Cosmologia & Relatividade Geral

Total Page:16

File Type:pdf, Size:1020Kb

Cosmologia & Relatividade Geral COSMOLOGIA Sérgio Mittmann dos Santos Astronomia Licenciatura em Ciências da Natureza IFRS Câmpus Porto Alegre 2021/1 Expansão do Universo 1912 Vesto Melvin Slipher (1875‑1969) descobre que as linhas espectrais das estrelas da galáxia de Andrômeda mostram um enorme deslocamento para o azul [efeito Doppler relativístico, para a luz] Indicam que essa galáxia está se aproximando do Sol a uma velocidade de 300 km/s 1912-Início da década de 1930 Slipher demonstra que, de 41 galáxias, a maioria apresenta deslocamento espectral para o vermelho redshift Galáxias afastam-se de nós Luminosidade fraca mais distante redshift maior Lei de Hubble 1929 Edwin Powell Hubble (1889-1953) Mede o deslocamento para o vermelho z = / 0 nas linhas espectrais das galáxias observadas por Milton La Salle Humason (1891-1972) Mede as distâncias das galáxias Descobre que as galáxias estão se afastando, com velocidades proporcionais às suas distâncias Lei de Hubble v = H·r, sendo H 17·103 m/(s·ano-luz) Modelo do bolo de passas Expansão não indica que estamos no centro do Universo PARADOXO DE OLBERS O enigma da escuridão da noite 1610 Johannes Kepler (1571-1630) Céu escuro à noite prova que o Universo é finito Encerrado por uma parede cósmica escura Séc. 18 Edmund Halley (1656-1742) + 1826 Heinrich Wilhelm Mattäus Olbers (1758‑1840) Brilho das estrelas 1/distância2 Número de estrelas distância2 Linha de visada sempre intercepta uma estrela Brilho do céu Brilho da superfícieEstrela_média PARADOXO DE OLBERS Propostas de solução Olbers Poeira interestelar absorve a luz das estrelas PROBLEMA Poeira entra em equilíbrio térmico com as estrelas e passa a brilhar tanto quanto elas Expansão do Universo degrada a energia Luz de objetos muito distantes chega muito desviada para o vermelho, muito fraca PROBLEMA Cálculos mostram que não é suficiente para solucionar o paradoxo SOLUÇÃO Universo não existiu por todo o sempre Universo tem uma idade finita Luz tem uma velocidade finita Luz das estrelas mais distantes ainda não teve tempo de chegar até nós Universo que enxergamos é limitado no espaço, por ser finito no tempo Escuridão da noite é uma prova de que o Universo teve um início Big Bang Herman Bondi (1919-2005)+Thomas Gold (1920-2004)+Fred Hoyle (1915-2001) TEORIA DO ESTADO ESTACIONÁRIO Universo similar em todas as direções Imutável no tempo Produção contínua de matéria para contrabalançar a expansão Densidade média constante 1950 Fred Hoyle Sugestão pejorativa de um Big BangGrande Expansão para o início do Universo Big Bang (cont.) (definição) 1929 Hubble Galáxias estão se afastando umas das outras No passado, deveriam estar cada vez mais próximas Há cerca de 13,8 bilhões de anos, deveriam estar todas num mesmo ponto muito quente singularidade no espaço‑ tempo Início do Universo coincide com o início da expansão Criação matéria+radiação+espaço+tempo Início do nosso universo Big Bang (cont.) (indicação de que a teoria está correta) Década de 1920 Georges-Henri Édouard Lemaître (1894-1966)+Alexander Friedmann (1888-1925) Família de soluções das equações da Teoria da Relatividade Geral Prevêem EXPANSÃO eterna ou novo COLAPSO 1973 Edward P. Tryon Big Bang ocorreu por uma flutuação quântica do vácuo (radiação de Hawking) Big Bang (cont.) (indicação de que a teoria está correta) 1948 Ralph Asher Alpher (1921-)+Robert Herman (1922-1997) [associados de George Gamow (1904-1968)] Preveem uma radiação remanescente do estado quente do Universo, quando ficou transparente, há 380 mil anos depois do Big Bang T < 5 K 1964 Arno Allan Penzias (1933-)+Robert Woodrow Wilson (1936-) RADIAÇÃO CÓSMICA DO FUNDO DO UNIVERSO Descoberta ACIDENTAL de uma radiação vinda de todas as direções Proveniente das regiões mais distantes do Universo, a 13,8 bilhões de anos-luz Radiação remanescente do Big Bang T = 2,7 K 1978 Prêmio Nobel 1989 COBE (Cosmic Background Explorer) T = 2,735 K (<1%) Big Bang (cont.) (indicação de que a teoria está correta) 2001 WMAP (Wilkinson Microwave Anisotropy Probe) Confirma as predições do Big Bang 2010 Idade do Universo 13,78 ± 0,11 