Predictive Biomarkers for Cancer Therapy with PARP Inhibitors

Total Page:16

File Type:pdf, Size:1020Kb

Predictive Biomarkers for Cancer Therapy with PARP Inhibitors Oncogene (2014) 33, 3894–3907 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW Predictive biomarkers for cancer therapy with PARP inhibitors J Michels1,2,3, I Vitale4,5, M Saparbaev2,3,6, M Castedo1,2,3,11 and G Kroemer1,2,3,7,8,9,10,11 Poly(ADP-ribose) polymerase (PARP) inhibitors have raised high expectations for the treatment of multiple malignancies. PARP inhibitors, which can be used as monotherapies or in combination with DNA-damaging agents, are particularly efficient against tumors with defects in DNA repair mechanisms, in particular the homologous recombination pathway, for instance due to BRCA mutations. Thus, deficient DNA repair provides a framework for the success of PARP inhibitors in medical oncology. Here, we review encouraging results obtained in recent clinical trials investigating the safety and efficacy of PARP inhibitors as anti- cancer agents. We discuss emerging mechanisms of regulation of homologous recombination and how inhibition of DNA repair might be used in cancer therapy. We surmise that the identification of patients that are likely to benefit from PARP inhibition will improve the clinical use of PARP inhibitors in a defined target population. Thus, we will place special emphasis on biomarker discovery. Oncogene (2014) 33, 3894–3907; doi:10.1038/onc.2013.352; published online 16 September 2013 Keywords: PAR; base excision repair; homologous recombination; BRCAness; synthetic lethality INTRODUCTION PARP1 IN PHYSIOLOGICAL AND PATHOLOGICAL RESPONSES The superfamily of poly(ADP-ribose) (PAR) polymerases (PARPs),1 PARP1 is historically known as a sensor of DNA nicks, contributing whose discovery dates back to the early 1960s, nowadays en- to the single-strand break repair, the orchestration of the DNA compasses 17 distinct members that participate in a wide array damage response (DDR) and the maintenance of genomic of cell functions, including DNA transcription, DNA repair, stability.10,11 Nevertheless, several recent studies have led to the genomic stability maintenance, cell cycle regulation as well as identification of a plethora of novel roles for PARP1, placing its non-apoptotic cell death (Table 1).2–5 activity at the center of the cellular stress response network. PARP1, a multifunctional enzyme of 113 kDa, is the most PARP1 À / À knockout mice exhibit (i) increased genetic instability abundant, ubiquitously expressed and best-characterized member as measured by the frequency of micronuclei, sister chromatid of the superfamily.6 PARP1 has a highly conserved structural and exchanges and other chromosome aberrations as well as (ii) major functional organization including: an N-terminal double zinc finger DNA repair defects coupled to hypersensitivity to alkylating agents 12 DNA-binding domain, a central auto-regulation domain and a and g-radiation. Nonetheless, the inhibition of PARP is not lethal 13 À / À C-terminal catalytic domain that binds oxidized nicotinamide for mammals, and Parp1 mice are viable and fertile, even adenine dinucleotide (NAD þ ).7 PARP1 is a DNA nick sensor that though they manifest accelerated aging and exhibit a higher þ incidence of spontaneous or carcinogen-induced tumors than utilizes NAD as a substrate to catalyze the covalent attachment 14 of ADP-ribose units to the g-carboxyl group of Glu residues of a wild-type controls. However, the simultaneous loss of PARP1 and PARP2 is lethal at the onset of gastrulation, suggesting that the two wide array of target proteins. This post-translational modification 15 known as poly-ADP-ribosylation or PARylation increases more PARP proteins have redundant roles in embryogenesis. than 500-fold in the presence of DNA-strand breaks.8 Although PARP1 accounts for the vast majority (B85%) of PAR polymer PARP1 and the DDR synthesis, five other members have catalytic activity of PARylation, Due to the continuous exposure to endogenous and exogenous namely PARP2, PARP3, PARP4 and PARP5A/B (also known as DNA-damaging insults, cells experience DNA lesions such as SSBs 9 tankyrase1/2). Recently, Hottiger reported a new classification for and