TVA JUN 2014 Solar PEA.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

TVA JUN 2014 Solar PEA.Pdf Document Type: EA-Administrative Record Index Field: Environmental Document Transmitted Public/Agencies Project Name: TVA Solar Photovoltaic Projects Project Number: 2013-34 TVA SOLAR PHOTOVOLTAIC PROJECTS DRAFT PROGRAMMATIC ENVIRONMENTAL ASSESSMENT Alabama, Georgia, Kentucky, Mississippi, North Carolina, Tennessee, and Virginia Prepared by: TENNESSEE VALLEY AUTHORITY Knoxville, Tennessee June 2014 To request further information, contact: James F. Williamson NEPA Compliance Tennessee Valley Authority 400 West Summit Hill Drive, WT11 D Knoxville, TN 37902 Phone: 865.632.6418 Fax: 865.632.3451 E-mail: [email protected] This page intentionally left blank Contents Table of Contents CHAPTER 1 – PURPOSE AND NEED FOR ACTION ......................................................................... 1 1.1 Introduction .............................................................................................................................. 1 1.2 Purpose and Need ................................................................................................................... 2 1.3 Background .............................................................................................................................. 2 1.4 Decision to be Made ................................................................................................................ 4 1.5 Related Environmental Reviews and Consultation Requirements .......................................... 4 1.6 Scope of the Programmatic Environmental Assessment ......................................................... 5 1.7 Necessary Permits or Licenses ............................................................................................... 6 CHAPTER 2 - ALTERNATIVES ........................................................................................................... 9 2.1 Description of Alternatives ....................................................................................................... 9 2.1.1 The No Action Alternative .................................................................................................. 9 2.1.2 The Action Alternative ....................................................................................................... 9 2.2 Comparison of Alternatives .................................................................................................... 13 2.3 Identification of Mitigation Measures ...................................................................................... 15 2.4 The Preferred Alternative ....................................................................................................... 16 CHAPTER 3 – AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES ................................................................................................................. 17 3.1 Groundwater .......................................................................................................................... 18 3.1.1 Affected Environment ...................................................................................................... 18 3.1.2 Environmental Consequences......................................................................................... 18 3.2 Surface Water ........................................................................................................................ 19 3.2.1 Affected Environment ...................................................................................................... 19 3.2.2 Environmental Consequences......................................................................................... 20 3.3 Wetlands ................................................................................................................................ 21 3.3.1 Affected Environment ...................................................................................................... 21 3.3.2 Environmental Consequences......................................................................................... 22 3.4 Floodplains ............................................................................................................................. 22 3.4.1 Affected Environment ...................................................................................................... 22 3.4.2 Environmental Consequences......................................................................................... 23 3.5 Wildlife .................................................................................................................................... 23 3.5.1 Affected Environment ...................................................................................................... 23 3.5.2 Environmental Consequences......................................................................................... 26 3.6 Vegetation .............................................................................................................................. 26 3.6.1 Affected Environment ...................................................................................................... 26 3.6.2 Environmental Consequences......................................................................................... 31 3.7 Aquatic Ecology ..................................................................................................................... 32 3.7.1 Affected Environment ...................................................................................................... 32 3.7.2 Environmental Consequences......................................................................................... 32 3.8 Threatened and Endangered Species ................................................................................... 32 3.8.1 Affected Environment ...................................................................................................... 32 3.8.1.1 Federally Listed Threatened and Endangered Species ............................................ 33 3.8.1.2 State-listed Species .................................................................................................. 39 3.8.2 Environmental Consequences......................................................................................... 39 3.9 Managed Areas and Ecologically Significant Sites ................................................................ 41 3.9.1 Affected Environment ...................................................................................................... 41 3.9.2 Environmental Consequences......................................................................................... 42 3.10 Land Use and Prime Farmlands ............................................................................................ 42 3.10.1 Affected Environment ...................................................................................................... 42 Draft Programmatic Environmental Assessment i TVA Solar PV Projects 3.10.2 Environmental Consequences......................................................................................... 43 3.11 Cultural Resources ................................................................................................................. 44 3.11.1 Affected Environment ...................................................................................................... 44 3.11.2 Environmental Consequences......................................................................................... 45 3.12 Visual Resources ................................................................................................................... 46 3.12.1 Affected Environment ...................................................................................................... 46 3.12.2 Environmental Consequences......................................................................................... 47 3.13 Socioeconomics and Environmental Justice.......................................................................... 50 3.13.1 Affected Environment ...................................................................................................... 50 3.13.2 Environmental Consequences......................................................................................... 51 3.14 Unavoidable Adverse Environmental Impacts ....................................................................... 51 3.15 Irreversible and Irretrievable Commitments of Resources ..................................................... 52 CHAPTER 4 – LIST OF PREPARERS .............................................................................................. 53 4.1 NEPA Project Management ................................................................................................... 53 4.2 Other Contributors .................................................................................................................. 53 CHAPTER 5 – ENVIRONMENTAL ASSESSMENT RECIPIENTS .................................................... 55 5.1 Federal Agencies ................................................................................................................... 55 5.2 Federally Recognized Tribes ................................................................................................. 56 5.3 State Agencies ....................................................................................................................... 56 5.4 Individuals and Organizations ...............................................................................................