bilhões de anos Formação das primeiras estrelas 377±3 milhões de anos após o Big Bang Maior parte do Universo é ENERGIA ESCURA=constante cosmológica de Einstein=energia do vácuo=quintessência [Aristóteles] Tipo Porcentagem da densidade crítica Energia escura 72,1% Matéria escura 23,3% Matéria normal 4,6% Radiação 0,005% Modelo do Big Bang Destino do Universo Expansão para sempre ou Expansão parará e haverá novo colapso ao estado denso Para o colapso, atração gravitacional da matéria+energia deve ser suficiente para parar a expansão Não há como determinar se o Universo está se expandindo com velocidade maior do que a velocidade de escape, porque não há um pleno conhecimento sobre o comportamento das matéria+energia escuras, que parecem representar mais de 95% da matéria+energia total Destino do Universo Interrompe a expansão 5 átomos H/m3 Destino do Universo (cont.) 1998 Saul Perlmutter, Adam Riess e Brian Schmidt Detecção da aceleração do Universo, através da detecção das supernovas mais distantes Tamanho do Universo dobrou nos últimos 5 bilhões de anos 2011 Prêmio Nobel Referências K. S. Oliveira Fo. e M. F. O. Saraiva. Astronomia e astrofísica, 2a. ed. São Paulo: Livraria da Física, 2004 W. J. Maciel (ed.). Astronomia e astrofísica. São Paulo: EdUSP, 1991 D. Halliday, R. Resnick e J. Walker. Fundamentos de física, v. 4, 8a. ed. Rio de Janeiro: LTC, 2009 ADENDO TEORIA DA RELATIVIDADE Teoria da Relatividade ESPECIAL OU RESTRITA 1905 Albert Einstein (1879-1955) Propõe a Teoria da Relatividade Especial Velocidade da luz no vácuo é constante, independente da velocidade da fonte Contração do comprimento quando v c Dilatação do tempo quando v c Massa Velocidade Massa e energia são equivalentes E = mc2 Nenhuma informação ou matéria pode se mover mais rápido do que a luz no vácuo Restrita ao caso em que os campos gravitacionais são pequenos Teoria da Relatividade GERAL 1916 Einstein Propõe a Teoria da Relatividade Geral Válida mesmo nos casos em que os campos gravitacionais são grandes Teoria da gravidade Descreve a gravitação como a ação das massas nas propriedades do espaço e do tempo, que afetam o movimento dos corpos e outras propriedades físicas Espaçotempo é distorcido pela presença da matéria que ele contém 1917 Einstein Modelo esférico do Universo Introduziu a constante cosmológica, para obter um Universo estático Constante cosmológica Força repulsiva, que previne o colapso do Universo pela atração gravitacional 1917 Willem de Sitter (1872-1934) Constante cosmológica Permite um Universo em expansão, mesmo se ele não contivesse qualquer matéria Constante cosmológica Energia do vácuo Escalas pequenas Podemos ver estrelas, galáxias e aglomerados de galáxias Escalas acima de 10 milhões de anos-luz Observações indicam um universo homogêneo e isotrópico densidade média constante Princípio Cosmológico Universo homogêneo e isotrópico Teoria da Relatividade GERAL (cont.) Equações de Einstein Lentes gravitacionais Relatividade geral Raio de luz é desviado ao passar por um corpo massivo 1919 Expedição dupla chefiada por Arthur Stanley Eddington (1882-1944) a Sobral-CE e à Ilha de Príncipe-África Medição das posição das estrelas durante um eclipse total do Sol, em 29 de maio de 1919, na constelação do Touro Expedições de Eddington Cruz de Einstein Quasar a 8 bilhões de anos-luz Lente gravitacional Galáxia G2237+0305 a 400 milhões de anos-luz Número de imagens depende da distribuição de massa da galáxia e dos detalhes do alinhamento Deslocamentos dos periélios dos planetas terrestres Não pode ser explicado pela teoria newtoniana Somente a massa contribui para a gravidade Corretamente descrito pela teoria da relatividade Energia cinética do movimento dos planetas também contribui para a gravidade Espaçotempo é perturbado pela presença da massa do Sol Mercúrio 43"/séc. Vênus 8,6"/séc. Terra 3,8"/séc. Ondas gravitacionais Teoria da relatividade geral Massas aceleradas emitem ondas gravitacionais, como cargas elétricas aceleradas produzem ondas eletromagnéticas Ondas gravitacionais Perturbações na curvatura do espaçotempo Propagam-se à velocidade da luz 1974 Russell Alan Hulse (1950-) e Joseph Hooton Taylor