOR)), protein ATM, (mTOR)), TRAPP A(Transformation/transcriptionTM, TRAPP (Transformation/transcription domain-associated domain protein))-associated domain protein)) and a domain FATC domain and a FATCthat is domain located that on its is C-terminallocated on its [6]. C In-terminal 2006, Jiang [6]. In et al.2006, additionally Jiang et al. showed additionally that the showe FATCd thatdomain the FATC was essential domain for was ATM essential to interact for ATM with to its interact partners with for activation its partners and for control activation of its andkinase control activity of its [7 ].kinase activity [7]. TheThe N N-terminus-terminus of of ATM ATM contains contains multiple multiple αα helicalhelical HEAT HEAT repeat repeat motifs motifs and and a a region region thatthat appear appear to to be be critical critical for for ATM ATM interactions interactions with with other other proteins proteins and and DNA DNA by by serving serving as as scaffolds.scaffolds. It It has has been been shown shown that that HEAT HEAT motifs motifs are are necessary necessary for for ATM ATM to to interact interact with with and and recruitrecruit a a number ofof proteinsproteins to to the the DNA DNA lesion lesion sites sites for for DNA DNA damage damage repair repair [8– 11[8].–11] In. fact, In fact,ATMIN ATMIN (ATM (ATM interacting interacting protein), protein), NBS1 NBS1 (a component (a component of the MRNof the complex), MRN complex), and NKX3.1 and NKX3.1(a prostate (a prostate tumor suppressor)tumor suppressor) have been have found been tofound bind to to bind ATM’s to ATM’s HEAT motifsHEAT [motifs12–15]. [12In– 2004,15]. In Lavin 2004, et Lavin al., also et al., reported also reported the presence the presence of other of motifs, other a motifs, proline-rich a proline area-rich for c-Ablarea forbinding, c-Abl binding, and a leucine and a zipper leucine on zipper ATM [on16 ,ATM17] (Figure [16,17]1). (Figure 1). Figure 1. Human ATM’s domain map. ATM is a large gene with 66 exons and consists of multiple domains that allow its Figure 1. Human ATM’s domain map. ATM is a large gene with 66 exons and consists of multiple domains that allow its proteinprotein to to directly directly interact interact with with numerous numerous regulators, regulators, partners, partners, and and downstream downstream targets. targets. In In its its N N terminus, terminus, ATM ATM contains contains aa Nuclear Nuclear Localization Localization Signal Signal that that enables enables its its nuclear nuclear translocation. translocation. ATM ATM also also uses uses its its N N-terminus-terminus for for interacting interacting wi withth chromatin,chromatin, substrates substrates and and partners, partners, for for instance, instance, p53, p53, LKB1, LKB1, NBS1, NBS1, among among others. others. The The putative putative leucine leucine zipper zipper motif motif on on ATMATM N N-terminus-terminus is documented toto bebe essentialessentialfor for its its dimerization dimerization and and interaction interaction with with other other partners partners or or substrates. substrates. On On its itsC-terminus, C-terminus, ATM ATM has has a FATa FAT (FRAP, (FRAP, ATM ATM and and TRRAP TRRAP proteins) proteins) domain domain which which contains contains autophosphorylation autophosphorylation sites sites and and is iscritical critical for for substrate substrate binding. binding. As As a kinase,a kinase, ATM ATM has has a serine/threoninea serine/threonine kinase kinase domain domain that that is is highly highly homologous homologous to to that that of ofthe the PI3K. PI3K. At At the the end end of of its its C-terminus C-terminus is is the the FATC FATC domain domain that that isis essentialessential forfor ATMATM fullfull activation and interactions interactions with with partners. Of note, ATM contains multiple important autophosphorylation sites that can substantially affect its functions. partners. Of note, ATM contains multiple important autophosphorylation sites that can substantially affect its functions. For instance, Ser367, Ser1893, Ser1981, and Ser2996 are auto-phosphorylated after irradiation. Thr1885 is not induced by For instance, Ser367, Ser1893, Ser1981, and Ser2996 are auto-phosphorylated after irradiation. Thr1885 is not induced by irradiation. In human cells, autophosphorylation on