Recommended publications
  • Species Status Assessment Report for the Barrens Darter (Etheostoma Forbesi)
    Species Status Assessment Report for the Barrens Darter (Etheostoma forbesi) Version 2.0 Acknowledgements: This Species Status Assessment would not have been possible without the research and assistance of Dr. Richard Harrington, Yale University Department of Ecology and Evolutionary Biology, Dr. Hayden Mattingly and his students, Tennessee Tech University School of Environmental Studies, Dr. John Johansen, Austin Peay State University Department of Biology, and Mark Thurman, Tennessee Wildlife Resources Agency. 1 TABLE OF CONTENTS Chapter 1: Introduction ............................................................................................................... 3 Chapter 2: Biology and Life History ........................................................................................... 4 Taxonomy ................................................................................................................................ 4 Genetic Diversity ..................................................................................................................... 5 Morphological Description ...................................................................................................... 5 Habitat ..................................................................................................................................... 6 Lifecycle .................................................................................................................................. 7 Population Needs ....................................................................................................................
    [Show full text]
  • The Evolution of Crayfishes of the Genus Orconectes Section Limosus (Crustacea: Decopoda)
    THE OHIO JOURNAL OF SCIENCE Vol. 62 MARCH, 1962 No. 2 THE EVOLUTION OF CRAYFISHES OF THE GENUS ORCONECTES SECTION LIMOSUS (CRUSTACEA: DECOPODA) RENDELL RHOADES Department of Zoology and Entomology, The Ohio State University, Columbus 10 The earliest described crayfish species now included in the Section limosus of the Genus Orconectes was described by Samuel Constantine Rafinesque (1817: 42). He reported the species, which he named Astacus limosus, "in the muddy banks of the Delaware, near Philadelphia." How ironical it now seems, that when Rafinesque located at Transylvania three years later and traveled to Henderson, Kentucky, to visit a fellow naturalist, John J. Audubon, he could have collected from the streams of western Kentucky a crayfish that he might have identified as the species he had described from the Delaware. We now know that these streams of the knobstone and pennyroyal uplands are the home of parent stock of this group. Moreover, this parental population on the Cumberland Plateau is now separated from Rafinesque's Orconectes limosus of the Atlantic drainage by more than 500 miles of mountainous terrain. Even Rafinesque, with his flair for accuracy and vivid imagination, would have been taxed to explain this wide separation had he known it. A decade after the death of Rafinesque, Dr. W. T. Craige received a blind crayfish from Mammoth Cave. An announcement of the new crayfish, identi- fied as "Astacus bartonii (?)" appeared in the Proceedings of the Academy of Natural Science of Philadelphia (1842: 174-175). Within two years the impact of Dr. Craige's announcement was evidenced by numerous popular articles both here and abroad.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Complaint for Declaratory and Injunctive Relief 1 1 2 3 4 5 6 7 8 9
    1 Justin Augustine (CA Bar No. 235561) Jaclyn Lopez (CA Bar No. 258589) 2 Center for Biological Diversity 351 California Street, Suite 600 3 San Francisco, CA 94104 Tel: (415) 436-9682 4 Fax: (415) 436-9683 [email protected] 5 [email protected] 6 Collette L. Adkins Giese (MN Bar No. 035059X)* Center for Biological Diversity 8640 Coral Sea Street Northeast 7 Minneapolis, MN 55449-5600 Tel: (651) 955-3821 8 Fax: (415) 436-9683 [email protected] 9 Michael W. Graf (CA Bar No. 136172) 10 Law Offices 227 Behrens Street 11 El Cerrito, CA 94530 Tel: (510) 525-7222 12 Fax: (510) 525-1208 [email protected] 13 Attorneys for Plaintiffs Center for Biological Diversity and 14 Pesticide Action Network North America *Seeking admission pro hac vice 15 16 IN THE UNITED STATES DISTRICT COURT 17 FOR THE NORTHERN DISTRICT OF CALIFORNIA 18 SAN FRANCISCO DIVISION 19 20 CENTER FOR BIOLOGICAL ) 21 DIVERSITY, a non-profit organization; and ) Case No.__________________ PESTICIDE ACTION NETWORK ) 22 NORTH AMERICA, a non-profit ) organization; ) 23 ) Plaintiffs, ) COMPLAINT FOR DECLARATORY 24 ) AND INJUNCTIVE RELIEF v. ) 25 ) ENVIRONMENTAL PROTECTION ) 26 AGENCY; and LISA JACKSON, ) Administrator, U.S. EPA; ) 27 ) Defendants. ) 28 _____________________________________ ) Complaint for Declaratory and Injunctive Relief 1 1 INTRODUCTION 2 1. This action challenges the failure of Defendants Environmental Protection Agency and 3 Lisa Jackson, Environmental Protection Agency Administrator, (collectively “EPA”) to consult with the 4 United States Fish and Wildlife Service (“FWS”) and National Marine Fisheries Service (“NMFS”) 5 (collectively “Service”) pursuant to Section 7(a)(2) of the Endangered Species Act (“ESA”), 16 U.S.C.