double-strand breaks (DSBs) that require continuous activa- the ADP-ribosyl transferases grouping the PARP family members tion of DNA repair pathways (Box 1). and distinguishing proteins with mono or poly(ADP)ribosylation The levels of PARP1 protein increase in response to DNA activity.9 damage,16 and PARP1 contributes to both SSB and DSB repair. Here, we provide an overview on the roles of PARP1, focusing PARP1 associates with persisting SSBs or DSBs where it becomes on its involvement in cellular stress management, and the activated and catalyzes the PARylation of multiple nuclear acceptor possibility to target PARP1 for the treatment of cancer. We will proteins adjacent to the DNA break including that of PARP1 itself, devote special attention to the discovery of predictive biomarkers histones, DNA repair proteins, chromatin regulators and transcription that may improve patient selection. factors.7,17 PARylation facilitates the chromatin decondensation, 1INSERM, U848, Villejuif, France; 2Institut Gustave Roussy, Villejuif, France; 3Universite´ de Paris Sud, Villejuif, France; 4Regina Elena National Cancer Institute, Roma, Italy; 5National Institute of Health, Rome, Italy; 6CNRS UMR8200, Villejuif, France; 7Metabolomics Platform, Institut Gustave Roussy, Villejuif, France; 8Centre de Recherche des Cordeliers, Paris, France; 9Poˆle de Biologie, Hoˆpital Europe´en Georges Pompidou, AP-HP, Paris, France and 10Faculty of Medicine, Universite´ Paris Descartes, Paris, France. Correspondence: Dr M Castedo or Professor G Kroemer, INSERM U848, Institut Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France. E-mail: [email protected] or [email protected] 11These authors share senior co-authorship. Received 17 June 2013; revised 9 July 2013; accepted 12 July 2013; published online 16 September 2013 Anticancer profile of PARP inhibitors J Michels et al 3895 Table 1. Multiple PARP functions Box 1 DNA repair pathways Actor Function Reference Base excision repair (BER) is a DNA repair pathway that DNA repair XRCC1 BER 11,22 removes non-bulky base lesions in form of the free bases, as DDB2, XPA NER 24–26 they occur after spontaneous, oxidative and alkylating DNA MRE11 HRR 27 damage.181 BER includes different effectors acting at distinct 35 DNA-PKC NHEJ steps. In human cells DNA glycosylases (for example, 88 8-oxoguanine-DNA glycosylase (OGG1), alkyl-N-purine-DNA Genomic Topoisomerase I Genomic glycosylase (ANPG), endonuclease III DNA glycosylase hNTH1) stability maintenance 182–185 Telomere Genomic stability 199 retrieve the damaged bases generating abasic sites that then are cleaved by AP endonuclease 1, APE1, inducing single- endings 186 Mitotic spindle Mitosis 199 strand breaks (SSBs). PARP1 and PARP2 attract different poles repair enzymes to the DNA lesion site (for example, X-ray cross-complementing factor 1 XRCC1, polymerase b,pro- DNA Histone H1 Decondensation of 200 liferating cell nuclear antigen (PCNA), ligase 3).37 transcription the double DNA Nucleotide excision repair (NER) is a pluripotent pathway helix 201 for recognition and removal of bulky helix disturbing DNA Cell cycle c-Fos, c-Myc G0-G1 transition lesions generated by UV irradiation and anticancer agents progression Inflammation TNF-a, NF-kB, Acute and chronic 62 such as cisplatin (CDDP). NER involves dual incisions that HMGB1 inflammation bracket lesion site and release of the 24–32 nucleotide-long Cell NAD þ Mitochondrial 66 oligomer containing damaged residues. Two sub-pathways metabolism respiration are identified, (i) the transcription-coupled repair (TC-NER) in transcriptionally active genes and (ii) the global genomic Cell death/ AIF Parthanatos 47 repair (GG-NER) operating on the entire genome.187 RNA survival polymerase II is stalled at the DNA lesions are sensed by ROS Apoptosis 202 66,202 cockayne syndrome WD repeat proteins (CSA and CSB) in TC- Glycolysis Necrosis NER and by Xeroderma pigmentosum (XPC) in GG-NER.188 In inhibition, NAD þ depletion both pathways, the lesions are excised by endonucleases (for AMPK activation Autophagy 52 example, XPG and ERCC1-XPF) and resulting DNA gap is then filled and sealed by DNA polymerases d, e and ligase III, respectively. NER also contributes to repair intra and Abbreviations: AIF, apoptosis-inducing