The Requirements for the Degree of Doctor of Philosophy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Phylogenetic Analysis of Anostracans (Branchiopoda: Anostraca) Inferred from Nuclear 18S Ribosomal DNA (18S Rdna) Sequences
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 535–544 www.academicpress.com Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences Peter H.H. Weekers,a,* Gopal Murugan,a,1 Jacques R. Vanfleteren,a Denton Belk,b and Henri J. Dumonta a Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium b Biology Department, Our Lady of the Lake University of San Antonio, San Antonio, TX 78207, USA Received 20 February 2001; received in revised form 18 June 2002 Abstract The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Ta- nymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata (‘‘Family’’ Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae (‘‘Family’’ Linderiellidae), which has 11 pairs of trunk limbs. -
Download (8MB)
https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ASPECTS OF THE BIOLOGY OF THE SQUAT LOBSTER, MUNIDA RUGOSA (FABRICIUS, 1775). Khadija Abdulla Yousuf Zainal, BSc. (Cairo). A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science at the University of Glasgow. August 1990 Department of Zoology, University of Glasgow, Glasgow, G12 8QQ. University Marine Biological Station, Millport, Isle of Cumbrae, Scotland KA28 OEG. ProQuest Number: 11007559 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007559 Published by ProQuest LLC(2018). -
A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet
A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet Marjolaine Matabos1,2*, Verena Tunnicliffe1,3, S. Kim Juniper1,2, Courtney Dean1 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada, 2 NEPTUNE Canada, University of Victoria, Victoria, BC, Canada, 3 VENUS, University of Victoria, Victoria, BC, Canada Abstract Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m22) despite oxygen below 0.2 ml/l. -
Testing the Generality of the Trophic Cascade Paradigm for Sea Otters: a Case Study with Kelp Forests in Northern Washington, USA
Hydrobiologia (2007) 579:233–249 DOI 10.1007/s10750-006-0403-x PRIMARY RESEARCH PAPER Testing the generality of the trophic cascade paradigm for sea otters: a case study with kelp forests in northern Washington, USA Sarah K. Carter Æ Glenn R. VanBlaricom Æ Brian L. Allen Received: 6 April 2006 / Revised: 24 August 2006 / Accepted: 15 September 2006 / Published online: 31 January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Trophic cascade hypotheses for biolog- followed by a decline in diversity as one or a few ical communities, linking predation by upper tro- perennial algal species become dominant. Both sea phic levels to major features of ecological structure otter predation and commercial sea urchin harvest and dynamics at lower trophic levels, are widely are ecologically and economically important subscribed and may influence conservation policy. sources of urchin mortality in nearshore benthic Few such hypotheses have been evaluated for systems in northern Washington marine waters. We temporal or spatial generality. Previous studies of recorded changes in density of macroalgae in San sea otter (Enhydra lutris) predation along the outer Juan Channel, a marine reserve in the physically coast of North America suggest a pattern, often protected inland waters of northern Washington, elevated to the status of paradigm, in which sea otter resulting from three levels of experimental urchin presence leads to reduced sea urchin (Strongylo- harvest: (1) simulated sea otter predation (monthly centrotus spp.) biomass and rapid increases in complete harvest of sea urchins), (2) simulated abundance and diversity of annual algal species, commercial urchin harvest (annual size-selective harvest of sea urchins), and (3) no harvest (control). -
INTERNATIONAL JOURNAL of RESEARCH –GRANTHAALAYAH a Knowledge Repository Art
[Conference-Composition of Colours :December , 2014 ] ISSN- 2350-0530 DOI: https://doi.org/10.29121/granthaalayah.v2.i3SE.2014.3515 INTERNATIONAL JOURNAL of RESEARCH –GRANTHAALAYAH A knowledge Repository Art PROTECTIVE COLORATION IN ANIMALS Leena Lakhani Govt. Girls P.G. College, Ujjain (M.P.) India [email protected] INTRODUCTION Animals have range of defensive markings which helps to the risk of predator detection (camouflage), warn predators of the prey’s unpalatability (aposematism) or fool a predator into mimicry, masquerade. Animals also use colors in advertising, signalling services such as cleaning to animals of other species, to signal sexual status to other members of the same species. Some animals use color to divert attacks by startle (dalmatic behaviour), surprising a predator e.g. with eyespots or other flashes of color or possibly by motion dazzle, confusing a predator attack by moving a bold pattern like zebra stripes. Some animals are colored for physical protection, such as having pigments in the skin to protect against sunburn; some animals can lighten or darken their skin for temperature regulation. This adaptive mechanism is known as protective coloration. After several years of evolution, most animals now achieved the color pattern most suited for their natural habitat and role in the food chains. Animals in the world rely on their coloration for either protection from predators, concealment from prey or sexual selection. In general the purpose of protective coloration is to decrease an organism’s visibility or to alter its appearance to other organisms. Sometimes several forms of protective coloration are superimposed on one animal. TYPES OF PROTECTIVE COLORATION PREVENTIVE DETECTION AND RECOGNITION CRYPSIS AND DISRUPTION Cryptic coloration helps to disguise an animal so that it is less visible to predators or prey. -
