Decreased Cerebellar 3',5'-Cyclic Guanosine Monophosphate Levels

Total Page:16

File Type:pdf, Size:1020Kb

Decreased Cerebellar 3',5'-Cyclic Guanosine Monophosphate Levels 0270.6474/65/0510-2616$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 5. No. IO, pp. 2618-2625 Printed in U.S.A. October 1965 Decreased Cerebellar 3’,5’-Cyclic Guanosine Monophosphate Levels and Insensitivity to Harmaline in the Genetically Dystonic Rat (dt)’ JOAN F. LORDEN,* GARY A. OLTMANS,§ TINA W. McKEON,* JACQUELINE LUTES,* AND MITCHELL BEALESQ Departments of l Psychology and $ Anatomy, University of Alabama in Birmingham, Birmingham, Alabama 35294 and § Department of Pharmacology, Chicago Medical School, North Chicago, Illinois 60064 Abstract The dystonic rat (dt) is an autosomal recessive mutant abnormality in the central or peripheral nervous systems (Eldridge, displaying a complex motor syndrome that includes sus- 1970; Zeman, 1970; Lorden et al., 1984). tained axial twisting movements. The syndrome is correlated Investigations in motor and non-motor areas of the central nervous with increased glutamic acid decarboxylase activity in the system of the dt rat have yielded evidence of biochemical disturb- deep cerebellar nuclei and increased cerebellar norepineph- ances in the cerebellum. Animals displaying the motor syndrome rine levels in comparison with phenotypically normal litter- have increased glutamic acid decarboxylase (GAD) activity in the mates. Biochemical, behavioral, and anatomical techniques deep cerebellar nuclei (Oltmans et al., 1984) and elevated levels of were used to investigate the possibility that the abnormalities norepinephrine (NE) in the whole cerebellum (Lorden et al., 1984). noted in the cerebellum of the dt rat were indicative of altered Although it is not known whether these changes are unique to the function of the major projection neurons of the cerebellar cerebellum, they have not been detected in any of the other brain cortex, the Purkinje cells. Phenotypically normal rats showed regions studied to date. Specifically, GAD activity appears normal in tremor in response to harmaline, a drug that acts on the the caudate-putamen, and NE levels are not reliably different from inferior olive to produce bursting in the climbing fiber path- littermate control values in the neocortex and hippocampus. way. Dystonic rats were insensitive to the effects of harma- The cause of the biochemical changes found in the cerebellum line but did respond to oxotremorine. Levels of the cyclic of the dt rat is not known. Nevertheless, studies of the effects of nucleotide 3’,5’-cyclic guanosine monophosphate, a bio- lesions on GAD activity in other brain areas provide a framework for chemical marker for Purkinje cells, increased in response to developing hypotheses concerning the origin of the abnormalities in harmaline in normal rats but were significantly lower in dys- the dt rat. For example, in the red nucleus increases in GAD activity tonic rats under both basal and harmaline-stimulated condi- have been found following destruction of afferent pathways (Nieoul- tions. Purkinje cell soma size was reduced in the dystonic Ion and Dusticier, 1981). Since cerebellar GAD immunoreactivity has rats but no other morphological correlates of the behavioral been localized in the Purkinje cell terminals in the deep cerebellar or biochemical deficits were noted. Taken together with other nuclei (Chan-Palay, 1982) the increased GAD activity of the dystonic observations on this mutant, the results suggest an impair- rat may indicate a functional deafferentation of the Purkinje cells. ment in the cerebellum or in its connections with lower Decreased afferent stimulation could result from a reduction in either brainstem and spinal cord sites. climbing fiber or mossy fiber activity (Eccles et al., 1966a, b). To examine the status of the Purkinje cells and their response to the activation of afferent neurons directly, we have measured 3’,5’- The dystonic (dt) rat displays sustained twisting movements