Jr. (1941-) Medida da taxa de redução do período orbital do pulsar binário PSR 1913+16 (2 estrelas de nêutrons) Concorda com precisão melhor do que 1% com o cálculo de perda de energia devido à emissão de ondas gravitacionais 1993 Nobel de Física Ondas gravitacionais (cont.) LIGO (Laser Interferometer Gravitational-Wave Observatory) Louisianna & Washington Ambos detectores com braços de 4 km, distantes ≈ 3.000 km → ∆t ≈ 10 ms Virgo Itália KAGRA (Kamioka Gravitational-Wave Detector) Japão 2025 Índia 2015 Fusão de 2 buracos negros a ≈ 1 bilhão de anos-luz 2017 Nobel de Física para Rainer Weiss, Barry C. Barish & Kip S. Thorne Ondas gravitacionais (cont.).
Recommended publications
  • Q&A with Lauren Gunderson
    Q&A with Lauren Gunderson Interviewed by Joelle Seligson The United States’ most produced living playwright brings stories of science into the spotlight. Lauren Gunderson (laurengunderson.com) first married science and the stage in Background, a production that journeys back through the life of a cosmologist and through time itself. She’s now adding science, technology, engineering, and math (STEM)–oriented children’s books to her repertoire, entrancing young readers with imaginative tales tied to the scientific process. Gunderson chatted with Dimensions about why she’s driven to make audiences care about science and those who have advanced it. Lauren, which came first for you, theater or science? Theater was my first love, the first real sense of drive that I felt as a kid. Part of it was just the excitement of being on stage and telling stories. And also for me, the idea of writing, that was another big moment for me, realizing that you didn’t just say the words, you could write them. But I found out really quickly when you’re a writer and a performer, you get to ask yourself, OK—what I realized really quickly was, I mean obviously you need a subject. To be a playwright is a great thrill, but what are you going to write about? And I had a few wonderful science teachers, a biology teacher and a physics teacher, who used history and the scientists themselves to help teach us the core courses and the core themes and everything. And to me that was a big moment of oh, these are characters, and that science came from not just a mind but from a person, a personality, a time, an era.
    [Show full text]
  • Is the Universe Ringing Like a Crystal Glass? by Tara Burcham, University of Southern Mississippi
    Home / Astronomy & Space / Astronomy JUNE 26, 2015 Is the universe ringing like a crystal glass? by Tara Burcham, University of Southern Mississippi The standard view of the expanding universe. Many know the phrase "the big bang theory." There's even a top television comedy series with that as its title. According to scientists, the universe began with the "big bang" and expanded to the size it is today. Yet, the gravity of all of this matter, stars, gas, galaxies, and mysterious dark matter, tries to pull the universe back together, slowing down the expansion. Now, two physicists at The University of Southern Mississippi, Lawrence Mead and Harry Ringermacher, have discovered that the universe might not only be expanding, but also oscillating or "ringing" at the same time. Their paper on the topic has been published in the April 2015 issue of the Astronomical Journal. In 1978 Arno Allan Penzias and Robert Woodrow Wilson received the Nobel prize for their 1964 discovery of the key signature of this theory, the primal radiation from the early universe known as the "cosmic microwave background" (CMB). "Then in 1998 the finding that the universe was not only expanding, but was speeding up, or accelerating in its expansion was a shock when it was discovered simultaneously by east coast and west coast teams of astronomers and physicists," said Mead. "A new form of matter, dark energy, repulsive in nature, was responsible for the speed-up. The teams led by Saul Perlmutter, Adam Riess, and Brian Schmidt won the 2011 Nobel Prize in Physics for that discovery." According to Mead and Ringermacher, this change from slowing down to speeding up (the transition time) took place approximately 6 to 7 billion years ago.
