Biochemistry of Salivary Nucleotide Metabolites and Their Role in the Innate Immunity of Neonates

Total Page:16

File Type:pdf, Size:1020Kb

Biochemistry of Salivary Nucleotide Metabolites and Their Role in the Innate Immunity of Neonates Biochemistry of Salivary Nucleotide Metabolites and their Role in the Innate Immunity of Neonates Saad Saeed Abdulwahab Al-Shehri (MSc, Clinical Biochemistry, Griffith University) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2013 The School of Pharmacy ABSTRACT Saliva contains a variety of biochemical components, some of which may be used for the diagnosis of metabolic disorders, as cancer and heart disease markers, and the drug monitoring purposes. Saliva collection is particularly attractive as a non-invasive sampling method for infants and elderly patients. However, the use of saliva to evaluate metabolic status has not been widely studied; in particular, nucleotide metabolites in saliva have received little attention. Nucleotides are divided mainly into purines and pyrimidines, and they play an essential role in many cellular processes involving biosynthesis, energy supply, DNA/RNA synthesis, essential coenzymes, and regulatory mechanisms. Nucleotides are synthesised in mammalian cells by de novo pathways, which are energy-consuming; alternatively they are recycled by energy-saving pathways from nucleosides and bases that act as nucleotide salvage metabolites. This project was initiated by the discovery of a wide variation in salivary concentrations of nucleosides and bases between individuals, raising questions about their biological function. A method was developed and validated for the collection of small volumes of saliva as well as the extraction of purines and pyrimidines from oral swabs. These were then analysed by HPLC with tandem mass spectrometry. A survey of salivary nucleotide metabolites in 77 adults was performed, followed by a study of 60 neonates. Concentrations of the major salivary nucleobases and nucleosides were significantly higher in neonatal compared to adult saliva. The median concentrations (µM) in neonates\adults respectively were: Uracil 7.3\<1.5, Uridine 12\0.4, Hypoxanthine 27\2.1, Xanthine 19\1.7, Adenosine 12\0.1, Inosine 11\0.2, Guanosine 6.8\0.1. These nucleotide metabolites were not simply in equilibrium with plasma, but appeared to be actively secreted into saliva. The high levels of xanthine and hypoxanthine in neonates were particularly interesting, because these are substrates for xanthine oxidase (XO), which occurs with high activity in breast milk. These observations led to a general hypothesis that the role of these nucleotide metabolites in neonatal saliva is concerned with regulation of the oral microbiota of infants. XO is involved in the final stage of degradation of purine nucleotides, and it has been proposed to have a role in the innate immunity of babies arising from its ability to generate antibacterial ‘reactive oxygen species’. The hypothesis proposed that high concentrations of nucleotide metabolites in neonatal saliva, together with stimulation of antibacterial breast milk XO activity, may play significant roles in early innate immunity in neonates. As part of the project, it was decided to also screen saliva from a selection of domestic mammals, which were found to have large differences in metabolite concentrations. ii Investigation of the generation of hydrogen peroxide (H2O2) by breast milk XO was conducted in three stages: (1) fresh breast milk samples were collected and the endogenous H2O2 concentration was determined to be 27.3±12.2 µM; (2) XO activity was then assayed in the same samples using a horseradish peroxidase-Ampliflu™ Red based reaction; the activity of breast milk XO was found to be 8.0±5.3 Units/L; (3) The ability of breast milk to generate H2O2 (40 µM) when mixed with neonatal saliva was successfully demonstrated. XO was confirmed to be inactive in milk formula and pasteurized bovine milk and human breast milk. Investigation of the