Cell Reproduction- Chapter 8

Total Page:16

File Type:pdf, Size:1020Kb

Cell Reproduction- Chapter 8 CELL REPRODUCTION- CHAPTER 8 CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) 1. Chromosome 2. histone 3. chromatid 4. Centromere 5. chromatin 6. autosome 7. Sex chromosome 8. homologous chromosome 9. karyotype 10. Diploid 11. haploid 12. mitosis 13. Binary fission 14. asexual reproduction 15. meiosis 16. Gamete 17. interphase 18. cytokinesis 19. Prophase 20. spindle fibers 21. metaphase 22. Anaphase 23. telophase 24. cell plate 25. Synapsis 26. tetrad 27. crossing-over 28. Genetic recombination 29. spermatogenesis 30. Independent assortment 31. oogenesis 32. Polar body 33. sexual reproduction CHROMOSOMES TIGHTLY PACKED DNA & HISTONE PROTEINS COMPRISE CHROMOSOMES. HISTONES: PROTEINS THAT DNA WRAPS AROUND TO FORM CHROMOSOMES. NONHISTONE PROTEINS CONTROL THE ACTIVITY OF DNA. CHROMOSOMES ARE MADE UP OF TWO CHROMATIDS. CHROMATIDS ARE IDENTICAL COPIES OF DNA AND PROTEINS. CENTROMERE: THE ATTACHMENT POINT FOR TWO CHROMATIDS IN A CHROMOSOME. CHROMATIN: LOOSLEY PACKED DNA & PROTEINS. CHROMOSOME NUMBERS EACH SPECIES HAS A CHARACTERISTIC CHROMOSOME NUMBER. HUMANS: 46 LETTUCE: 18 SEX CHROMOSOMES THESE DETERMINE THE SEX OF THE ANIMAL. HUMANS: MALES ARE XY, FEMALES ARE XX. SOME OTHER TRAITS BESIDES SEX ARE CARRIED ON THESE CHROMOSOMES. AN EXAMPLE WOULD BE TO MAKE BLOOD CLOTTING PROTEINS. AUTOSOMES THESE ARE THE OTHER 44 CHROMOSOMES THAT DO NOT DETERMINE ONE’S SEX. HOMOLOGOUS CHROMOSOMES THESE ARE CHROMOSOMES THAT HAVE THE SAME SIZE AND GENE ARRANGEMENT. IN SEXUALLY REPRODUCING ORGANISMS EACH PARENT GIVES ONE HOMOLOGOUS CHROMOSOME TO ITS OFFSPRING. THUS THE OFFSPRING HAS TWO COPIES OF EACH AUTOSOME. KARYOTYPE THIS IS A PHOTOMICROGRAPH OF CHROMOSOMES. THE CHROMOSOMES ARE ARRANGED BY SIZE FOR THE AUTOSOMES. THE SEX CHROMOSOMES ARE PUT NEAR THE END OF THE PICTURE. DIPLOID & HAPLOID CELLS DIPLOID CELLS (2N): THESE HAVE TWO COPIES OF HOMOLOGOUS CHROMOSOMES AND HAVE TWO SEX CHROMOSOMES. HAPLOID CELLS (1N): THESE HAVE ONLY ONE COPY OF AUTOSOMES AND HAVE ONE SEX CHROMOSOME. CELL DIVISION PROKARYOTES HAVE A CIRCULAR CHROMOSOME WHICH IS COPIED INTO TWO CHROMOSOMES AND SPLIT INTO TWO NEW CELLS THROUGH BINARY FISSION. EUKARYOTES DIVIDE ROD-SHAPED CHROMOSOMES BY MITOSIS. THIS IS ASEXUAL REPRODUCTION. CYTOKINESIS DIVIDES THE CELL’S CYTOPLASM. THE CELL CYCLE INTERPHASE IS COMPRISED OF THE FOLLOWING: G1 PHASE - OFFSPRING CELLS GROW TO FULL SIZE. S PHASE - DNA IS COPIED. G2 PHASE – THE CELL PREPARES TO DIVIDE. THE CELL CYCLE CONT. MITOSIS IS COMPRISED OF THE FOLLOWING: PROPHASE – REPLICATED CHROMOSOMES EACH MADE UP OF TWO CHROMATIDS FORM. A MITOTIC