    [Show full text]
  • Astrocent Opening Mcdonald.Pdf
    Viewing the Universe from Deep Undeground Underground Labs Gravitational Waves Gran Sasso, Italy SNOLAB, Canada Einstein Telescope Sudbury Neutrino Observatory (SNO) 1999-2006 Studies of solar Neutrinos. We showed: 1. That calculations of how the sun burns are extremely accurate 2. Neutrinos change their type as they travel from the solar core to Earth. 3. Together with SuperKamiokande studying atmospheric neutrinos in Japan: - Neutrinos have a finite The middle of the sun is so hot that the centers of the atoms (nuclei) rest mass. fuse together, giving off lots of energy and particles called neutrinos. This requires changes to the Standard Model of Elementary Particles. Sudbury Neutrino SuperKamiokande Observatory (SNO) Canada Japan Solar Neutrinos Atmospheric Neutrinos Nobel Prize 2015 Impact of Future Underground experiments Cosmic Microwave Background becomes observable Measurements of the Cosmic Microwave Background by the Planck Satellite Mission 2015 Remarkable measurements of light at 2 degrees above absolute zero. These small variations (1 part in 100000) grow to form our universe (Stars, Galaxies). An amazing model (see fit on left) called: Lambda Cold Dark Matter provides beautiful fits to this and other data such as the large scale structure of the Universe. Only 6 parameters used, including the amounts of Matter, Dark Matter, Dark Energy and other parameters that affect how the Universe evolves. Nobel Prizes for Cosmology • 1978: Penzias and Wilson – Arno Allan Penzias and Robert Woodrow Wilson “for their discovery of cosmic
    [Show full text]
  • Report and Opinion 2016;8(6) 1
    Report and Opinion 2016;8(6) http://www.sciencepub.net/report Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos Manjunath R Independent Researcher #16/1, 8 Th Main Road, Shivanagar, Rajajinagar, Bangalore: 560010, Karnataka, India [email protected], [email protected] “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” : Lord Kelvin Abstract: General public regards science as a beautiful truth. But it is absolutely-absolutely false. Science has fatal limitations. The whole the scientific community is ignorant about it. It is strange that scientists are not raising the issues. Science means truth, and scientists are proponents of the truth. But they are teaching incorrect ideas to children (upcoming scientists) in schools /colleges etc. One who will raise the issue will face unprecedented initial criticism. Anyone can read the book and find out the truth. It is open to everyone. [Manjunath R. Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos. Rep Opinion 2016;8(6):1-81]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. doi:10.7537/marsroj08061601. Keywords: Science; Cosmos; Equations; Dimensions; Creation; Big Bang. “But the creative principle resides in Subaltern notable – built on the work of the great mathematics. In a certain sense, therefore, I hold it astronomers Galileo Galilei, Nicolaus Copernicus true that pure thought can
    [Show full text]
  • Nobel Laureates Meet International Top Talents
    Nobel Laureates Meet International Top Talents Evaluation Report of the Interdisciplinary Lindau Meeting of Nobel Laureates 2005 Council for the Lindau Nobel Laureate Meetings Foundation Lindau Nobelprizewinners Meetings at Lake Constance Nobel Laureates Meet International Top Talents Evaluation Report of the Interdisciplinary Lindau Meeting of Nobel Laureates 2005 Council for the Lindau Nobel Laureate Meetings Foundation Lindau Nobelprizewinners Meetings at Lake Constance I M PR I N T Published by: Council for the Lindau Nobel Laureate Meetings, Ludwigstr. 68, 88131 Lindau, Germany Foundation Lindau Nobelprizewinners Meetings at Lake Constance, Mainau Castle, 78465 Insel Mainau, Germany Idea and Realisation: Thomas Ellerbeck, Member of the Council for the Lindau Nobel Laureate Meetings and of the Board of Foundation Lindau Nobelprizewinners Meetings at Lake Constance, Alter Weg 100, 32760 Detmold, Germany Science&Media, Büro für Wissenschafts- und Technikkommunikation, Betastr. 9a, 85774 Unterföhring, Germany Texts: Professor Dr. Jürgen Uhlenbusch and Dr. Ulrich Stoll Layout and Production: Vasco Kintzel, Loitersdorf 20a, 85617 Assling, Germany Photos: Peter Badge/typos I, Wrangelstr. 8, 10997 Berlin, Germany Printed by: Druckerei Hermann Brägger, Bankgasse 8, 9001 St. Gallen, Switzerland 2 The Interdisciplinary Lindau Meeting of Nobel Laureates 2005 marked a decisive step for the annual Lindau Meeting in becoming a unique and significant international forum for excellence, fostering the vision of its Spiritus Rector, Count Lennart Bernadotte. It brought together, in the heart of Europe, the world’s current and prospective scientific leaders, the minds that shape the future drive for innovation. As a distinct learning experience, the Meeting stimulated personal dialogue on new discoveries, new methodologies and new issues, as well as on cutting-edge research matters.