effect of exogenous H2O2 on the in vitro growth of 4 bacterial species was undertaken. The peroxide mechanism had a strong inhibitory effect on Staphylococcus aureus at low, physiologically relevant concentrations (>25 µM H2O2). Lactobacillus plantarum and Escherichia coli required significantly higher concentrations of peroxide (~200 µM) to inhibit growth, while the effect of peroxide on the growth of Salmonella species was intermediate. As a proof-of-principle experiment, the effects of a saliva and breast milk mixture on bacterial growth in vitro were then tested. The reaction between salivary xanthine/hypoxanthine and breast milk XO was shown to be bactericidal against S. aureus and Salmonella spp., (p=0.001, p=0.007 respectively) whereas the effects on L. plantarum and E. coli were not statistically significant. A dose-dependent bactericidal effect of hypoxanthine/xanthine with milk on the 4 bacterial species was also demonstrated. Finally, to test whether breast-feeding (i.e. active XO mechanism), compared with formula-feeding (inactive XO mechanism), produces an in vivo effect on the oral microbiota, a survey of oral microbiota in infants was undertaken. Oral swabs were collected from both groups and the 16S rRNA bacterial gene was ‘deep sequenced’ using Roche 454 platform. Bioinformatic analysis software was used to determine bacterial phyla and families (and is continuing to species level). Significant variation between the oral microbiota of breast-fed and formula-fed infants was found. Although other components of breast milk such as antibodies are presumed to have an effect on the infant’s microbiota, it was considered essential to show that an effect existed, and that it could be measured in the mouth – this has not previously been demonstrated. Teasing apart the ‘innate’ (peroxidative mechanism) immune system from the specific (antibody mechanism) system is a task for future studies. iii DECLARATION BY AUTHOR This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the General Award Rules of The University of Queensland, immediately made available for research and study in accordance with the Copyright Act 1968. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. iv PUBLICATIONS DURING CANDIDATURE Journal publications: Al-Shehri, S., M. Henman, B.G. Charles, D. Cowley, P.N. Shaw, H. Liley, A. Tomarchio, C. Punyadeera, and J.A. Duley, Collection and determination of nucleotide metabolites in neonatal and adult saliva by high performance liquid chromatography with tandem mass spectrometry. J Chromatogr B, 2013. 931C: p. 140-147, (see Appendix 9) In preparation: 1- Role of purines and pyrimidines and xanthine oxidase in regulating oral microbiota 2- Oral Bacterial 16S rRNA deep sequencing in breast-fed versus formula-fed infants Published abstracts and posters: Al-Shehri S., Shaw PN, Cowley D, Liley H, Henman M, Tomarchio A, Charles B, Duley JA. Nucleotide precursors in neonatal and adult saliva. J. Inherit. Metab. Dis. 2011, 34:S73 (Poster was presented at SSIEM, 2011, Geneva), (see Appendix 10 & 11) Al-Shehri S., Henman M, Cowley D, Charles B , Shaw PN, Liley H, Duley JA. Longitudinal study of nucleotide metabolites in infants’ saliva compared to adults and mammals. (Poster at ComBio, 2012, Adelaide), (see Appendix 12 & 13) Al-Shehri , SS., Liley, H., Knox, CL., Henman, M., Cowley, DM., Charles, B G., and Duley, JA. Human milk xanthine oxidase and neonatal salivary nucleotide precursors generate hydrogen peroxide; a novel pathway with potential role in regulating oral microflora. Journal of Paediatrics and Child Health. 2013, 49 (S2) p. 121. ISSN 1034-4810 ERA C, IF 1.281. (Poster was presented at PSANZ Annual Congress, 2013, Adelaide), (see Appendix 14 & 15) Seminar oral presentations: Al-Shehri S & Duley J. Baby Saliva and Breast Milk. Dept. of Pathology, Mater Hospital, Brisbane 25/11/2011 Al-Shehri S & Duley J. Baby Saliva and Breast Milk – What’s in the Mix? PSANZ meeting, Brisbane 15/12/2011 Al-Shehri S. Salivary nucleotide metabolites: their role in the innate immunity of babies, UQ 3MT competition, 2012 v PUBLICATIONS INCLUDED IN THIS THESIS No publications included vi CONTRIBUTIONS BY OTHERS TO THE THESIS My principal advisor, Dr John Duley, as well as my associate supervisors; A/Prof. Bruce Charles, Prof. Nick Shaw, and Dr. David Cowley contributed to this thesis by providing input on experimental design, data analysis and critically revising and editing this document. Dr Christine Knox introduced me to the field of microbiology and 16S rRNA sequencing, arranged