three residues Ser367, Ser1893, Ser1981, and acetylation on Lys3016 haveirradiation. been shown In human to be cells, important autophosphorylation for ATM activation. on three Aurora residues B phosphorylates Ser367, Ser1893, ATM Ser1981, at Ser1403 and acetylation during mitosis. on Lys3016 Im- portantly,have been ATM shown also to be has important 49 α helical for ATM HEAT activation. motifs whose Aurora name B phosphorylates is derived from ATM huntingtin, at Ser1403 duringelongation mitosis. factor Importantly, 3, the A subunitATM also of hasprotein 49 α phosphatasehelical HEAT 2A, motifs and whose target name of rapamycin is derived 1 from(TOR1). huntingtin, These motifs elongation serve factoras scaffolds 3, theA and subunit are critical of protein for ATMphosphatase interactions 2A, andwith target proteins of rapamycinand DNA. 1 (TOR1). These motifs serve as scaffolds and are critical for ATM interactions with proteins and DNA. 3. ATM’s role in DNA Damage Response and Ataxia Telangiectasia ATM is an important initiator of the DNA-damage response in mammalian cells via the Mre11/Rad50/Nbs1 (MRN) complex at the DNA lesion sites [18–21]. ATM activation Genes 2021, 12, 845 3 of 11 Genes 2021, 12, x FOR PEER REVIEW3. ATM’s role in DNA Damage Response and Ataxia Telangiectasia 3 of 11 ATM is an important initiator of the DNA-damage response in mammalian cells via the Mre11/Rad50/Nbs1 (MRN) complex at the DNA lesion sites [18–21].
Recommended publications
  • The Functions of DNA Damage Factor RNF8 in the Pathogenesis And
    Int. J. Biol. Sci. 2019, Vol. 15 909 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(5): 909-918. doi: 10.7150/ijbs.31972 Review The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer Tingting Zhou 1, Fei Yi 1, Zhuo Wang 1, Qiqiang Guo 1, Jingwei Liu 1, Ning Bai 1, Xiaoman Li 1, Xiang Dong 1, Ling Ren 2, Liu Cao 1, Xiaoyu Song 1 1. Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China 2. Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China Corresponding authors: Xiaoyu Song, e-mail: [email protected] and Liu Cao, e-mail: [email protected]. Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, 110122, China. Tel: +86 24 31939636, Fax: +86 24 31939636. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.03; Accepted: 2019.02.08; Published: 2019.03.09 Abstract The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction.
    [Show full text]
  • 2. the MRN Complex
    reviewreview The MRN complex: coordinating and mediating the response to broken chromosomes Michael van den Bosch, Ronan T.Bree & Noel F. Lowndes+ Genome Stability Laboratory, National University of Ireland, Galway, Ireland The MRE11–RAD50–NBS1 (MRN) protein complex has been linked mechanisms by modification and activation of specific repair factors. to many DNA metabolic events that involve DNA double-stranded Alternatively, if the damage is irreparable or an excessive number of breaks (DSBs). In vertebrate cells, all three components are encoded lesions is present, checkpoint signalling is also required to induce by essential genes, and hypomorphic mutations in any of the human apoptotic cell death. The two main mechanisms of DSB repair are genes can result in genome-instability syndromes. MRN is one of the non-homologous end joining (NHEJ) and homologous recombination first factors to be localized to the DNA lesion, where it might initially (HR; Barnes, 2001; van den Bosch et al., 2002). The malfunction have a structural role by tethering together, and therefore stabiliz- of these mechanisms can result in the fusion of DNA ends that were ing, broken chromosomes. This suggests that MRN could function as originally distant from one another in the genome, which generates a lesion-specific sensor. As well as binding to DNA, MRN has other chromosomal rearrangements such as inversions, translocations and roles in both the processing and assembly of large macromolecular deletions. The resulting disruption of gene expression can perturb complexes (known as foci) that facilitate efficient DSB responses. normal cell proliferation or result in cell death. Recently, a novel mediator protein, mediator of DNA damage checkpoint protein 1 (MDC1), was shown to co-immunoprecipitate The MRN complex and the repair of DNA damage with the MRN complex and regulate MRE11 foci formation.