    [Show full text]
  • A the Highland Park Enews August 1, 2016 221 S
    , A The Highland Park eNews August 1, 2016 www.hpboro.com 221 S. Fifth Avenue, Highland Park, NJ, 08904 732-572-3400 Events & Meetings Tuesday, August 2 Book Break 3-5 yr. old Story Time 11:30 a.m., Public Library Tuesday, August 2 Teen Sidewalk Chalk Graffiti and Games 3:00 p.m., Public Library Tuesday, August 2 National Night Out rd 5:00 p.m., North 3 /Raritan Ave Tuesday, August 2 The NJ Youth Corps of Middlesex County was on-hand Wednesday, July 27th working the International Film Festival – Second Mother 1st stage of our Senior/Youth Center beautification project. Weeds were pulled, shrubs trimmed, and beds mulched. We can't wait to see how the project progresses. Thank 6:30 p.m., Public Library you to all involved. Wednesday, August 3 Borough Council Meeting Re: Buck Woods Having a Blast at the Highland Park Recreation Summer Camp 7:00 p.m., Borough Council Wednesday, August 3 Community Food Pantry 7:00 p.m., Senior/Youth Center Tuesday, August 9 Book Break 3-5 yr. old Story Time 11:30 a.m., Public Library Tuesday, August 9 Summer Afternoon Film Series –Rudy (PG) 3:00 p.m., Public Library Summer in Highland Park is always fun, especially for the many kids who attend our Tuesday, August 9 Recreation Summer Camp. This year we are averaging 175 campers per week in our day International Film Series – Coming Home camp, sports camp, teen camp, and new special needs camp. This week’s sports camp is 6:30 p.m., Public Library soccer, and next week will be tennis or wrestling.
    [Show full text]
  • Matéria E Energia Escuras E O Gás De Chaplyin
    CURIOSIDADES DA FÍSICA José Maria Filardo Bassalo www.bassalo.com.br Matéria e Energia Escuras e o Gás de Chaplyin. Segundo vimos em verbetes desta série, entre 1924 e 1926, o astrônomo norte-americano Edwin Powell Hubble (1889-1953) realizou, no Observatório de Monte Wilson, observações que o levaram a afirmar que o Universo estava em expansão. Em vista disso, em 1927, o astrônomo belga, o Abade Georges-Henri Edouard Lemaître (1894-1966) formulou um modelo cosmológico segundo o qual o Universo teria começado a partir da explosão de um átomo primordial ou ovo cósmico que conteria toda a matéria do Universo [Georges Lemaître, L´Hypothèse de l´Atome Primitif (Neuchâtel, Griffon, 1946)]. Em 1948, os físicos norte-americanos Ralph Asher Alpher (1921-2007), Hans Albrecht Bethe (1906-2005; PNF, 1967) (de origem alemã) e George Antonovich Gamow (1904-1968) (de origem russa) formularam o modelo alfa-beta-gama ( ) que previa que a “big explosão lemaîtreana” [denominada, em 1950, de big bang pelo astrofísico inglês Sir Fred Hoyle (1915-2001)] teria deixado um rastro térmico (calculado em torno de 20 K), a chamada radiação cósmica de fundo de microonda (RCFM), que foi detectada, em 1965, pelos radioastrônomos norte- americanos Arno Allan Penzias (n.1933; PNF, 1978) (de origem alemã) e Robert Woodrow Wilson (n.1936; PNF, 1978) com uma temperatura correspondente a (3,5 1) K. Contudo, esse modelo (teoria) do big bang (MBB ou TBB) apresentava uma série de problemas que, no entanto, foram tratados com novos modelos, principalmente os chamados modelos cosmológicos inflacionários, nas décadas de 1970 e 1980.