SCAMIT Newsletter Vol. 11 No. 12 1993 April
f^fO^'M Southern California Association of Marine Invertebrate Taxonomists 3720 Stephen White Drive San Pedro, California 90731 April, 1993 Vol. 11, Nb.12 NEXT MEETING: Master Species List GUEST SPEAKER: None DATE: May 10,1993 9:30 am - 3:00 pm LOCATION: Cabrillo Marine Museum San Pedro, CA MAY 10 MEETING The meeting will be devoted to working on the master species list. We will be resolving the final version of the list containing the four major dischargers and discussing the addition of the minor dischargers. FUNDS FOR THIS PUBLICATION PROVIDED IN PART BY THE ARCO FOUNDATION, CHEVRON USA, AND TEXACO INC. SCAM1T Newsletter is not deemed to be a valid publication for formal taxonomic purposes. MINUTES FROM MEETING ON APRIL 12 Larry Lovell is looking for suggestions for have SCAMIT members volunteer to assist possible speakers and subjects (especially ontripsasknowledgeableguides. Jodi is also non-polychaete taxa) for the next year. He laying plans for a Crustacean Biodiversity would appreciate any input you might have. workshop. He will contact international You can write him at: experts on as many families as possible to get Larry Lovell estimates onnumber of known and remaining 1036 Buena Vista species to be described. Vista, CA 92083 Jodi began by discussing Decapod higher taxonomy. Based on Spears et al. (1992) Larry announced again that for the 1994 Brachyura and Anomura are clearly Annual Meeting of the Southern California differentiated by sperm. Dromidia Academy of Sciences SCAMIT might be able (Dromiacea) and Litkodids (Alaskan King to have a taxonomic symposium. Also crab) have been confirmed as anomurans by discussed was the possibility of SCAMTT recent research. -
Temporal Trends of Two Spider Crabs (Brachyura, Majoidea) in Nearshore Kelp Habitats in Alaska, U.S.A
TEMPORAL TRENDS OF TWO SPIDER CRABS (BRACHYURA, MAJOIDEA) IN NEARSHORE KELP HABITATS IN ALASKA, U.S.A. BY BENJAMIN DALY1,3) and BRENDA KONAR2,4) 1) University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, 201 Railway Ave, Seward, Alaska 99664, U.S.A. 2) University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, P.O. Box 757220, Fairbanks, Alaska 99775, U.S.A. ABSTRACT Pugettia gracilis and Oregonia gracilis are among the most abundant crab species in Alaskan kelp beds and were surveyed in two different kelp habitats in Kachemak Bay, Alaska, U.S.A., from June 2005 to September 2006, in order to better understand their temporal distribution. Habitats included kelp beds with understory species only and kelp beds with both understory and canopy species, which were surveyed monthly using SCUBA to quantify crab abundance and kelp density. Substrate complexity (rugosity and dominant substrate size) was assessed for each site at the beginning of the study. Pugettia gracilis abundance was highest in late summer and in habitats containing canopy kelp species, while O. gracilis had highest abundance in understory habitats in late summer. Large- scale migrations are likely not the cause of seasonal variation in abundances. Microhabitat resource utilization may account for any differences in temporal variation between P. gracilis and O. gracilis. Pugettia gracilis may rely more heavily on structural complexity from algal cover for refuge with abundances correlating with seasonal changes in kelp structure. Oregonia gracilis mayrelyonkelp more for decoration and less for protection provided by complex structure. Kelp associated crab species have seasonal variation in habitat use that may be correlated with kelp density. -
(Jasus Edwardsii Hutton, 1875) Larvae
Environmental Physiology of Cultured Early-Stage Southern Rock Lobster (Jasus edwardsii Hutton, 1875) Larvae Michel Francois Marie Bermudes Submitted in fulfilment of the requirements for the degree of Doctor Of Philosophy University of Tasmania November 2002 Declarations This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information in duly acknowledged in the thesis, and to the best of the candidate's knowledge and belief, no material previously published or written by another person except where due acknowledgment is made in the text of the thesis. Michel Francois Marie Bermudes This thesis may be available for loan and limited copying in accordance with the Copyright Act 1968. Michel Francois Marie Bermudes Abstract The aim of this project was to define more clearly the culture conditions for the propagation of the southern rock lobster (Jasus echvardsii) in relation to environmental bioenergetic constraints. The effects of temperature and photoperiod on the first three stages of development were first studied in small-scale culture experiments. Larvae reared at 18°C developed faster and reached a larger size at stage IV than larvae cultured at 14°C. Development through stage II was shorter under continuous light. However, the pattern of response to photoperiod shifted at stage III when growth was highest in all the light/dark phase treatments than under continuous light. The influence of temperature and light intensity in early-stage larvae was further investigated through behavioural and physiological studies. Results obtained in stages I, II and III larvae indicated an energetic imbalance at high temperature (-22°C). -