of cyclic guanosine monophosphate (cGMP) levels in the cerebella of the axial musculature during waking (Lorden et al., 1984). Hyperflex- dystonic rats and their normal littermates. This nucleotide is thought ion of the trunk, frequent falls to the side with rigid extension of the to be a relatively specific marker for Purkinje cells (Biggio et al., limbs, and poor limb placement during locomotion are also charac- 1977a, b, 1978; Nairn and Greengard, 1983) as cerebellar guanylate teristic of the disorder. The rat disease is inherited as an autosomal cyclase and cGMP have both been localized immunohistochemically recessive mutation and the clinical syndrome is observed beginning in Purkinje cells (Ariano et al., 1982). Furthermore, quantities of on postnatal days 9 to IO, following a period of apparently normal cGMP and cGMP-dependent protein kinase, a biochemical marker motor development. The mutant’ has been proposed as a model for found solely in Purkinje cells (DeCamilli et al., 1984) are markedly dystonia musculorum deformans (DMD), an inherited neurological reduced in mutant mice lacking Purkinje cells (Mao et al., 1975b; disease of unknown pathogenesis. As in the human disease, the Schlichter et al., 1980). The finding that cerebellar levels of cGMP syndrome in the mutant rat is not associated with any morphological are increased when excitatory input to the Purkinje cells is enhanced indicates that cGMP reflects Purkinje cell activity (Biggio et al., 1977a, Received October 5, 1984; Revised March 18, 1985; b). Accepted April 10, 1985 Measurements of cGMP were made in dt rats both under unstim- ulated conditions, to examine basal levels of cyclic nucleotide, and ’ This work was supported by Grant NS18062 from the National Institute following treatment with harmaline, to assess the effects of afferent of Neurological and Communicative Disorders and Stroke. We would like to activation. In normal animals harmaline produces a generalized motor thank Dr. Paula Hoffman for the use of her microwave oven and Jeanette tremor and an increase in cerebellar cGMP levels (Lamarre et al., Millrgan for her care of the breeding colony. 1971; Mao et al., 1975a). Electrophysiological recording from Pur- *To whom correspondence should be addressed. kinje cells shows that the frequency of simple spikes decreases and 2618 The Journal of Neuroscience Cerebellar cGMP in dt Rats 2619 a bursting pattern of complex spikes is elicited (Lamarre et al., 1971). sodium pentobarbital and perfused intracardially with 0.9% sodium chloride These effects are thought to be caused by harmaline’s induction of followed by 10% neutral buffered formalin. Brains were removed and post- a synchronous firing pattern in the cells of the inferior olive which in flxed In buffered formalin. Before sectioning, the tissue was placed in 30% sucrose in buffered formalin and allowed to sink. The brains were then turn drives the Purkinje cells by way of the climbing fiber pathway serially sectioned rn the sagittal plane (30 Grn thickness) on a freezing (Lamarre and Mercier, 1971; Lamarre et al., 1971; Biscos et al., mtcrotome and stained with cresyl violet. 1973; De Montigny and Lamarre, 1973; Llinas and Volkind, 1973; Cerebellar sections from dt and normal rats were qualitatively evaluated Lamarre and Puil, 1974; Guidotti et al., 1975). The Purkinje cells in for differences in foliation and cell arrangement. For both cell size and layer turn drive a cerebellobulbar pathway that co-activates (Y- and y- thickness measurements, midvermian and paravermian sections were used. motoneurons to produce tremor (Lamarre and Weiss, 1973). The continuity of the superior cerebellar peduncle with the cerebellar medulla In addition to measuring the effects of harmaline on cerebellar served as a landmark for paravermian sections. A total of 24 Purkinje cells cGMP levels, we measured the effects of harmaline on gross In cerebellar folia V and VI from each animal were traced using a Leitz locomotor activity and monitored both cft rats