SPINDLE FORMS MADE UP OF CENTRIOLES, KINETOCHORE FIBERS, AND POLAR FIBERS. ITS JOB IS TO DIVIDE THE CHROMOSOMES. METAPHASE – CHROMOSOMES ALIGN AT THE CENTER OF THE CELL. ANAPHASE – CHROMATIDS OF EACH CHROMOSOME ARE SEPARATED. THEY ARE NOW CONSIDERED TO BE INDIVIDUAL CHROMOSOMES. TELOPHASE – CHROMOSOMES ARE AT OPPOSITE ENDS OF THE CELLS. A NUCLEAR MEMBRANE FORMS AROUND EACH NEW GROUP OF CHROMOSOMES TO FORM NEW NUCLEI. THE CHROMOSOMES TURN INTO CHROMATIN. THE SPINDLE DISSOLVES. A NUCLEOLUS FORM IN EACH NEW NUCLEUS. CYTOKINESIS THIS IS THE DIVISION OF THE CYTOPLASM. A CLEAVAGE FURROW DEVELOPS IN ANIMAL CELLS AND DIVIDES INWARD FORMING TWO NEW CELLS. A CELL PLATE DEVELOPS IN PLANTS CELLS. IT GROWS AT THE MIDLINE DIVIDING THE CELL INTO TWO NEW CELLS. CONTROL OF CELL DIVISION CELL GROWTH (G1) CHECKPOINT: PROTEINS TELL THE CELL TO EITHER GO TO THE S PHASE TO COPY DNA OR TO NOT DO THIS BECAUSE CONDITIONS ARE NOT SUITABLE. SOME CELLS GO TO THE G0 PHASE AND DO NOT DIVIDE. DNA SYNTHISIS (G2) CHECKPOINT: DNA REPAIR ENZYMES CHECK THE COPIED DNA. IF ALRIGHT, MITOSIS BEGINS. MITOSIS CHECKPOINT: PROTEINS TELL THE CELL TO EXIT MITOSIS AND GO THE G1 PHASE AGAIN. CANCER PROTEINS ARE PRODUCED BY GENES. IF GENES ARE MUTATED IN A HARMFUL WAY, MALFUNCTIONING PROTEINS DO NOT REGULATE THE CELL GROWTH AND DIVISION. OUT OF CONTROL CELL GROWTH AND DIVISION IS CANCER. MEIOSIS HAPLOID GAMETES (SPERM & EGG CELLS) FORM. SPERM CELL (23 CHROMOSOMES) + EGG CELL (23 CHROMOSOMES) = HUMAN ZYGOTE (46 CHROMOSOMES)- THIS IS SEXUAL REPRODUCTION MEIOSIS I PROPHASE I: CHROMOSOMES FORM TETRADS, PAIRS OF HOMOLOGOUS CHROMOSOMES, PAIR UP IN SYNAPSIS. CROSSING OVER OCCURS WHICH CAUSES GENETIC RECOMBINATION. GENETIC VARIATION MAY LEAD TO ENVIRONMENTAL ADAPTATION. METAPHASE I: TETRADS (HOMOLOGOUS PAIRS OF CHROMOSOMES) LINE UP ALONG THE MIDLINE OF THE CELL IN A RANDOM ORDER CALLED INDEPENDENT ASSORTMENT . THIS GIVES GENETIC VARIATION. ANAPHASE I: HOMOLOGOUS CHROMOSOMES, EACH WITH A PAIR OF CHROMATIDS, MOVE TO OPPOSITE POLES OF THE CELL. TELOPHASE I & CYTOKINESIS: CHROMOSOMES ARE AT THE OPPOSITE POLES OF THE CELL. CYTOKINESIS SPLITS ONE CELL INTO TWO HAPLOID CELLS. MEIOSIS II SPLITS TWO HAPLOID CELLS INTO 4 HAPLOID CELLS GAMETE DEVELOPMENT SPERMATOGENESIS: SPERM (SPERMATOZOA) FORMATION IN THE TESTES. OOGENESIS: EGG (OVUM) FORMATION IN THE OVARIES. THE THREE POLAR BODIES DIE. CELL REPRODUCTION TEST: CHAPTER 4 88 TOTAL POINTS Part I. Multiple Choice. 34 questions @ 2 points each- Directly from notes Part II. Essays Questions. 10 points each/Complete sentences 1. Compare two similarities between mitosis and meiosis. 2. Contrast two differences between mitosis and meiosis. .