    [Show full text]
  • From Clockwork to Crapshoot: a History of Physics
    From Clockwork to Crapshoot a history of physics From Clockwork to Crapshoot a history of physics Roger G. Newton The Belknap Press of Harvard University Press Cambridge, Massachusetts • London, England • 2007 Copyright © 2007 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Newton, Roger G. From clockwork to crapshoot : a history of physics / Roger G. Newton p. cm. Includes bibliographical references. ISBN-13: 978–0–674–02337–6 (alk. paper) ISBN-10: 0–674–02337–4 (alk. paper) 1. Physics—History. I. Title. QC7.N398 2007 530.09—dc22 2007043583 To Ruth, Julie, Rachel, Paul, Lily, Eden, Isabella, Daniel, and Benjamin Preface This book is a survey of the history of physics, together with the as- sociated astronomy, mathematics, and chemistry, from the begin- nings of science to the present. I pay particular attention to the change from a deterministic view of nature to one dominated by probabilities, from viewing the universe as running like clockwork to seeing it as a crapshoot. Written for the general scientifically inter- ested reader rather than for professional scientists, the book presents, whenever needed, brief explanations of the scientific issues involved, biographical thumbnail sketches of the protagonists, and descrip- tions of the changing instruments that enabled scientists to discover ever new facts begging to be understood and to test their theories. As does any history of science, it runs the risk of overemphasizing the role of major innovators while ignoring what Thomas Kuhn called “normal science.”To recognize a new experimental or observa- tional fact as a discovery demanding an explanation by a new theory takes a community of knowledgeable and active participants, most of whom remain anonymous.
    [Show full text]
  • An Overview of the Past and the Fate of the Universe
    IOSR Journal Of Humanities And Social Science (IOSR-JHSS) Volume 25, Issue 1, Series. 7 (January. 2020) 51-56 e-ISSN: 2279-0837, p-ISSN: 2279-0845. www.iosrjournals.org An Overview of the Past and the Fate of the Universe Assistant Professor Husan Akbari Lecturer at Professor Burhanuddin Rabbani Education University Abstract: The term universe derives from the Latin word “universum” and is defined as all matter and all space .Kaien) meaning everything that exists) ”کاین“ all things") Its Arabic synonym is") Until mid-twentiethcentury, it was believed that the infinite universe always existed and will exist forever. Based on this theory, the static universe has no beginning or end. However, later studies and calculations by physicist and scientists found that the universe emerged from a big bang at an instance. Moreover, it was observed that, contrary to what the materialists believed, the universe is not stationary but rather developing and expanding an increasing rate. This information is consistent with the findings of contemporary scientists. As stated above, astronomical physicists have concluded that the universe with all its spatial and temporal dimensions came to existence as a result of large explosion a long time ago. This large explosion which is referred to as the Big Bang resulted in the creation of the universe from nothingness. All the scientists agree that the Big Bang happened some 13.7 billion years ago from an extremely hot and dense point. No matter existed before the Big Bang. All the universe was created from nothingness where there was no matter, no energy and no time.