Recommended publications
  • The Effect of an Oral Or Intravenous Nucleotide-Free Diet on Selected Enzyme Activities in Purine Metabolism in Rats
    RICE UNIVERSITY THE EFFECT OF AN ORAL OR INTRAVENOUS NUCLEOTIDE-FREE DIET ON SELECTED ENZYME ACTIVITIES IN PURINE METABOLISM IN RATS. by SANDRA LYNN SNYDER A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF ARTS APPROVED, THESIS COMMITTEE: .T Dr. Frederi Associate Professor of B Chemistry Dr. Susan M. B^fget Assistant Professor of Biochemistry Dr. George J. Æchfoépfer Professor of Biochemistry and Chemistry Dr. George'N. Bennett Assistant Professor of Biochemistry Dr. Roger L. Storck Professor of Biology HOUSTON, TEXAS MARCH, 1982 ABSTRACT THE EFFECT OF AN ORAL OR INTRAVENOUS NUCLEOTIDE-FREE DIET ON SELECTED ENZYME ACTIVITIES IN PURINE METABOLISM IN RATS SANDRA LYNN SNYDER Interrelationships between purine metabolism and immunity, cancer, and the diet have been considered. In studying trends of metabolic changes which occur in response to changes in the purine content of the diet, it has been hypothesized that when purines are lacking from the diet, there is a general shift from a catabolic to an anabolic state. In the present investigation, the activities of selected enzymes on purine metabolism in rats were studied with respect to an oral or intravenous nucleotide-free diet compared to the activities in rats fed normal chow. The intravenous nucleotide-free diet caused a decrease in purine nucleoside phosphorylase activity, an increase in adenine phosphoribosyl transferase, and no change in the activity of hypoxanthine-guanine phosphoribosyl transferase, with respect to a normal control diet. The orally fed nucleotide-free diet caused a decrease in the activity of purine nucleoside phosphorylase and xanthine oxidase and increase in pancreatic ribonucléase and no change in adenine phosphoribosyl transferase or hyphoxanthine-guanine phosphoribosyl transferase, with respect to a normal control diet.
    [Show full text]
  • Annotation-1 Annotation-1
    Annotation-1 Baseline Resuscitation Normal Saline Resuscitation PFP Shock Annotation-1 Aminoacids Arginine and proline metabolism Carnitine and fatty acid metabolsim Glutamate metabolism Glycerophospholipid biosynthesis Glycolysis and sugars GSH homeostasis GSH homeostasis/Glyoxlate Hexosamine Indole and Tryptophan Nucleotides Other Panthothenate metabolism Pentose Phosphate Pathway Serine biosynthesis and one-carbon metabolism Signaling Sulfur metabolism TCA cycle urea cycle relative row min row max Baseline_14 Baseline_16 Baseline_13 Baseline_15 Baseline_22 Baseline_2 Baseline_12 Baseline_3 Baseline_4 Baseline_9 Baseline_7 Baseline_8 Shock_13 Shock_12 Shock_15 Shock_22 Shock_14 Shock_16 Shock_2 Shock_3 Shock_7 Shock_4 Shock_8 Shock_9 Res_NS_14 Res_NS_13 Res_NS_16 Res_NS_12 Res_NS_22 Res_NS_15 Res_PFP_2 Res_PFP_3 Res_PFP_7 Res_PFP_4 Res_PFP_8 Res_PFP_9 Annotation-1 Annotation-1 Annotation Annotation-1 L-Arginine Aminoacids L-Isoleucine Aminoacids Leucine Aminoacids L-Cysteine Aminoacids L-Alanine Aminoacids L-Aspartate Aminoacids L-Glutamate Aminoacids L-Glutamine Aminoacids L-Histidine Aminoacids L-Lysine Aminoacids L-Methionine Aminoacids L-Tyrosine Aminoacids L-Asparagine Aminoacids L-Threonine Aminoacids L-Cystine Aminoacids L-Serine Aminoacids L-Proline Aminoacids L-Valine Aminoacids L-Tryptophan Aminoacids Glycine Aminoacids L-Kynurenine Aminoacids L-Phenylalanine Aminoacids CMP Nucleotides 6-Hydroxynicotinate Nucleotides 5-6-Dihydrouracil Nucleotides AMP Nucleotides dAMP Nucleotides GMP Nucleotides Guanine Nucleotides 2-5-Dihydroxypyridine