    [Show full text]
  • Crayfish News  Volume 32 Issue 1-2: Page 1
    June 2010 Volume 32, Issue 1-2 ISSN: 1023-8174 (print), 2150-9239 (online) The Official Newsletter of the International Association of Astacology Inside this issue: Cover Story 1 Searching for Crayfish in the President’s Corner 2 River Bug, Ukraine Info About IAA18 3 Future Directions 4 Symposium Info Short Articles 6 Male Form 6 Alternation in Spinycheek Crayfish, Orconectes limosus, at Cessy (East-central France): The Discovery of Anomalous Form Males IAA Related News 10 News Items From 11 Around the World Meeting 13 Announcements Literature of 16 Interest to Astacologists Figure 1. Astacus leptodactylus from the River Bug, Ukraine. comparison with other species, information n official opportunity for the author on A. pachypus is very limited (Souty-Grosset A to travel to the Ukraine was the 2nd et al., 2006). Since no specimens were meeting of the signatories to the available to be photographed for the “Memorandum of Understanding (MoU) on identification guide of crayfish species in the Conservation and Management of the Europe (Pöckl et al., 2006), only a sketch was middle European population of the Great presented. Bustard (Otis tarda)” under the “Convention Feodosia, located on the Crimean of Migratory Species of Wild Animals” (CMS th Peninsula, is not easily reached by airplane, or Bonn Convention) from November 8-12 with the nearest airport being in Simferopol. 2008. There are no direct flights to this region from The author has always dreamed of most European capitals, with connecting visiting the Ukraine in order to collect flights running through Kiev, Moscow or specimens of the thick-clawed crayfish, Istanbul.
    [Show full text]
  • Threatened and Endangered Species List
    Effective April 15, 2009 - List is subject to revision For a complete list of Tennessee's Rare and Endangered Species, visit the Natural Areas website at http://tennessee.gov/environment/na/ Aquatic and Semi-aquatic Plants and Aquatic Animals with Protected Status State Federal Type Class Order Scientific Name Common Name Status Status Habit Amphibian Amphibia Anura Gyrinophilus gulolineatus Berry Cave Salamander T Amphibian Amphibia Anura Gyrinophilus palleucus Tennessee Cave Salamander T Crustacean Malacostraca Decapoda Cambarus bouchardi Big South Fork Crayfish E Crustacean Malacostraca Decapoda Cambarus cymatilis A Crayfish E Crustacean Malacostraca Decapoda Cambarus deweesae Valley Flame Crayfish E Crustacean Malacostraca Decapoda Cambarus extraneus Chickamauga Crayfish T Crustacean Malacostraca Decapoda Cambarus obeyensis Obey Crayfish T Crustacean Malacostraca Decapoda Cambarus pristinus A Crayfish E Crustacean Malacostraca Decapoda Cambarus williami "Brawley's Fork Crayfish" E Crustacean Malacostraca Decapoda Fallicambarus hortoni Hatchie Burrowing Crayfish E Crustacean Malocostraca Decapoda Orconectes incomptus Tennessee Cave Crayfish E Crustacean Malocostraca Decapoda Orconectes shoupi Nashville Crayfish E LE Crustacean Malocostraca Decapoda Orconectes wrighti A Crayfish E Fern and Fern Ally Filicopsida Polypodiales Dryopteris carthusiana Spinulose Shield Fern T Bogs Fern and Fern Ally Filicopsida Polypodiales Dryopteris cristata Crested Shield-Fern T FACW, OBL, Bogs Fern and Fern Ally Filicopsida Polypodiales Trichomanes boschianum
    [Show full text]
  • Age Determination and Growth of Rainbow Darter (Etheostoma Caeruleum) in the Grand River, Ontario