Recommended publications
  • The 50Th Anniversary of the Discovery of Trisomy 21: the Past, Present, and Future of Research and Treatment of Down Syndrome
    REVIEW The 50th anniversary of the discovery of trisomy 21: The past, present, and future of research and treatment of Down syndrome Andre´Me´garbane´, MD, PhD1,2, Aime´ Ravel, MD1, Clotilde Mircher, MD1, Franck Sturtz, MD, PhD1,3, Yann Grattau, MD1, Marie-Odile Rethore´, MD1, Jean-Maurice Delabar, PhD4, and William C. Mobley, MD, PhD5 Abstract: Trisomy 21 or Down syndrome is a chromosomal disorder HISTORICAL REVIEW resulting from the presence of all or part of an extra Chromosome 21. Clinical description It is a common birth defect, the most frequent and most recognizable By examining artifacts from the Tumaco-La Tolita culture, form of mental retardation, appearing in about 1 of every 700 newborns. which existed on the border between current Colombia and Although the syndrome had been described thousands of years before, Ecuador approximately 2500 years ago, Bernal and Briceno2 it was named after John Langdon Down who reported its clinical suspected that certain figurines depicted individuals with Tri- description in 1866. The suspected association of Down syndrome with somy 21, making these potteries the earliest evidence for the a chromosomal abnormality was confirmed by Lejeune et al. in 1959. existence of the syndrome. Martinez-Frias3 identified the syn- Fifty years after the discovery of the origin of Down syndrome, the term drome in a terra-cotta head from the Tolteca culture of Mexico “mongolism” is still inappropriately used; persons with Down syn- in 500 patients with AD in which the facial features of Trisomy drome are still institutionalized. Health problems associated with that 21 are clearly displayed.
    [Show full text]
  • Evolution on the X Chromosome: Unusual Patterns and Processes
    REVIEWS Evolution on the X chromosome: unusual patterns and processes Beatriz Vicoso and Brian Charlesworth Abstract | Although the X chromosome is usually similar to the autosomes in size and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gene movement between chromosomes. A better understanding of these patterns should provide valuable information on the evolution of genes located on the X chromosome. It could also suggest solutions to more general problems in molecular evolution, such as detecting selection and estimating mutational effects on fitness. Haldane’s rule Sex-chromosome systems have evolved independently the predictions of theoretical models of X-chromosome The disproportionate loss of many times, and have attracted much attention from evolution will shed light on the assumptions on which fitness to the heterogametic evolutionary geneticists. This work has mainly focused the models are based, such as the degree of dominance of sex in F1 hybrids between on the steps leading to the initial evolution of sex chro- mutations and the existence of opposing forces species. mosomes, and the genetic degeneration of Y and W of selection on males and females, leading to a better 1 Clade chromosomes . Here, we discuss the evolution of the understanding of the forces that shape the evolution of A group of species which share X chromosome in long-established sex-chromosome eukaryotic genomes. a common ancestor.
    [Show full text]
  • Continuous Variation in Y-Chromosome Structure of Rumex Acetosa
    Heredity 57 (1986) 247-254 The Genetical Society of Great Britain Received 16 December 1985 Continuous variation in Y-chromosome structure of Rumex acetosa A. S. Wilby and School of Biological Sciences, J. S. Parker Queen Mary College, Mile End Road, London El 4NS. The dioecious angiosperm Rumex acetosa has an XXIXY1Y2sex-chromosomesystem. Each V-chromosome is heterochromatic except for a minute terminal euchromatic pairing segment. The Vs are constant in size but have a variable centromere position. The centromeres can be located anywhere within the central 40 per cent of the chromosome but are excluded from the two distal 30 per cent regions. In a sample of 270 males from 18 different populations 68 distinct variants have been identified on the basis of V-morphology. All populations are highly polymorphic with a minimum of four variants in a sample of ten males. The origin and significance of this massive variability is considered in this paper. Increased mutation rate of the Ys may be implicated in maintenance of this variation. I NTRO DUCTI ON these "inert" Ys has been described (Vana, 1972) variation in their structure has been overlooked. Sex-determinationin animals is usually genic and Extensive heterochroinatic content is a charac- frequently associated with visibly-differentiated teristic of many Y- and W-chromosomes. Indeed, sex-chromosomes. Sex expression in plants, some have argued that the process of hetero- however, is usually more plastic, and is subject to chromatinisation itself was implicated in the initial environmental influences such as temperature and phase of sex-chromosome differentiation (Jones, photoperiod (Heslop-Harrison, 1957).