and their normal microscope with camera lucida attachment. An equal number of cells meeting littermates for the appearance of tremor following treatment with the nucleolar criterion were traced from all animals. As a control for the specificity of any effects seen in the cerebellum, 20 pyramidal cells in area harmaline or oxotremorine. The tremorogenic actions of oxotremo- CA4 of the hippocampus were also traced In each animal. rine are believed to be mediated by systems other than the climbing Layer thickness was assessed by tracing the depths of the molecular and fibers (Guidotti et al., 1975). In addition to the biochemical and granular layers from the crowns of cerebellar folia V and VI in six different behavioral measurements, the Purkinje cells and the projection from sections from each animal. For each set of measurements, a scale bar was the inferior olivary complex were examined using anatomical tech- traced for calibration purposes. Measurements were made using a Houston niques. Instruments digitizing pad interfaced to an Apple II Plus computer. R & M Biometrics (Nashville, TN) software was used to calculate areas and lengths. Materials and Methods Statistical comparisons were made between normal and dystonic rats with t tests. Each region was analyzed separately. Animals. Dystonic rats and their phenotypically normal littermates were To examine Purkinje cell dendritic morphology, 11 dt and 12 normal 20. obtained from the colony at the University of Alabama in Birmingham at 16 day-old animals were anesthetized with ketamine and ether. A 0.5.~1 Hamilton to 20 days of age. Both males and females were used. Mutants were syringe
Recommended publications
  • 2'-Deoxyguanosine Toxicity for B and Mature T Lymphoid Cell Lines Is Mediated by Guanine Ribonucleotide Accumulation
    2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. Y Sidi, B S Mitchell J Clin Invest. 1984;74(5):1640-1648. https://doi.org/10.1172/JCI111580. Research Article Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8- aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'- deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine.
    [Show full text]
  • A New Crystal Form of Bovine Pancreatic Rnase a in Complex with 2
    protein structure communications Acta Crystallographica Section F Structural Biology A new crystal form of bovine pancreatic RNase A in 000 and Crystallization complex with 2 -deoxyguanosine- Communications 5000-monophosphate ISSN 1744-3091 Steven B. Larson,a John S. Day,a The structure of bovine pancreatic RNase A has been determined in complex Robert Cudneyb and Alexander with 20-deoxyguanosine-50-monophosphate (dGMP) at 1.33 A˚ resolution at McPhersona* room temperature in a previously unreported unit cell belonging to space group P31. There are two molecules of nucleotide per enzyme molecule, one of which aDepartment of Molecular Biology and lies in the active-site cleft in the productive binding mode, whilst the guanine Biochemistry, The University of California, base of the other dGMP occupies the pyrimidine-specific binding site in a Irvine, CA 92697-3900, USA, and bHampton nonproductive mode such that it forms hydrogen bonds to the phosphate group Research, Aliso Viejo, CA 92656-3317, USA of the first dGMP. This is the first RNase A structure containing a guanine base in the B2 binding site. Each dGMP molecule is involved in intermolecular interactions with adjacent RNase A molecules in the lattice and the two Correspondence e-mail: [email protected] nucleotides appear to direct the formation of the crystal lattice. Because GMP may be produced during degradation of RNA, this association could represent Received 19 June 2007 an inhibitor complex and thereby affect the observed enzyme kinetics. Accepted 9 August 2007 PDB Reference: RNase A–dGMP complex, 2qca, r2qcasf. 1. Introduction Bovine pancreatic ribonuclease (EC 3.1.27.5), commonly known as RNase A, has been extensively studied by physical-chemical approaches and by X-ray crystallography for nearly 75 years.