    Age Determination and Growth of Rainbow Darter (Etheostoma caeruleum) in the Grand River, Ontario by Alexandra Crichton A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Masters of Science in Biology Waterloo, Ontario, Canada, 2016 ©Alexandra Crichton 2016 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The accurate determination and validation of age is an important tool in fisheries management. Age profiles allow insight into population dynamics, mortality rates and growth rates, which are important factors in many biomonitoring programs, including the Canadian Environmental Effects Monitoring (EEM) program. Many monitoring studies in the Grand River, Ontario have focused on the impact of municipal wastewater effluent (MWWE) on fish health. Much of the research has been directed at understanding the effects of MWWE on responses across levels of biological organization. The rainbow darter (Etheostoma caeruleum), a small-bodied, benthic fish found throughout the Grand River watershed has been used as a sentinel species in many of these studies. Although changes in somatic indices (e.g. condition, gonad somatic indices) have been included in previous studies, methods to age rainbow darters would provide additional tools to explore impacts at the population level. The objective of the current study was to develop a method to accurately age rainbow darter, validated by use of marginal increment analysis (MIA) and edge analysis (EA) and to characterize growth of male and female rainbow darter at a relatively unimpacted site on the Grand River.
    [Show full text]
  • Literature Cited for Nashville Crayfish
    LITERATURE CITED FOR NASHVILLE CRAYFISH Acquistapace, P., L. Aquiloni, B.A. Hazlett and F. Gherardi. 2002. Multimodal communication in crayfish: sex recognition during mate search by male Austropotamobius pallipes. Can. J. Zool. 80:2041–2045. 10.1139/z02-171. Barrociere, L.J. 1986. The ecological assessment and distribution status of the Nashville Crayfish, Orconectes shoupi. Masters Thesis, Tennessee Technological University, Cookeville, TN. 54pp with appendices. Bergey, E.A., S.N. Jones and D.B. Fenolio. 2005. Surveys and Studies of the Oklahoma Crayfish and the Grotto Salamander. Final Report. Oklahoma Biological Survey. The University of Oklahoma. 26 pp, including appendix. Bouchard, R.W. 1976. Investigations on the conservation status of freshwater decapod crustaceans in the United States. Part II: Eastern North American Crayfish. Office of Endangered Species, U.S. Department of the Interior. 26pp. Bouchard, R.W. 1984. Distribution and status of the endangered crayfish Orconectes shoupi (Decapoda: Cambaridae). U.S. Fish and Wildlife Service, Tennessee Cooperative Fishery Research Unit, Tennessee Technological University, Cookeville, Tennessee. 25pp. Boyd Center for Business and Economic Research. 2015. University of Tennessee, Knoxville, TN. Accessed 9/6/2017 <http://cber.haslam.utk.edu/popproj.htm> Carpenter 2004. 7 September 2004 email to David Withers (DNH) concerning occurrence of Nashville crayfish (Orconectes shoupi) in Collins Creek, Nashville, Davidson County, TN, 2 pp. Carpenter, J. 2002. Density and Distribution of the Nashville Crayfish in the Mill Creek Drainage Basin. Biology Department, David Lipscomb University, Nashville, TN. Submitted to the U.S. Fish and Wildlife Service, Cookeville, Tennessee. 41pp. Cook, S.B. and C.F. Walton. 2008. Habitat characterization of the Nashville crayfish (Orconectes shoupi) in Mill Creek watershed, Tennessee.