    [Show full text]
  • Down's Syndrome Phenotype and Autosomal Gene Inactivation in a Child with Presumed
    J Med Genet: first published as 10.1136/jmg.19.2.144 on 1 April 1982. Downloaded from 144 Case reports Down's syndrome phenotype and Case report autosomal gene inactivation in a The proband, a 3 2-year-old white female, was referred for evaluation of developmental delay and child with presumed (X;21) de novo dysmorphic features. She was the 1790 g,. 39 week translocation gestation product of a gravida 1, para 0, 15-year-old female. The pregnancy was complicated with SUMMARY A 32-year-old female with clinical recurrent urinary tract infections. The mother used features of Down's syndrome was found to have alcohol and tobacco in small quantities during the extra chromosome material on the long arm of pregnancy. The labour lasted ten hours and the one of the X chromosomes, 46,XXq+. The delivery was vaginal with vertex presentation. The parental karyotypes were normal. In the light baby breathed and cried spontaneously. Her of the clinical features of the proband and the immediate neonatal course was uneventful, but her subsequent weight gain was poor. She had several banding characteristics of the extra chromosome admissions to hospital for repeated diarrhoea, otitis material, the patient was thought to have a de media, and pneumonia. She had two 'febrile' seizures novo (X;21) translocation. The results of late for which she was placed on phenobarbital. Her replication studies with BUdR and enzyme development was markedly delayed. She smiled at superoxide dismutase (SOD) assays in the 4 months, turned over at 7 months, walked at 18 proband suggest that: (1) the presumed (X;21) months, and was not yet toilet trained.
    [Show full text]
  • Amplified Fragments of an Autosome-Borne Gene
    G C A T T A C G G C A T genes Article Amplified Fragments of an Autosome-Borne Gene Constitute a Significant Component of the W Sex Chromosome of Eremias velox (Reptilia, Lacertidae) Artem Lisachov 1,2,* , Daria Andreyushkova 3, Guzel Davletshina 2,3, Dmitry Prokopov 3 , Svetlana Romanenko 3 , Svetlana Galkina 4 , Alsu Saifitdinova 5 , Evgeniy Simonov 1, Pavel Borodin 2,6 and Vladimir Trifonov 3,6 1 Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia; [email protected] 2 Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; [email protected] (G.D.); [email protected] (P.B.) 3 Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; [email protected] (D.A.); [email protected] (D.P.); [email protected] (S.R.); [email protected] (V.T.) 4 Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7–9, 199034 Saint Petersburg, Russia; [email protected] 5 Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University of Russia, Moyka Emb. 48, 191186 Saint Petersburg, Russia; saifi[email protected] 6 Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia Citation: Lisachov, A.; * Correspondence: [email protected] Andreyushkova, D.; Davletshina, G.; Prokopov, D.; Romanenko, S.; Abstract: Heteromorphic W and Y sex chromosomes often experience gene loss and heterochroma- Galkina, S.; Saifitdinova, A.; Simonov, tinization, which is frequently viewed as their “degeneration”.
    [Show full text]
  • Comprehensive Chromosomal and Mitochondrial Copy Number Profiling in Human IVF Embryos
    ARTICLE IN PRESS 1bs_bs_query Q2 Article 2bs_bs_query 3bs_bs_query Comprehensive chromosomal and mitochondrial copy 4bs_bs_query 5bs_bs_query number profiling in human IVF embryos 6bs_bs_query Q1 a,1, a,1 a a 7bs_bs_query Wei Shang *, Yunshan Zhang , Mingming Shu , Weizhou Wang , a a b b, b b 8bs_bs_query Likun Ren , Fu Chen , Lin Shao , Sijia Lu *, Shiping Bo , Shujie Ma , b 9bs_bs_query Yumei Gao a 10bs_bs_query Assisted Reproductive Centre of the Department of Gynaecology and Obstetrics, PLA Naval General Hospital, 11 bs_bs_query Haidian District, Beijing 100048, China b 12bs_bs_query Yikon Genomics, Fengxian District, Shanghai 201400, China 13bs_bs_query 14bs_bs_query 15bs_bs_query Wei Shang has been the Associate Chief Physician at the Department of Gynaecology and Obstetrics, PLA Naval 16bs_bs_query General Hospital, Beijing, since 2005. Her research interests focus on assisted reproduction technology, repro- 17bs_bs_query ductive endocrinology and ovary dysfunction. 18bs_bs_query 19bs_bs_query KEY MESSAGE 20bs_bs_query Using a validated approach called MALBAC-NGS, a comprehensive chromosomal and mitochondrial copy number 21bs_bs_query profiling in human embryos was conducted, and correlations of mitochondria quantity with maternal age and 22bs_bs_query embryo stage were observed. The strategy might be used to perform an advanced PGS targeting both chro- 23bs_bs_query mosomal and mitochondria copy numbers. 24bs_bs_query 25bs_bs_query ABSTRACT 26bs_bs_query 27bs_bs_query Single cell whole genome sequencing helps to decipher the genome
    [Show full text]
  • Molecular Evolution of a Y Chromosome to Autosome Gene Duplication in Drosophila Research Article
    Molecular Evolution of a Y Chromosome to Autosome Gene Duplication in Drosophila Kelly A. Dyer,*,1 Brooke E. White,1 Michael J. Bray,1 Daniel G. Pique´,1 and Andrea J. Betancourt* ,2 1Department of Genetics, University of Georgia 2Institute of Evolutionary Biology, University of Edinburgh, Ashworth Labs, Edinburgh, United Kingdom Present address: Institute for Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria *Corresponding author: [email protected], [email protected]. Associate editor: Jody Hey Abstract In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Research article Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked.