    [Show full text]
  • BASC, a Super Complex of BRCA1-Associated Proteins Involved in the Recognition and Repair of Aberrant DNA Structures
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures Yi Wang,1,2,6 David Cortez,1,3,6 Parvin Yazdi,1,2 Norma Neff,5 Stephen J. Elledge,1,3,4 and Jun Qin1,2,7 1Verna and Mars McLean Department of Biochemistry and Molecular Biology, 2Department of Cellular and Molecular Biology, 3Howard Hughes Medical Institute, and 4Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 USA; 5Laboratory of Molecular Genetics, New York Blood Center, New York, New York 10021 USA We report the identities of the members of a group of proteins that associate with BRCA1 to form a large complex that we have named BASC (BRCA1-associated genome surveillance complex). This complex includes tumor suppressors and DNA damage repair proteins MSH2, MSH6, MLH1, ATM, BLM, and the RAD50–MRE11–NBS1 protein complex. In addition, DNA replication factor C (RFC), a protein complex that facilitates the loading of PCNA onto DNA, is also part of BASC. We find that BRCA1, the BLM helicase, and the RAD50–MRE11–NBS1 complex colocalize to large nuclear foci that contain PCNA when cells are treated with agents that interfere with DNA synthesis. The association of BRCA1 with MSH2 and MSH6, which are required for transcription-coupled repair, provides a possible explanation for the role of BRCA1 in this pathway. Strikingly, all members of this complex have roles in recognition of abnormal DNA structures or damaged DNA, suggesting that BASC may serve as a sensor for DNA damage.
    [Show full text]
  • ABSTRACT Title of Document: the FUNCTION of MRN (MRE11-RAD50- NBS1) COMPLEX DURING WRN (WERNER) FACILITATED ATM (ATAXIA- TELANGI
    ABSTRACT Title of Document: THE FUNCTION OF MRN (MRE11-RAD50- NBS1) COMPLEX DURING WRN (WERNER) FACILITATED ATM (ATAXIA- TELANGIECTASIA MUTATED) ACTIVATION Junhao Ma, Master of Science, 2009 Directed By: Assistant Professor, Dr. Wen-Hsing Cheng, Department of Nutrition and Food Science WRN (Werner) protein is a member of the RecQ family showing helicase and exonuclease activity. WRN protein may lose function upon mutation and causes Werner syndrome (WS) which is an autosomal recessive, cancer-prone and premature aging disease. ATM (Ataxia-Telangiectasia mutated) protein initiates a signaling pathway in response to DNA double strand breaks (DSBs). Genomic disorder ataxia- telangiectasia (A-T) is associated with defective ATM. WRN protein is involved in ATM pathway activation when cells are exposed to DSBs associated with replication fork collapse. Because the Mre11-Rad50-Nbs1 (MRN) complex, a sensor of DSBs, is known to interact with WRN and ATM, we investigated whether the MRN complex mediates the WRN-dependent ATM pathway activation. In this study, we employed short-hairpin RNA to generate WRN- and Nbs1-deficient U-2 OS (osteosarcoma) cells. Cells were treated with clastogens which induce collapsed replication forks, thus provided proof for whether WRN facilitates ATM activation via MRN complex. This study serves as a basis for future investigation on the correlation between ATM, MRN complex and WRN, which will ultimately help understand the mechanism of aging and cancer. THE FUNCTION OF MRN (MRE11-RAD50-NBS1) COMPLEX DURING WRN (WERNER) FACILITATED ATM (ATAXIA-TELANGIECTASIA MUTATED) ACTIVATION By Junhao Ma Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2009 Advisory Committee: Professor Wen-Hsing Cheng, Chair Professor Mickey Parish Professor Liangli (Lucy) Yu © Copyright by Junhao Ma 2009 Dedication To my daughter Aimi, my wife Yangming, my father and mother.