    [Show full text]
  • 24 August 2013 Seminar Held
    PROCEEDINGS OF THE NOBEL PRIZE SEMINAR 2012 (NPS 2012) 0 Organized by School of Chemistry Editor: Dr. Nabakrushna Behera Lecturer, School of Chemistry, S.U. (E-mail: [email protected]) 24 August 2013 Seminar Held Sambalpur University Jyoti Vihar-768 019 Odisha Organizing Secretary: Dr. N. K. Behera, School of Chemistry, S.U., Jyoti Vihar, 768 019, Odisha. Dr. S. C. Jamir Governor, Odisha Raj Bhawan Bhubaneswar-751 008 August 13, 2013 EMSSSEM I am glad to know that the School of Chemistry, Sambalpur University, like previous years is organizing a Seminar on "Nobel Prize" on August 24, 2013. The Nobel Prize instituted on the lines of its mentor and founder Alfred Nobel's last will to establish a series of prizes for those who confer the “greatest benefit on mankind’ is widely regarded as the most coveted international award given in recognition to excellent work done in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace. The Prize since its introduction in 1901 has a very impressive list of winners and each of them has their own story of success. It is heartening that a seminar is being organized annually focusing on the Nobel Prize winning work of the Nobel laureates of that particular year. The initiative is indeed laudable as it will help teachers as well as students a lot in knowing more about the works of illustrious recipients and drawing inspiration to excel and work for the betterment of mankind. I am sure the proceeding to be brought out on the occasion will be highly enlightening.
    [Show full text]
  • Brief Reports of Nobel Laureates in Physics
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 5, Issue 2 (Nov. - Dec. 2013), PP 60-68 www.iosrjournals.org Brief Reports of Nobel Laureates in Physics Dr.Shaikh Sarfaraz Ali Department of Physics, Veer Surendra Sai University of Technology (VSSUT), Burla-768018, Samalpur, Odisha, India. Abstract: Alfred B. Nobel, a Swedish chemist and engineer who invented dynamite left $ 9 million in his will to establish the Nobel Prize, which are awarded annually, without regard to nationality, in six different areas like Peace, Literature, Physics, Chemistry, Physiology or Medicine and Economic Science to those who, during the preceding year, shall have conferred the greatest benefit on mankind. Here the complete list of all the Nobel Laureates in Physics since 1901 to 2013 is compiled. 1901-Wilhelm Conrad Rontgen, Born in Lennep, Rhenish Prussia, Germany (1845-1923) was awarded the Nobel Prize for the Discovery of Rontgen rays which is also known as X-rays. 1902-Hendrik Antoon Lorentz, Born in Arnhen, the Netherlands (1853-1928) was awarded 1/2 of the Nobel Prize for the investigations of effects of magnetism on the phenomena of radiation. 1902-Pieter Zeeman, Born in Zonnemaire, the Netherlands (1865-1943) was awarded 1/2 of the Nobel Prize for the Investigations of the effects of magnetism on the phenomena of radiation. 1903-Henri Antoine Becquerel, Born in Paris (1852-1908) was awarded 1/2 of the Nobel Prize for the discovery of spontaneous radioactivity. 1903-Pierre Curie, Born in Paris (1859-1906) was awarded 1/4 of the Nobel Prize for the Phenomena of radiation discovered by Becquerel.
    [Show full text]
  • УДК 4И(АНГЛ):53(092) MODERN NOBEL LAUREATES AS Socolov
    УДК 4И(АНГЛ):53(092) MODERN NOBEL LAUREATES A.S. Socolov Scientific supervisor - Associate professor I. V. Aleckseenco Siberian Federal University Charles K. Kao Born 4 November 1933 is a pioneer in the development and use of fiber optics in tele- communications. Kao, widely regarded as the "Father of Fiber Optics" or "Father of Fiber Op- tic Communications", was awarded half of the 2009 Nobel Prize in Physics for "groundbreak- ing achievements concerning the transmission of light in fibers for optical communication". In early 1960s at STL, Kao did his pioneering work in the realisation of fiber optics as a telecommunications medium, by demonstrating that the high-loss of existing fiber optics arose from impurities in the glass, rather than from an underlying problem with the technolo- gy itself. Kao was pointed to the head of the electro-optics research group at STL in 1963; he took over the whole optical communication program of STL in December 1964 and decided to overall change their research direction. Kao not only considered the optical physics but also the material properties. The results were first presented by Kao in January 1966 in London, and further published in July with his former colleague George Hockham (1964-1965). This study first theorized and proposed to use glass fibers to implement optical communication, the ideas (especially structural features and materials) described largely are the basis of today's optical fiber communication. In 1965, Kao concluded that the fundamental limitation for glass light attenuation is below 20 dB/km (Decibels per Kilometer, is a measure of the attenuation of a signal over a distance), which is a key threshold value for optical communications (it was first reported by Kao to IEE in London in January 1966).
    [Show full text]