    [Show full text]
  • Central Nervous System Dysfunction and Erythrocyte Guanosine Triphosphate Depletion in Purine Nucleoside Phosphorylase Deficiency
    Arch Dis Child: first published as 10.1136/adc.62.4.385 on 1 April 1987. Downloaded from Archives of Disease in Childhood, 1987, 62, 385-391 Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency H A SIMMONDS, L D FAIRBANKS, G S MORRIS, G MORGAN, A R WATSON, P TIMMS, AND B SINGH Purine Laboratory, Guy's Hospital, London, Department of Immunology, Institute of Child Health, London, Department of Paediatrics, City Hospital, Nottingham, Department of Paediatrics and Chemical Pathology, National Guard King Khalid Hospital, Jeddah, Saudi Arabia SUMMARY Developmental retardation was a prominent clinical feature in six infants from three kindreds deficient in the enzyme purine nucleoside phosphorylase (PNP) and was present before development of T cell immunodeficiency. Guanosine triphosphate (GTP) depletion was noted in the erythrocytes of all surviving homozygotes and was of equivalent magnitude to that found in the Lesch-Nyhan syndrome (complete hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency). The similarity between the neurological complications in both disorders that the two major clinical consequences of complete PNP deficiency have differing indicates copyright. aetiologies: (1) neurological effects resulting from deficiency of the PNP enzyme products, which are the substrates for HGPRT, leading to functional deficiency of this enzyme. (2) immunodeficiency caused by accumulation of the PNP enzyme substrates, one of which, deoxyguanosine, is toxic to T cells. These studies show the need to consider PNP deficiency (suggested by the finding of hypouricaemia) in patients with neurological dysfunction, as well as in T cell immunodeficiency. http://adc.bmj.com/ They suggest an important role for GTP in normal central nervous system function.
    [Show full text]
  • High-Throughput Profiling of Nucleotides and Nucleotide Sugars
    Journal of Biotechnology 229 (2016) 3–12 Contents lists available at ScienceDirect Journal of Biotechnology j ournal homepage: www.elsevier.com/locate/jbiotec High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation a,1 b,1 a c Thomas K. Villiger , Robert F. Steinhoff , Marija Ivarsson , Thomas Solacroup , c c b b b Matthieu Stettler , Hervé Broly , Jasmin Krismer , Martin Pabst , Renato Zenobi , a a,d,∗ Massimo Morbidelli , Miroslav Soos a Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH- 8093 Zurich, Switzerland b Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland c Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, ZI B, CH-1809 Fenil-sur-Corsier, Switzerland d Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic a r t i c l e i n f o a b s t r a c t Article history: Recent advances in miniaturized cell culture systems have facilitated the screening of media additives on Received 5 October 2015 productivity and protein quality attributes of mammalian cell cultures. However, intracellular compo- Received in revised form 16 April 2016 nents are not routinely measured due to the limited throughput of available analytical techniques. In this Accepted 20 April 2016 work, time profiling of intracellular nucleotides and nucleotide sugars of CHO-S cell fed-batch processes Available online 27 April 2016 in a micro-scale bioreactor system was carried out using a recently developed high-throughput method based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF- Keywords: MS).
    [Show full text]
  • 82119265.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal: Biophysical Letters Electrocatalytic Oxidation of Guanine, Guanosine, and Guanosine Monophosphate Hong Xie,*y Daiwen Yang,y Adam Heller,z and Zhiqiang Gao*§ *Institute of Bioengineering and Nanotechnology, Singapore 138669; yDepartment of Chemistry, National University of Singapore, Singapore 117543; zDepartment of Chemical Engineering, The University of Texas, Austin, Texas 78712 USA; and §Institute of Microelectronics, Singapore 117685 ABSTRACT The electrochemical behavior of guanine, guanosine, and guanosine monophosphate (GMP) at redox polymer film modified indium tin oxide electrodes is examined by voltammetry and redox titration. Utilizing the redox polymer-coated electrodes as indicator electrodes, a new method for measuring the oxidation potentials, based on monitoring their catalytic oxidation by different redox polymer coated electrodes at different pH, was proposed in this work. The oxidation potentials of 0.81 V and 1.02 V versus normal hydrogen electrode were determined for guanine and guanosine/GMP under physiological conditions, the lowest oxidation potentials ever reported, to our knowledge. Received for publication 6 December 2006 and in final form 10 January 2007. Address reprint requests and inquiries to Zhiqiang Gao, Tel.: 65-67705928; Fax: 65-67780136; Email: [email protected]. The first to oxidize the base of DNA is guanine, oxidized in aqueous saline solutions, by monitoring their catalytic either directly or through hole transfer along the DNA p-stack oxidation currents. At the physiological pH of 7.4, guanine 21 to the radical (1). Its oxidation has been extensively studied electrooxidation is first observed on a Ru(bpy-Me)2 -grafted in the context of DNA damage, associated with mutation redox polymer catalyst-modified indium tin oxide (ITO) elec- and aging (2,3).