factor; AMPK, AMP kinase; ATM, interstrand crosslinks (ICL) and oxidative DNA damage. ataxia-telangiectasia mutated; BER, base excision repair; DDB2, damaged Mismatch repair (MMR) is a system that recognizes and DNA-binding protein; DNA-PKc, DNA-dependant protein kinase; HRR, homologous recombinational repair; NAD þ, nicotinamide adenine dinu- repairs DNA replication and recombination errors, such as cleotide; NER, nucleotide excision repair; NHEJ, non-homologous end mismatched bases, deletions and insertions. In human cells joining; PARP, poly-(ADP-ribose) polymerase; ROS, reactive oxygen species; two major heterodimers: Msh2/Msh6 (MutSa), and Msh2/ TNF-a, tumor necrosis factor a; XPA, xeroderma pigmentosum comple- Msh3 (MutSb) recognize DNA mismatches and trigger their mentary group A; XRCC1, X-ray repair cross-complementing 1. removal by recruiting MutLa (MLH1/PMS2) and MutLb (MLH1/PMS1) complexes. Direct repair (DR) is the direct reversal of a damaged base to its native state without excision and de novo DNA synthesis. thereby rendering DNA lesions accessible to the repair machinery. In At present, there are three types of DNA damage known to addition,
Recommended publications
  • The Functions of DNA Damage Factor RNF8 in the Pathogenesis And
    Int. J. Biol. Sci. 2019, Vol. 15 909 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(5): 909-918. doi: 10.7150/ijbs.31972 Review The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer Tingting Zhou 1, Fei Yi 1, Zhuo Wang 1, Qiqiang Guo 1, Jingwei Liu 1, Ning Bai 1, Xiaoman Li 1, Xiang Dong 1, Ling Ren 2, Liu Cao 1, Xiaoyu Song 1 1. Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China 2. Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China Corresponding authors: Xiaoyu Song, e-mail: [email protected] and Liu Cao, e-mail: [email protected]. Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, 110122, China. Tel: +86 24 31939636, Fax: +86 24 31939636. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.03; Accepted: 2019.02.08; Published: 2019.03.09 Abstract The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction.
    [Show full text]
  • The Role of PARP1 in Monocyte and Macrophage
    cells Review The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors Maciej Sobczak 1, Marharyta Zyma 2 and Agnieszka Robaszkiewicz 1,* 1 Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] 2 Department of Immunopathology, Medical University of Lodz, 7/9 Zeligowskiego, Bldg 2, Rm177, 90-752 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-42-6354449; Fax: +48-42-6354449 or +48-42-635-4473 Received: 4 August 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing.
    [Show full text]
  • BASC, a Super Complex of BRCA1-Associated Proteins Involved in the Recognition and Repair of Aberrant DNA Structures
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures Yi Wang,1,2,6 David Cortez,1,3,6 Parvin Yazdi,1,2 Norma Neff,5 Stephen J. Elledge,1,3,4 and Jun Qin1,2,7 1Verna and Mars McLean Department of Biochemistry and Molecular Biology, 2Department of Cellular and Molecular Biology, 3Howard Hughes Medical Institute, and 4Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 USA; 5Laboratory of Molecular Genetics, New York Blood Center, New York, New York 10021 USA We report the identities of the members of a group of proteins that associate with BRCA1 to form a large complex that we have named BASC (BRCA1-associated genome surveillance complex). This complex includes tumor suppressors and DNA damage repair proteins MSH2, MSH6, MLH1, ATM, BLM, and the RAD50–MRE11–NBS1 protein complex. In addition, DNA replication factor C (RFC), a protein complex that facilitates the loading of PCNA onto DNA, is also part of BASC. We find that BRCA1, the BLM helicase, and the RAD50–MRE11–NBS1 complex colocalize to large nuclear foci that contain PCNA when cells are treated with agents that interfere with DNA synthesis. The association of BRCA1 with MSH2 and MSH6, which are required for transcription-coupled repair, provides a possible explanation for the role of BRCA1 in this pathway. Strikingly, all members of this complex have roles in recognition of abnormal DNA structures or damaged DNA, suggesting that BASC may serve as a sensor for DNA damage.