    [Show full text]
  • Genome Instability and Rad50s: Subtle Yet Severe
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Genome instability and Rad50S: subtle yet severe Martijn de Jager1 and Roland Kanaar1,2,3 1Department of Cell Biology & Genetics, Erasmus MC, and 2Department of Radiation Oncology, Erasmus MC–Daniel, 3000 DR Rotterdam, The Netherlands In the early 1980s, a primary hurdle on the track to un- Rad50S/S mice derstanding the function of a protein was the isolation of To derive a viable mouse Rad50 allele, Bender et al. its gene. Over the last two decades, we have seen subse- (2002) took their clues from genetic analyses of the quent hurdles in the race to decipher protein function, RAD50 gene from the yeast Saccharomyces cerevisiae. including atomic structure resolution and the creation of RAD50-deficient S.cerevisiae cells are viable but display viable mouse mutants, being cleared at an ever-increas- mitotic and meiotic phenotypes. The cells are sensitive ing pace. The genome surveillance protein Rad50has to the DNA-damaging agent methyl methanesulfonate now leapt over these modern-day hurdles. In the last two (MMS) and are defective in the formation of viable years, rapid progress has been made in understanding spores. Alani et al. (1990) had isolated separation-of- structural aspects of Rad50 (Hopfner et al. 2000, 2001, function (rad50S) alleles of RAD50 that conferred no 2002; de Jager et al. 2001). In this issue of Genes & De- overt MMS sensitivity to the cells, but still blocked vi- velopment, John Petrini and colleagues report on the able spore formation. All of the nine different muta- phenotypes of mice carrying a hypomorphic Rad50 allele tions that resulted in the rad50S phenotype mapped named Rad50S (Bender et al.
    [Show full text]
  • DNA Repair with Its Consequences (E.G
    Cell Science at a Glance 515 DNA repair with its consequences (e.g. tolerance and pathways each require a number of apoptosis) as well as direct correction of proteins. By contrast, O-alkylated bases, Oliver Fleck* and Olaf Nielsen* the damage by DNA repair mechanisms, such as O6-methylguanine can be Department of Genetics, Institute of Molecular which may require activation of repaired by the action of a single protein, Biology, University of Copenhagen, Øster checkpoint pathways. There are various O6-methylguanine-DNA Farimagsgade 2A, DK-1353 Copenhagen K, Denmark forms of DNA damage, such as base methyltransferase (MGMT). MGMT *Authors for correspondence (e-mail: modifications, strand breaks, crosslinks removes the alkyl group in a suicide fl[email protected]; [email protected]) and mismatches. There are also reaction by transfer to one of its cysteine numerous DNA repair pathways. Each residues. Photolyases are able to split Journal of Cell Science 117, 515-517 repair pathway is directed to specific Published by The Company of Biologists 2004 covalent bonds of pyrimidine dimers doi:10.1242/jcs.00952 types of damage, and a given type of produced by UV radiation. They bind to damage can be targeted by several a UV lesion in a light-independent Organisms are permanently exposed to pathways. Major DNA repair pathways process, but require light (350-450 nm) endogenous and exogenous agents that are mismatch repair (MMR), nucleotide as an energy source for repair. Another damage DNA. If not repaired, such excision repair (NER), base excision NER-independent pathway that can damage can result in mutations, diseases repair (BER), homologous recombi- remove UV-induced damage, UVER, is and cell death.
    [Show full text]
  • Suppression of DNA-Damage Checkpoint Signaling by Rsk-Mediated Phosphorylation of Mre11
    Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11 Chen Chen, Liguo Zhang, Nai-Jia Huang, Bofu Huang, and Sally Kornbluth1 Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710 Edited by Tony Hunter, The Salk Institute for Biological Studies, La Jolla, CA, and approved November 12, 2013 (received for review April 9, 2013) Ataxia telangiectasia mutant (ATM) is an S/T-Q–directed kinase A hallmark of cancer cells is their ability to override cell-cycle that is critical for the cellular response to double-stranded breaks checkpoints, including the DSB checkpoint, which arrests the cell (DSBs) in DNA. Following DNA damage, ATM is activated and cycle to allow adequate time for damage repair. Previous studies recruited by the MRN protein complex [meiotic recombination 11 have implicated the MAPK pathway in inhibition of DNA-dam- (Mre11)/DNA repair protein Rad50/Nijmegen breakage syndrome age signaling: PKC suppresses DSB-induced G2/M checkpoint 1 proteins] to sites of DNA damage where ATM phosphorylates signaling following ionizing radiation via activation of ERK1/2 multiple substrates to trigger cell-cycle arrest. In cancer cells, this (22); activation of RAF kinase, leading to activation of MEK/ regulation may be faulty, and cell division may proceed even in ERK/Rsk, also can suppress G2/M checkpoint signaling (23). the presence of damaged DNA. We show here that the ribosomal Given its prominent role in multiple cancers, the MAPK s6 kinase (Rsk), often elevated in cancers, can suppress DSB-induced pathway is an attractive therapeutic target. Indeed, treatment of melanoma using the RAF inhibitor vemurafenib has shown some ATM activation in both Xenopus egg extracts and human tumor cell clinical success, as has treatment of nonsmall cell lung carcinoma lines.