    [Show full text]
  • Comparative Mapping of DNA Markers from the Familial Alzheimer Mouse Chromosomes 16 and 17
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 6032-6036, August 1988 Genetics Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17 (restriction fragment length polymorphism/genetic linkage analysis/recombinant inbred strains/interspecific backcross) SHIRLEY V. CHENG*, JOSEPH H. NADEAUt, RUDOLPH E. TANZI*, PAUL C. WATKINSt, JAYASHREE JAGADESH*, BENJAMIN A. TAYLORt, JONATHAN L. HAINES*, NICOLETTA SACCHI§, AND JAMES F. GUSELLA* *Neurogenetics Laboratoiy, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114; tThe Jackson Laboratory, Bar Harbor, ME 04609; tIntegrated Genetics, Inc., 31 New York Avenue, Framingham, MA 01701; and §Laboratory of Molecular Oncology, National Cancer Institute, Frederick, MD 21701 Communicated by Elizabeth S. Russell, April 18, 1988 ABSTRACT Mouse trisomy 16 has been proposed as an mouse genome, mouse trisomy 16 has been used as an animal animal model of Down syndrome (DS), since this chromosome model of DS (9, 10). contains homologues of several loci from the q22 band of Interest in human chromosome 21 has increased with the human chromosome 21. The recent mapping of the defect recent localizations of the defect causing familial Alzheimer causing familial Alzheimer disease (FAD) and the locus encod- disease (FAD) and the gene (APP) encoding the precursor for ing the Alzheiner amyloid (3 precursor protein (APP) to human amyloid ,8 protein to the proximal half of 21q (11, 12). FAD chromosome 21 has prompted a more detailed examination of is the autosomal dominantly inherited form of the common the extent ofconservation ofthis linkage group between the two late-onset neurodegenerative disorder that results in the species.
    [Show full text]
  • DETERMINING the LOCATION of GENES in DROSOPHILA MEANOGASTER by OBSERVING PHENOTYPIC RATIOS of OFFSPRING July 7, 2014
    DETERMINING THE LOCATION OF GENES IN DROSOPHILA MEANOGASTER BY OBSERVING PHENOTYPIC RATIOS OF OFFSPRING July 7, 2014 ABSTRACT The purpose of this study was to find where genes for specific traits are located, either on the autosomes or sex chromosomes. We determined this by examining two different D. melanogaster populations for differences in the phenotypic ratios of offspring. D. melanogaster were chosen for our study because they are easy to care for, and they have a short reproduction cycle. D. melanogaster have only eight chromosomes making them less complex organisms for study. Based on our results, we accepted our autosomal inheritance hypothesis because the ratio observed in the F2 generation was 3.23:1, which shows no statistical difference to our expected ratio of 3:1, indicating that the gene for wing presence is on an autosome. We also accepted the X-linked inheritance hypothesis because the ratio observed in the F2 generation was1.01:1, which showed no statistical difference to our expected ratio of 1:1, indicating that the gene for eye color is on the X chromosome. 1 P:\RMSC\RMS\Group Papers\FruitFly-2014.docx Saved: 10/2/2015 10:14 AM Printed: 10/2/2015 10:14 AM INTRODUCTION Genetics is the branch of biology concerned with heredity and variation (Cumming and Klug, 2000, p.5). Heredity is the passing of traits from a parent to an offspring. For example, handedness, the preference of using one hand over the other, is a trait that can be passed down from parents to their offspring in humans.