    [Show full text]
  • Poly(ADP-Ribose) Polymerase-1 (PARP1) and P53 Labelling Index Correlates with Tumour Grade in Meningiomas
    Original article Poly(ADP-ribose) polymerase-1 (PARP1) and p53 labelling index correlates with tumour grade in meningiomas Tamás Csonka1, Balázs Murnyák1, Rita Szepesi2, Andrea Kurucz1, Álmos Klekner3, Tibor Hortobágyi1 1Division of Neuropathology, Institute of Pathology, 2Department of Neurology, 3Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary Folia Neuropathol 2014; 52 (2): 111-120 DOI: 10.5114/fn.2014.43782 Abstract Meningiomas are one of the most frequent intracranial tumours, with 13 histological types and three grades accord- ing to the 2007 WHO Classification of Tumours of the Central Nervous System. p53, as one of the most potent tumour suppressor proteins, plays a role in nearly 50% of human tumours. Poly(ADP-ribose) polymerase (PARP) is a DNA repair enzyme with high ATP demand. It plays a role in apoptosis by activating an apoptosis inducing factor, and in necrosis by consuming NAD+ and ATP. Only PARP1 has been investigated in detail in tumours out of the 17 members of the PARP superfamily; however, its role has not been studied in meningiomas yet. The aim of this study was to determine the role of p53 and PARP1 in meningiomas of different grade and to establish whether there is any correlation between the p53 and PARP1 expression. Both PARP1 and p53 have been expressed in all examined meningiomas. PARP1 labelled grade II tumours with a higher intensity as compared to grade I and III neoplasms, respectively. An increased p53 expression was noted in grade III meningiomas. There was no statistical correlation between p53 and PARP1 expression. Our data indicate that both PARP1 and p53 activation is a feature in menin- giomas of higher grade, PARP1 overexpression being an early, whereas p53 overexpression, a late event in tumour progression.
    [Show full text]
  • PARP Inhibitors in Prostate Cancer–The Preclinical Rationale and Current Clinical Development
    G C A T T A C G G C A T genes Review PARP Inhibitors in Prostate Cancer–the Preclinical Rationale and Current Clinical Development Verneri Virtanen 1, Kreetta Paunu 1, Johanna K. Ahlskog 2, Reka Varnai 3,4 , Csilla Sipeky 5 and Maria Sundvall 1,6,* 1 Institute of Biomedicine, and Cancer Research Laboratories, Western Cancer Centre FICAN West, University of Turku, FI-20520 Turku, Finland 2 Faculty of Science and Engineering, Åbo Akademi University, and Turku Bioscience, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland 3 Department of Primary Health Care, University of Pécs, H-7623 Pécs, Hungary 4 Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, H-7621 Pécs, Hungary 5 Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland 6 Department of Oncology and Radiotherapy, Turku University Hospital, FI-20521 Turku, Finland * Correspondence: maria.sundvall@utu.fi; Tel.: +358-2-313-0000 Received: 3 June 2019; Accepted: 22 July 2019; Published: 26 July 2019 Abstract: Prostate cancer is globally the second most commonly diagnosed cancer type in men. Recent studies suggest that mutations in DNA repair genes are associated with aggressive forms of prostate cancer and castration resistance. Prostate cancer with DNA repair defects may be vulnerable to therapeutic targeting by Poly(ADP-ribose) polymerase (PARP) inhibitors. PARP enzymes modify target proteins with ADP-ribose in a process called PARylation and are in particular involved in single strand break repair. The rationale behind the clinical trials that led to the current use of PARP inhibitors to treat cancer was to target the dependence of BRCA-mutant cancer cells on the PARP-associated repair pathway due to deficiency in homologous recombination.
    [Show full text]
  • Genome Instability and Rad50s: Subtle Yet Severe
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Genome instability and Rad50S: subtle yet severe Martijn de Jager1 and Roland Kanaar1,2,3 1Department of Cell Biology & Genetics, Erasmus MC, and 2Department of Radiation Oncology, Erasmus MC–Daniel, 3000 DR Rotterdam, The Netherlands In the early 1980s, a primary hurdle on the track to un- Rad50S/S mice derstanding the function of a protein was the isolation of To derive a viable mouse Rad50 allele, Bender et al. its gene. Over the last two decades, we have seen subse- (2002) took their clues from genetic analyses of the quent hurdles in the race to decipher protein function, RAD50 gene from the yeast Saccharomyces cerevisiae. including atomic structure resolution and the creation of RAD50-deficient S.cerevisiae cells are viable but display viable mouse mutants, being cleared at an ever-increas- mitotic and meiotic phenotypes. The cells are sensitive ing pace. The genome surveillance protein Rad50has to the DNA-damaging agent methyl methanesulfonate now leapt over these modern-day hurdles. In the last two (MMS) and are defective in the formation of viable years, rapid progress has been made in understanding spores. Alani et al. (1990) had isolated separation-of- structural aspects of Rad50 (Hopfner et al. 2000, 2001, function (rad50S) alleles of RAD50 that conferred no 2002; de Jager et al. 2001). In this issue of Genes & De- overt MMS sensitivity to the cells, but still blocked vi- velopment, John Petrini and colleagues report on the able spore formation. All of the nine different muta- phenotypes of mice carrying a hypomorphic Rad50 allele tions that resulted in the rad50S phenotype mapped named Rad50S (Bender et al.