    [Show full text]
  • Abnormal Function of Telomere Protein TRF2 Induces Cell Mutation and the Effects of Environmental Tumor‑Promoting Factors (Review)
    ONCOLOGY REPORTS 46: 184, 2021 Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review) ZHENGYI WANG1‑3 and XIAOYING WU4 1Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071; 2Institute of Laboratory Animals of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital; 3Yinglongwan Laboratory Animal Research Institute, Zhonghe Community, High‑Tech Zone, Chengdu, Sichuan 610212; 4Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China Received March 24, 2021; Accepted June 14, 2021 DOI: 10.3892/or.2021.8135 Abstract. Recent studies have found that somatic gene muta‑ microenvironment, and maintains the stemness characteris‑ tions and environmental tumor‑promoting factors are both tics of tumor cells. TRF2 levels are abnormally elevated by a indispensable for tumor formation. Telomeric repeat‑binding variety of tumor control proteins, which are more conducive factor (TRF)2 is the core component of the telomere shelterin to the protection of telomeres and the survival of tumor cells. complex, which plays an important role in chromosome In brief, the various regulatory mechanisms which tumor cells stability and the maintenance of normal cell physiological rely on to survive are organically integrated around TRF2, states. In recent years, TRF2 and its role in tumor forma‑ forming a regulatory network, which is conducive to the tion have gradually become a research hot topic, which has optimization of the survival direction of heterogeneous tumor promoted in‑depth discussions into tumorigenesis and treat‑ cells, and promotes their survival and adaptability.
    [Show full text]
  • Lessons Learned from BRCA1 and BRCA2
    Oncogene (2000) 19, 6159 ± 6175 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Lessons learned from BRCA1 and BRCA2 Lei Zheng1, Shang Li1, Thomas G Boyer1 and Wen-Hwa Lee*,1 1Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas, TX 78245, USA BRCA1 and BRCA2 are breast cancer susceptibility susceptibility genes has provided two human genetic genes. Mutations within BRCA1 and BRCA1 are models for studies of breast cancer. responsible for most familial breast cancer cases. To understand how the loss of BRCA1 or BRCA2 Targeted deletion of Brca1 or Brca2 in mice has function leads to breast cancer formation, mouse revealed an essential function for their encoded products, genetic models for BRCA1 or BRCA2 mutations have BRCA1 and BRCA2, in cell proliferation during been established. This work has revealed that Brca1 embryogenesis. Mouse models established from condi- homozygous deletions are lethal at early embryonic tional expression of mutant Brca1 alleles develop days (E)5.5 ± 13.5 (Gowen et al., 1996; Hakem et al., mammary gland tumors, providing compelling evidence 1996; Liu et al., 1996; Ludwig et al., 1997). Three that BRCA1 functions as a breast cancer suppressor. independent groups generated distinct mutations within Human cancer cells and mouse cells de®cient in BRCA1 Brca1, yet nonetheless observed similar embryonic or BRCA2 exhibit radiation hypersensitivity and phenotypes, including defects in both gastrulation and chromosomal abnormalities, thus revealing a potential cellular proliferation, and death at E6.5 (Hakem et al., role for both BRCA1 and BRCA2 in the maintenance of 1996; Liu et al., 1996; Ludwig et al., 1997).