    [Show full text]
  • Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues
    International Journal of Molecular Sciences Review Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues 1,2, 2,3, 1,2 1,2, Rosa Mancinelli y, Giorgio Fanò-Illic y, Tiziana Pietrangelo and Stefania Fulle * 1 Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; [email protected] (R.M.); [email protected] (T.P.) 2 Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy; [email protected] 3 Libera Università di Alcatraz, Santa Cristina di Gubbio, 06024 Gubbio, Italy * Correspondence: [email protected] Both authors contributed equally to this work. y Received: 30 January 2020; Accepted: 25 February 2020; Published: 26 February 2020 Abstract: Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-50-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines.
    [Show full text]
  • Nucleotide and Nucleotide Sugar Analysis in Cell Extracts By
    732 CHIMIA 2016, 70, No. 10 Columns doi:10.2533/chimia.2016.732 Chimia 70 (2016) 732–735 © Swiss Chemical Society FH Universities of Applied Sciences HES Fachhochschulen – Hautes Ecoles Spécialisées Nucleotide and Nucleotide Sugar Analysis in Cell biopharmaceutical industry interest has arisen to investigate and Extracts by Capillary Electrophoresis understand the regulation and biosynthesis of the glycosylation process in order to obtain optimal cultivation conditions. The Blanka Bucsella, Antoine Fornage, Catherine Le Denmat, mammalian glycosylation process (the glycan synthesis and the and Franka Kálmán* glycan attachment to the protein backbone) takes place in the *Correspondence: Prof. Dr. F. Kálmán, E-mail: [email protected], HES-SO endoplasmic reticulum (ER) and the Golgi apparatus with sugar Valais, University of Applied Sciences, Sion, Wallis, Institute of Life Technologies, nucleotides (activated monosaccharaides) as precursors.[5] These Route du Rawyl 47, CH-1950 Sion 2 sugar nucleotides are uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), uridine diphosphate glucose (UDP-Glc), uridine Abstract: In biotechnological processes the intracellular level diphosphate N-acetylgalactosamine (UDP-GalNAc), uridine of nucleotides and nucleotide sugars have a direct impact diphosphate galactose (UDP-Gal), guanosine diphosphate on the post-translational modification (glycosylation) of the mannose (GDP-Man), guanosine diphosphate fucose (GDP- therapeutic protein products and on the exopolysaccharide Fuc), cytidine monophosphate N-acetylneuraminic acid (CMP- pattern of the cells. Thus, they are precursors and also key Neu5Ac), uridine diphosphate glucoronic acid (UDP-GlcA) components in the production of glycoproteins and glycolipids. and cytidine monophosphate N-glycolylneuraminic acid All four nucleotides (at different phosphorylation stages) and (CMPNeu5Gc). In the biosynthesis of the sugar nucleotides the their natural sugar derivatives coexist in biological samples.