Crabs and Their Relatives of British Columbia by Josephine Hart 1984 British Columbia Provincial Museum Handbook 40
Crabs and their relatives of British Columbia by Josephine Hart 1984 British Columbia Provincial Museum Handbook 40. Victoria, British Columbia. 267 pp. Extracted from the publication (now out of print) SECTION MACRURA Superfamily Thalassinidea Key to Families 1. Shrimp-like. Integument soft and pleura on abdomen large. Live in burrows……………………………………………………………………………..……….……Axiidae 1. Shrimp-like. Integument soft and pleura small. Live in burrows………………………………………………………………………………………………….2 2. Rostrum distinct, ridged and setose. Eyestalks cylindrical and cornea terminal. Chelipeds subchelate and subequal…………………………………………………………………….Upogebiidae 2. Rostrum minute and smooth. Eyestalks flattened with mid-dorsal corneal pigment or cylindrical without dark pigment. Chelipeds chelate and unequal in size and shape.......Callianassidae Family AXIIDAE The thin-shelled shrimp-like animals in this family are all burrowers and are found from shallow subtidal habitats to great depths. Recently Pemberton, Risk and Buckley (1976) determined that one species found off Nova Scotia makes burrows more than 2.5 m into the substrate. Obviously in abyssal regions the collection of these animals under such circumstances in particularly haphazard. Thus the number of specimens obtained is few and often these are damaged. Four species of this family are known to occur in the waters off British Columbia. All have one or two small hollow knobs of apparently unknown function on the mid-dorsal ridge of the carapace. These species have been assigned to the genera Axiopsis, Calastacus and Calocaris. The definitions of these genera were made when few species had been studied and recent discoveries indicate that the criteria used are not satisfactory. New genera will have to be created and the taxonomy of the Family revised. -
Seasonal Variation in Community Structure and Recruitment of Benthic Decapods in a Sub-Tidal Cobble Habitat
MARINE ECOLOGY PROGRESS SERIES Vol. 206: 181–191, 2000 Published November 3 Mar Ecol Prog Ser Seasonal variation in community structure and recruitment of benthic decapods in a sub-tidal cobble habitat Martin Robinson*, Oliver Tully Department of Zoology, Trinity College, Dublin, Ireland ABSTRACT: Quantitative suction samples of benthic decapod fauna were taken in the south of Ireland during 1997. Some species settled into the area, but failed to persist to the first winter, while others were present in high numbers throughout the year. The duration of settlement was species- specific, ranging from several weeks to several months. Body size at settlement decreased with increasing temperature during larval development. Growth potential and early mortality of a number of decapod species was examined by separation of successive moult instars from length-frequency distributions. Seasonal lows in abundance and biomass of young of the year and for previously estab- lished decapod individuals were identified at the end of July and early August, which may represent the most suitable time to release juveniles for stock-enhancement purposes. Community structure differed between settlement season and over-wintering periods. Young-of-the-year community structure differed from that of previously established individuals, with higher abundance and num- ber of species recorded for the former. The data represent a baseline study of a widely distributed community and may support further work on species interactions, improving the accuracy of predic- tion of annual recruitment fluctuations. KEY WORDS: Community · Decapod · Recruitment · Seasonal variation Resale or republication not permitted without written consent of the publisher INTRODUCTION strong 1995, Pile et al. -
Appendix C - Invertebrate Population Attributes
APPENDIX C - INVERTEBRATE POPULATION ATTRIBUTES C1. Taxonomic list of megabenthic invertebrate species collected C2. Percent area of megabenthic invertebrate species by subpopulation C3. Abundance of megabenthic invertebrate species by subpopulation C4. Biomass of megabenthic invertebrate species by subpopulation C- 1 C1. Taxonomic list of megabenthic invertebrate species collected on the southern California shelf and upper slope at depths of 2-476m, July-October 2003. Taxon/Species Author Common Name PORIFERA CALCEREA --SCYCETTIDA Amphoriscidae Leucilla nuttingi (Urban 1902) urn sponge HEXACTINELLIDA --HEXACTINOSA Aphrocallistidae Aphrocallistes vastus Schulze 1887 cloud sponge DEMOSPONGIAE Porifera sp SD2 "sponge" Porifera sp SD4 "sponge" Porifera sp SD5 "sponge" Porifera sp SD15 "sponge" Porifera sp SD16 "sponge" --SPIROPHORIDA Tetillidae Tetilla arb de Laubenfels 1930 gray puffball sponge --HADROMERIDA Suberitidae Suberites suberea (Johnson 1842) hermitcrab sponge Tethyidae Tethya californiana (= aurantium ) de Laubenfels 1932 orange ball sponge CNIDARIA HYDROZOA --ATHECATAE Tubulariidae Tubularia crocea (L. Agassiz 1862) pink-mouth hydroid --THECATAE Aglaopheniidae Aglaophenia sp "hydroid" Plumulariidae Plumularia sp "seabristle" Sertulariidae Abietinaria sp "hydroid" --SIPHONOPHORA Rhodaliidae Dromalia alexandri Bigelow 1911 sea dandelion ANTHOZOA --ALCYONACEA Clavulariidae Telesto californica Kükenthal 1913 "soft coral" Telesto nuttingi Kükenthal 1913 "anemone" Gorgoniidae Adelogorgia phyllosclera Bayer 1958 orange gorgonian Eugorgia