    [Show full text]
  • H2A.Z Contributes to the Unique 3D Structure of the Centromere
    H2A.Z contributes to the unique 3D structure of the centromere Ian K. Greaves, Danny Rangasamy, Patricia Ridgway, and David J. Tremethick* The John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra, The Australian Capital Territory 2601, Australia Edited by Steven Henikoff, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved November 1, 2006 (received for review September 10, 2006) Mammalian centromere function depends upon a specialized chro- In this study, we investigated: (i) whether H2A.Z is a core matin organization where distinct domains of CENP-A and di- constituent of pericentric heterochromatin; (ii) the interplay methyl K4 histone H3, forming centric chromatin, are uniquely between H2A.Z and CENP-A, including whether H2A.Z is a positioned on or near the surface of the chromosome. These component of centric chromatin; (iii) the 3D spatial organization distinct domains are embedded in pericentric heterochromatin of H2A.Z chromatin at metaphase and its relationship to the (characterized by H3 methylated at K9). The mechanisms that other marks of the centromere; and (iv) whether the histone underpin this complex spatial organization are unknown. Here, we modifications that define centric and pericentric chromatin in identify the essential histone variant H2A.Z as a new structural flies, humans (3), and fission yeast (7) are conserved in mice. component of the centromere. Along linear chromatin fibers H2A.Z is distributed nonuniformly throughout heterochromatin, and cen- Results tric chromatin where regions of nucleosomes containing H2A.Z and H2A.Z Is Present in Pericentric Heterochromatin at the Inner Centro- dimethylated K4 H3 are interspersed between subdomains of mere.
    [Show full text]
  • Translocation and Amplification of an X-Chromosome DNA Repeat in Inbred Strains of Mice
    Volume 15 Number 11 1987 Nucleic Acids Research Translocation and amplification of an X-chromosome DNA repeat in inbred strains of mice Christine M.Disteche, Shawna L.Gandy and David A.Adler Department of Pathology SM-30, University of Washington, Seattle, WA 98195, USA Received March 19, 1987; Revised and Accepted May 13, 1987 ABSTRACT A 9-kb repetitive DNA fragment (70-38) located near the centromere of the mouse X chromosome is amplified and translocated to an autosome in different inbred strains of mice. In situ hybridization and hybrid cell studies showed that probe 70-38 is located only on the X chromosome in mouse strains A/J, AKR/J, BALB/cJ, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J and SWR/J. However, in four other mouse strains the DNA sequence is found near the centromere of an autosome in addition to the X chromosome. This autosome differs among the mouse strains (chromosome 11 in C57BL/lOJ or ScSn, chromosome 13 in NZB/BlNJ and chromosome 17 in SJL/J and PO). In those strains where the repeated sequence is located on an autosome, it has been amplified to about 100 copies. Restriction enzyme digestion patterns suggest a common structure for 70-38 sequences in the different strains. The changes in copy number, restriction enzyme digestion patterns, and chromosomal location of 70-38 reflect a rapid genomic evolution in inbred mouse strains. INTRODUCTION Repeated and satellite DNA sequences represent a large proportion of the eukaryotic genome and are likely to play an important role in chromosomal organization and function.
    [Show full text]
  • Similar Efficacies of Selection Shape Mitochondrial and Nuclear Genes in Drosophila Melanogaster and Homo Sapiens
    bioRxiv preprint doi: https://doi.org/10.1101/010355; this version posted June 5, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Similar efficacies of selection shape mitochondrial and nuclear genes in Drosophila melanogaster and Homo sapiens Brandon S. Cooper*,1, Chad R. Burrus§, Chao Ji§, Matthew W. Hahn*,§, and Kristi L. Montooth*,2 * Department of Biology, Indiana University, Bloomington, IN 47405, USA § School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA 1 Current address: Department of Evolution and Ecology, University of California, Davis, CA 95616, USA 2 Current address: School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 , USA 1 bioRxiv preprint doi: https://doi.org/10.1101/010355; this version posted June 5, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Short running title: Mitochondrial and nuclear NI Keywords: cytoplasmic sweep, mtDNA, neutrality index, tests of selection Author for correspondence: Kristi Montooth, School of Biological Sciences, 1104 T Street, Lincoln, NE 68588-0118, [email protected], 402-472-8455 2 bioRxiv preprint doi: https://doi.org/10.1101/010355; this version posted June 5, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]