    [Show full text]
  • Antiviral Activity and Mechanism of Action of a Novel Uracil Analog for Varicella-Zoster Virus
    ANTIVIRAL ACTIVITY AND MECHANISM OF ACTION OF A NOVEL URACIL ANALOG FOR VARICELLA-ZOSTER VIRUS Item Type Dissertation Authors DE, CHANDRAV Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 23/09/2021 21:24:43 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/20.500.12648/1627 ANTIVIRAL ACTIVITY AND MECHANISM OF ACTION OF A NOVEL URACIL ANALOG FOR VARICELLA-ZOSTER VIRUS CHANDRAV DE A dissertation in the Department of Microbiology and Immunology Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Graduate Studies of State University of New York, Upstate Medical University. Approved __________________________ (Sponsor’s Signature) Date __________________________ TABLE OF CONTENTS ACKNOWLEDGMENTS……………………………………..……………….………..vi ABSTRACT………………….…………………………………………...……………..vii CHAPTER I: GENERAL INTRODUCTION………...………………………….…..…...1 The Virus…………………...…………………………………………….….…....2 VZV Life Cycle…………...……………………………………………...……….3 VZV Pathogenesis……………………………………………………...….…...…5 Prevention and Treatment strategies……………...…………………….……...….8 Mechanism of Action of antiviral compounds…………………………..…..…...11 Thymidine Kinase………………………………………………………………..13 Drug Resistance…………………………………………...………………….….14 Challenges in VZV research……………………………………………………..15 New technologies…………………………………………..……….………..…..17 L-nucleoside analogues……………………………………………..…….….…..19 Pyrimidine metabolism and Herpesvirus…………………….……......................19 Fig. 1.1.
    [Show full text]
  • Inhibition of Guanosine Monophosphate Synthetase (GMPS) Blocks Glutamine Metabolism And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286997; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Inhibition of guanosine monophosphate synthetase (GMPS) blocks glutamine metabolism and prostate cancer growth in vitro and in vivo Qian Wang1*, Yi F. Guan1*, Sarah E. Hancock2, Kanu Wahi1, Michelle van Geldermalsen3,4, Blake K. Zhang3,4, Angel Pang1, Rajini Nagarajah3,4, Blossom Mak5, Lisa G. Horvath5, Nigel Turner2, Jeff Holst1#. 1Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Australia; 2Mitochondrial Bioenergetics Laboratory, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia; 3Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; 4Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; 5Chris O'Brien Lifehouse, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia; University of NSW, Sydney, Australia; University of Sydney, Sydney, Australia *these authors contributed equally. #Correspondence: Associate Professor Jeff Holst, Level 2, Lowy Cancer Research Centre C25, UNSW Sydney, NSW 2052 Australia. E-mail: [email protected] Running Title: GMPS regulates purine synthesis for prostate cancer growth Statement of Significance: Prostate cancer cells direct glutamine metabolism through GMPS to synthesize purine nucleotides necessary for their rapid proliferation. Page 1 of 34 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286997; this version posted September 9, 2020.
    [Show full text]
  • Phosphodiesterase-5 Inhibition Preserves Renal
    www.nature.com/scientificreports OPEN Phosphodiesterase-5 inhibition preserves renal hemodynamics and function in mice with diabetic Received: 20 September 2016 Accepted: 09 February 2017 kidney disease by modulating miR- Published: 15 March 2017 22 and BMP7 Riccardo Pofi1,*, Daniela Fiore1,*, Rita De Gaetano2, Giuseppe Panio2, Daniele Gianfrilli1, Carlotta Pozza1, Federica Barbagallo1, Yang Kevin Xiang3, Konstantinos Giannakakis4, Susanna Morano1, Andrea Lenzi1, Fabio Naro2, Andrea M. Isidori1,† & Mary Anna Venneri1,† Diabetic Nephropathy (DN) is the leading cause of end-stage renal disease. Preclinical and experimental studies show that PDE5 inhibitors (PDE5is) exert protective effects in DN improving perivascular inflammation. Using a mouse model of diabetic kidney injury we investigated the protective proprieties of PDE5is on renal hemodynamics and the molecular mechanisms involved. PDE5i treatment prevented the development of DN-related hypertension (P < 0.001), the increase of urine albumin creatinine ratio (P < 0.01), the fall in glomerular filtration rate (P < 0.001), and improved renal resistive index (P < 0.001) and kidney microcirculation. Moreover PDE5i attenuated the rise of nephropathy biomarkers, soluble urokinase-type plasminogen activator receptor, suPAR and neutrophil gelatinase- associated lipocalin, NGAL. In treated animals, blood vessel perfusion was improved and vascular leakage reduced, suggesting preserved renal endothelium integrity, as confirmed by higher capillary density, number of CD31+ cells and pericyte coverage. Analysis of the mechanisms involved revealed the induction of bone morphogenetic protein-7 (BMP7) expression, a critical regulator of angiogenesis and kidney homeostasis, through a PDE5i-dependent downregulation of miR-22. In conclusion PDE5i slows the progression of DN in mice, improving hemodynamic parameters and vessel integrity.