    [Show full text]
  • DNA Repair with Its Consequences (E.G
    Cell Science at a Glance 515 DNA repair with its consequences (e.g. tolerance and pathways each require a number of apoptosis) as well as direct correction of proteins. By contrast, O-alkylated bases, Oliver Fleck* and Olaf Nielsen* the damage by DNA repair mechanisms, such as O6-methylguanine can be Department of Genetics, Institute of Molecular which may require activation of repaired by the action of a single protein, Biology, University of Copenhagen, Øster checkpoint pathways. There are various O6-methylguanine-DNA Farimagsgade 2A, DK-1353 Copenhagen K, Denmark forms of DNA damage, such as base methyltransferase (MGMT). MGMT *Authors for correspondence (e-mail: modifications, strand breaks, crosslinks removes the alkyl group in a suicide fl[email protected]; [email protected]) and mismatches. There are also reaction by transfer to one of its cysteine numerous DNA repair pathways. Each residues. Photolyases are able to split Journal of Cell Science 117, 515-517 repair pathway is directed to specific Published by The Company of Biologists 2004 covalent bonds of pyrimidine dimers doi:10.1242/jcs.00952 types of damage, and a given type of produced by UV radiation. They bind to damage can be targeted by several a UV lesion in a light-independent Organisms are permanently exposed to pathways. Major DNA repair pathways process, but require light (350-450 nm) endogenous and exogenous agents that are mismatch repair (MMR), nucleotide as an energy source for repair. Another damage DNA. If not repaired, such excision repair (NER), base excision NER-independent pathway that can damage can result in mutations, diseases repair (BER), homologous recombi- remove UV-induced damage, UVER, is and cell death.
    [Show full text]
  • Lessons Learned from BRCA1 and BRCA2
    Oncogene (2000) 19, 6159 ± 6175 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Lessons learned from BRCA1 and BRCA2 Lei Zheng1, Shang Li1, Thomas G Boyer1 and Wen-Hwa Lee*,1 1Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas, TX 78245, USA BRCA1 and BRCA2 are breast cancer susceptibility susceptibility genes has provided two human genetic genes. Mutations within BRCA1 and BRCA1 are models for studies of breast cancer. responsible for most familial breast cancer cases. To understand how the loss of BRCA1 or BRCA2 Targeted deletion of Brca1 or Brca2 in mice has function leads to breast cancer formation, mouse revealed an essential function for their encoded products, genetic models for BRCA1 or BRCA2 mutations have BRCA1 and BRCA2, in cell proliferation during been established. This work has revealed that Brca1 embryogenesis. Mouse models established from condi- homozygous deletions are lethal at early embryonic tional expression of mutant Brca1 alleles develop days (E)5.5 ± 13.5 (Gowen et al., 1996; Hakem et al., mammary gland tumors, providing compelling evidence 1996; Liu et al., 1996; Ludwig et al., 1997). Three that BRCA1 functions as a breast cancer suppressor. independent groups generated distinct mutations within Human cancer cells and mouse cells de®cient in BRCA1 Brca1, yet nonetheless observed similar embryonic or BRCA2 exhibit radiation hypersensitivity and phenotypes, including defects in both gastrulation and chromosomal abnormalities, thus revealing a potential cellular proliferation, and death at E6.5 (Hakem et al., role for both BRCA1 and BRCA2 in the maintenance of 1996; Liu et al., 1996; Ludwig et al., 1997).
    [Show full text]
  • Epigenetic Regulation of DNA Repair Genes and Implications for Tumor Therapy ⁎ ⁎ Markus Christmann , Bernd Kaina
    Mutation Research-Reviews in Mutation Research xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Mutation Research-Reviews in Mutation Research journal homepage: www.elsevier.com/locate/mutrev Review Epigenetic regulation of DNA repair genes and implications for tumor therapy ⁎ ⁎ Markus Christmann , Bernd Kaina Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany ARTICLE INFO ABSTRACT Keywords: DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and DNA repair cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment Genotoxic stress with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly Epigenetic silencing governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to tumor formation mutations in their coding or promoter region, changes in the expression of transcription factors activating or Cancer therapy repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation MGMT Promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. GADD45 We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyl- TET transferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of p53 components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)- methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy.