    [Show full text]
  • Epigenetic Regulation of DNA Repair Genes and Implications for Tumor Therapy ⁎ ⁎ Markus Christmann , Bernd Kaina
    Mutation Research-Reviews in Mutation Research xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Mutation Research-Reviews in Mutation Research journal homepage: www.elsevier.com/locate/mutrev Review Epigenetic regulation of DNA repair genes and implications for tumor therapy ⁎ ⁎ Markus Christmann , Bernd Kaina Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany ARTICLE INFO ABSTRACT Keywords: DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and DNA repair cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment Genotoxic stress with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly Epigenetic silencing governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to tumor formation mutations in their coding or promoter region, changes in the expression of transcription factors activating or Cancer therapy repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation MGMT Promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. GADD45 We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyl- TET transferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of p53 components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)- methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy.
    [Show full text]
  • Post-Translational Modification of MRE11: Its Implication in DDR And
    G C A T T A C G G C A T genes Review Post-Translational Modification of MRE11: Its Implication in DDR and Diseases Ruiqing Lu 1,† , Han Zhang 2,† , Yi-Nan Jiang 1, Zhao-Qi Wang 3,4, Litao Sun 5,* and Zhong-Wei Zhou 1,* 1 School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; [email protected] (R.L.); [email protected] (Y.-N.J.) 2 Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming 650118, China; [email protected] 3 Leibniz Institute on Aging–Fritz Lipmann Institute (FLI), 07745 Jena, Germany; zhao-qi.wang@leibniz-fli.de 4 Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, 07745 Jena, Germany 5 School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China * Correspondence: [email protected] (L.S.); [email protected] (Z.-W.Z.) † These authors contributed equally to this work. Abstract: Maintaining genomic stability is vital for cells as well as individual organisms. The meiotic recombination-related gene MRE11 (meiotic recombination 11) is essential for preserving genomic stability through its important roles in the resection of broken DNA ends, DNA damage response (DDR), DNA double-strand breaks (DSBs) repair, and telomere maintenance. The post-translational modifications (PTMs), such as phosphorylation, ubiquitination, and methylation, regulate directly the function of MRE11 and endow MRE11 with capabilities to respond to cellular processes in promptly, precisely, and with more diversified manners. Here in this paper, we focus primarily on the PTMs of MRE11 and their roles in DNA response and repair, maintenance of genomic stability, as well as their Citation: Lu, R.; Zhang, H.; Jiang, association with diseases such as cancer.
    [Show full text]
  • SV40 Large T-Antigen Disturbs the Formation of Nuclear DNA-Repair Foci Containing MRE11
    Oncogene (2002) 21, 4873 – 4878 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc REVIEW SV40 large T-antigen disturbs the formation of nuclear DNA-repair foci containing MRE11 Martin Digweed*,1, Ilja Demuth1, Susanne Rothe1, Regina Scholz2, Andreas Jordan2, Carsten Gro¨ tzinger3, Detlev Schindler4, Markus Grompe5 and Karl Sperling1 1Institut fu¨r Humangenetik, Charite´ – Campus Virchow-Klinikum, Humboldt Universita¨t zu Berlin, Germany; 2Klinik fu¨r Strahlenheilkunde, Charite´ – Campus Virchow-Klinikum, Humboldt Universita¨t zu Berlin, Germany; 3Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charite´ – Campus Virchow-Klinikum, Humboldt Universita¨t zu Berlin, Germany; 4Institut fu¨r Humangenetik, Theodor-Boveri-Institut fu¨r Biowissenschaften (Biozentrum), Bayerische Julius-Maximilians- Universita¨tWu¨rzburg, Germany; 5Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon, USA The accumulation of DNA repair proteins at the sites of Keywords: ionizing irradiation; Fanconi anaemia; im- DNA damage can be visualized in mutagenized cells at mortalization the single cell level as discrete nuclear foci by immunofluorescent staining. Formation of nuclear foci in irradiated human fibroblasts, as detected by antibodies directed against the DNA repair protein MRE11, is Introduction significantly disturbed by the presence of the viral oncogene, SV40 large T-antigen. The attenuation of foci The two major mechanisms for DNA double strand formation was found in both T-antigen immortalized break (DSB) repair in mammalian cells are nonhomo- cells and in cells transiently expressing T-antigen, logous end joining (NHEJ) and homologous indicating that it is not attributable to secondary recombination (HR). Many genes involved in these mutations but to T-antigen expression itself.
    [Show full text]