    [Show full text]
  • Biochemistry of Salivary Nucleotide Metabolites and Their Role in the Innate Immunity of Neonates
    Biochemistry of Salivary Nucleotide Metabolites and their Role in the Innate Immunity of Neonates Saad Saeed Abdulwahab Al-Shehri (MSc, Clinical Biochemistry, Griffith University) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2013 The School of Pharmacy ABSTRACT Saliva contains a variety of biochemical components, some of which may be used for the diagnosis of metabolic disorders, as cancer and heart disease markers, and the drug monitoring purposes. Saliva collection is particularly attractive as a non-invasive sampling method for infants and elderly patients. However, the use of saliva to evaluate metabolic status has not been widely studied; in particular, nucleotide metabolites in saliva have received little attention. Nucleotides are divided mainly into purines and pyrimidines, and they play an essential role in many cellular processes involving biosynthesis, energy supply, DNA/RNA synthesis, essential coenzymes, and regulatory mechanisms. Nucleotides are synthesised in mammalian cells by de novo pathways, which are energy-consuming; alternatively they are recycled by energy-saving pathways from nucleosides and bases that act as nucleotide salvage metabolites. This project was initiated by the discovery of a wide variation in salivary concentrations of nucleosides and bases between individuals, raising questions about their biological function. A method was developed and validated for the collection of small volumes of saliva as well as the extraction of purines and pyrimidines from oral swabs. These were then analysed by HPLC with tandem mass spectrometry. A survey of salivary nucleotide metabolites in 77 adults was performed, followed by a study of 60 neonates. Concentrations of the major salivary nucleobases and nucleosides were significantly higher in neonatal compared to adult saliva.
    [Show full text]
  • Identification of Nutritional Components in Black Sesame
    Identification of Nutritional Components in Black Sesame Determined by Non-targeted Metabolomics and Traditional Chinese Medicines Dandan Wang1,2,§, Liangxiao Zhang1,3,5,6,§*, Xiaorong Huang1,2,§, Xiao Wang1,5, Ruinan Yang1,2, Jin Mao1,5, Xuefang Wang1,5, Xiupin Wang1,5, Qi Zhang1,4, Peiwu Li1,3,4,5,* 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China 2 Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China 3 Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China 4 Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China 5 Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China 6 Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan 430062, China § These authors contributed equally to this study Supplementary materials: Table S1 Identified metabolites of black and white sesames Table 1 Identified metabolites of black and white sesames Number Metabolites KEGG Entry 1 S-Adenosylhomocysteine C00021 2 L-Glutamic acid C00025 3 L-Alanine C00041 4 L-Lysine C00047 5 L-Aspartic acid C00049 6 L-Arginine C00062 7 L-Serine C00065 8 L-Methionine C00073 9 Ornithine C00077 10 L-Tryptophan C00078 11 L-Phenylalanine C00079 12 L-Tyrosine C00082 13 Sucrose C00089 14 Glucose 6-phosphate C00092 15 L-Cysteine C00097 16 Choline C00114 17 Biotin C00120 18 L-Leucine C00123 19 Inosinic acid
    [Show full text]