    [Show full text]
  • A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets
    biomolecules Review A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets Rubayat Islam Khan †, Saif Shahriar Rahman Nirzhor † and Raushanara Akter * Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh; [email protected] (R.I.K.); [email protected] (S.S.R.N.) * Correspondence: [email protected]; Tel.: +880-179-8321-273 † These authors contributed equally to this work. Received: 10 June 2018; Accepted: 26 June 2018; Published: 29 June 2018 Abstract: Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings
    [Show full text]
  • SV40 Large T-Antigen Disturbs the Formation of Nuclear DNA-Repair Foci Containing MRE11
    Oncogene (2002) 21, 4873 – 4878 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc REVIEW SV40 large T-antigen disturbs the formation of nuclear DNA-repair foci containing MRE11 Martin Digweed*,1, Ilja Demuth1, Susanne Rothe1, Regina Scholz2, Andreas Jordan2, Carsten Gro¨ tzinger3, Detlev Schindler4, Markus Grompe5 and Karl Sperling1 1Institut fu¨r Humangenetik, Charite´ – Campus Virchow-Klinikum, Humboldt Universita¨t zu Berlin, Germany; 2Klinik fu¨r Strahlenheilkunde, Charite´ – Campus Virchow-Klinikum, Humboldt Universita¨t zu Berlin, Germany; 3Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charite´ – Campus Virchow-Klinikum, Humboldt Universita¨t zu Berlin, Germany; 4Institut fu¨r Humangenetik, Theodor-Boveri-Institut fu¨r Biowissenschaften (Biozentrum), Bayerische Julius-Maximilians- Universita¨tWu¨rzburg, Germany; 5Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon, USA The accumulation of DNA repair proteins at the sites of Keywords: ionizing irradiation; Fanconi anaemia; im- DNA damage can be visualized in mutagenized cells at mortalization the single cell level as discrete nuclear foci by immunofluorescent staining. Formation of nuclear foci in irradiated human fibroblasts, as detected by antibodies directed against the DNA repair protein MRE11, is Introduction significantly disturbed by the presence of the viral oncogene, SV40 large T-antigen. The attenuation of foci The two major mechanisms for DNA double strand formation was found in both T-antigen immortalized break (DSB) repair in mammalian cells are nonhomo- cells and in cells transiently expressing T-antigen, logous end joining (NHEJ) and homologous indicating that it is not attributable to secondary recombination (HR). Many genes involved in these mutations but to T-antigen expression itself.
    [Show full text]
  • (NCCN V1.2020) RAD50 Mutations Cancer Risks and General
    Updated December 2019 (NCCN v1.2020) RAD50 Mutations Cancer Risks and General Management Recommendations There are currently no national consensus guidelines outlining specific clinical management recommendations for individuals who carry a RAD50 gene mutation. Additionally, exact lifetime cancer risks associated with RAD50 mutations are unknown at this time. Some studies have proposed an increased risk for breast cancer in females with a RAD50 mutation (lifetime risk of ~24-36%).1-4 However, others have found no increased risk for breast cancer.5-7 Additionally, some studies have proposed an increased ovarian cancer risk in individuals with a RAD50 mutation.8,9 However, the studies are small, and data remains limited. At this time, it is unknown if individuals with RAD50 gene mutations are at increased risk for other cancers. Current NCCN guidelines assert that there is insufficient evidence to make any recommendations for breast MRI, risk-reducing mastectomy (RRM), or risk-reducing salpingo-oophorectomy (RRSO) based on RAD50 mutation status alone.10 An individual’s personal and family history should be considered in developing an appropriate surveillance plan. Implications for Family Members/Reproductive Considerations First-degree relatives (i.e., parents, siblings, and children) have a 50% chance to have the familial RAD50 mutation. Second-degree relatives (i.e., nieces/nephews, aunts/uncles, and grandparents) have a 25% chance to have the familial mutation. It has been proposed that individuals who inherit two pathogenic RAD50 mutations, one from each parent, are at risk for a rare genetic condition known as Nijmegen breakage syndrome-like disorder (NBSLD). o NBSLD is characterized by chromosomal instability, radiosensitivity, neurodevelopmental disease, and immunodeficiency11.
    [Show full text]