    [Show full text]
  • Conservation Status of Imperiled North American Freshwater And
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Phylogeography and Population Genetics of a Headwater-Stream Adapted Crayfish
    Phylogeography and population genetics of a headwater-stream adapted crayfish, Cambarus pristinus (Decapoda: Cambaridae), from the Cumberland Plateau in Tennessee A thesis Presented to The College of Graduate Studies Austin Peay State University In Partial Fulfillment Of the Requirements for the Degree Master of Science in Biology Brooke A. Grubb December, 2019 Statement of Permission to Use In presenting this thesis in partial fulfillment of the requirements for the Master of Science in Biology at Austin Peay State University, I agree that the library shall make it available to borrowers under the rules of the library. Brief quotations from this field study are allowable without special permission, provided that accurate acknowledgement of the source is made. Permissions for extensive quotations or reproduction of this field study may be granted by my major professor, or in his/her absence, by the Head of the Interlibrary Services when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission. Brooke A. Grubb Date: _____________________________ ___________________ For Rose Mier She introduced me to the wonderful world of crayfish. ACKNOWLEDGMENTS First, I want to thank Dr. Rebecca Blanton Johansen for all her help, guidance, and feedback during my master’s work. Without Rebecca focusing my enthusiasm, I likely would have followed every ‘shiny object’ and my master’s work would’ve been a much longer process. I also want to thank her for all the invaluable advice related to pursuing a PhD and being available to answer any and all questions I might have had and thank her for allowing me to pursue my Ph.D.
    [Show full text]
  • Conservation
    CONSERVATION ecapod crustaceans in the families Astacidae, recreational and commercial bait fisheries, and serve as a Cambaridae, and Parastacidae, commonly known profitable and popular food resource. Crayfishes often make as crayfishes or crawfishes, are native inhabitants up a large proportion of the biomass produced in aquatic of freshwater ecosystems on every continent systems (Rabeni 1992; Griffith et al. 1994). In streams, sport except Africa and Antarctica. Although nearly worldwide fishes such as sunfishes and basses (family Centrarchidae) in distribution, crayfishes exhibit the highest diversity in may consume up to two-thirds of the annual production of North America north of Mexico with 338 recognized taxa crayfishes, and as such, crayfishes often comprise critical (308 species and 30 subspecies). Mirroring continental pat- food resources for these fishes (Probst et al. 1984; Roell and terns of freshwater fishes (Warren and Burr 1994) and fresh- Orth 1993). Crayfishes also contribute to the maintenance of water mussels (J. D. Williams et al. 1993), the southeastern food webs by processing vegetation and leaf litter (Huryn United States harbors the highest number of crayfish species. and Wallace 1987; Griffith et al. 1994), which increases avail- Crayfishes are a significant component of aquatic ecosys- ability of nutrients and organic matter to other organisms. tems. They facilitate important ecological processes, sustain In some rivers, bait fisheries for crayfishes constitute an Christopher A. Taylor and Melvin L. Warren, Jr. are cochairs of the Crayfish Subcommittee of the AFS Endangered Species Committee. They can be contacted at the Illinois Natural History Survey, Center for Biodiversity, 607 E. Peabody Drive, Champaign, IL 61820, and U.S.
    [Show full text]
  • 2011 Annual Meeting
    Southeastern Fishes Council Annual Meeting Abstracts November 10 & 11, 2011 Chattanooga, Tennessee Abstracts are listed alphabetically by presenter in two different sections: Contributed Oral Presentations and Posters. RECOVERY OF A LOWLAND FISH ASSEMBLAGE FOLLOWING LARGE-SCALE ROTENONE APPLICATION IN EASTERN ARKANSAS Ginny Adams, Clint Johnson and S. Reid Adams University of Central Arkansas, Department of Biology In Spring 2009, Arkansas Game and Fish Commission and U.S. Fish and Wildlife Service attempted to eradicate northern snakehead, Channa argus, from the Big Piney watershed in eastern Arkansas by applying rotenone to approximately 640 km of streams. To examine long- term fish community recovery, we sampled at 17 sites in Spring 2009, Summer 2009, Spring 2010, and Summer 2010. Although species richness was unchanged (1-way ANOVA, F3,64=2.61, P=0.059) over time, many other community characteristics varied. Fish densities increased significantly after the eradication (1-way ANOVA, F3,64=16, P<0.0001) due to high abundances of YOY. Life history guild was found to significantly affect density (periodic species 1-way ANOVA, F3,64=7.20, P=0.0003; opportunistic 1-way ANOVA, F3,64=9.69, P<0.0001; Tukey HSD) with early recolonizing species possessing traits including mobile adults, high fecundity, and/or early ² reproduction. Trophic structure also changed significantly over time (χ 0.05, 4= 26032.76, P<<0.0001) with variability in proportions of omnivores and invertivores, though piscivores showed relatively little change. Piscivore composition, however, did vary significantly by sample ² (χ 0.05, 4= 1621.47, P<<0.0001) with an increase in small piscivores and a decrease in large- bodied piscivores.
    [Show full text]