    [Show full text]
  • 169 ALLOPUBINOL-INDUCED OROTICACIDURIA 172 in a NEW DUTCH PATIENT with PNP-DEFICIENCY and CELLULAR ITNODEFICIENCY Sebastian Beiter
    URINABY OXIPURINOL-1-RIBOSIDE EXCRETION AND RESIDUAL PURINE NUCLEOSIDE PHOSPHORYLASE ACTIVITY 169 ALLOPUBINOL-INDUCED OROTICACIDURIA 172 IN A NEW DUTCH PATIENT WITH PNP-DEFICIENCY AND CELLULAR ITNODEFICIENCY Sebastian Beiter. Werner Loffler, Wolfgang 2 Grobner and Nepomnk Zollner. Medizinische Poliklinik der G.R~ 'ksenl, J.M.Ze ers , lL. J.M. S aa en , W.~uis~,M.Duran , Universitat Miinchen, W-Germany. B.S.:oorbrooc?, G.E.2Staal and S.E.zdman2. 1 Dept. Hematology, Div. Med.Enzymology, University Hospital, Allopurinol-induced oroticaciduria which is due to inhi- Utrecht, The Netherlands. 2 University Children's Hospital "Het bition of OW-decarboxylase by oxipurinol-1- and -7-riboti- Wilhelmina Kinderziekenhuis", Utrecht, The Netherlands. 3 Juli- de is markedly reduced by dietary purines. The underlying ana Ziekenhuis, Dept. of Pediatrics, Rhenen, The Netherlands. mechanism possibly is an influence of dietary purines on A deficiency of purine nucleoside phosphorylase (PNP) was the formation of oxipurinol-ribotides. The latter being ex- detected in a three-year-old boy who was admitted for the creted as their corresponding aucleosides we first measured investigation of behaviour disorders and spastic diplegia. The the urinary excretion of oxipnrinol-7-riboside which was urinary excretion profile of oxypurines, analyzed by liquid found not to be altered by dietary purines. Therefore we chromatography, showed the presence of large amounts of searched for oxipurinol-1-riboside which had not yet been (deoxytinosine and (deoxy)guanosine together with a low uric detected in human urine. By HPM: we were able to demonstra- acid. The PNP activity in red blood cells and peripheral blood te the presence of this metabolite.
    [Show full text]
  • Nitroxide-Mediated Polymerization
    Chapter 7 Nitroxide-Mediated Polymerization 7.1 Introduction Controlled radical polymerization (CRP) under radical initiation conditions belongs to priority areas in the development of the synthetic chemistry of polymers of the last years [1–16]. Nitroxide-mediated polymerization (NMP) was invented by Solomon [1, 13]. Since this discovery, nitroxide-mediated radical polymerization is a power- ful method to synthesize well-defined macromolecular architectures with precisely controlled topologies, compositions, microstructures, and functionalities [3–5]. The most common mechanisms for reversible activation in polymerization reactions are schematically illustrated in Scheme 7.1. Persistent radical effect (PRE) occurs when two radicals are generated at the same time, at the same rate, and one is more persistent than the other, the self-termination reactions are lowered, leading to an unusually high selectivity for the cross-coupling reaction [10]. The effect has been investigated for the preparation of macromolecules with a narrow molar mass distribution through radical polymerization. Nitroxide-mediated polymerization is widely applied in industrial polymer syn- theses as a method for production of large-tonnage polymers and is employed to manufacture new pigments, sealants, emulsion stabilizers, and block copolymers, etc., with a various set of properties. NMP has also paved an avenue for complex macromolecular architectures (statistical, block, graft) in the fields of nanoscience and nanotechnology [5, 9, 12] and references cited therein. A brief summary of NMP developments in both the patent and open literature during the period of the early Scheme 7.1 Mechanisms for reversible activation in polymerization reactions [6] © Springer Nature Switzerland AG 2020 161 G. I. Likhtenshtein, Nitroxides, Springer Series in Materials Science 292, https://doi.org/10.1007/978-3-030-34822-9_7 162 7 Nitroxide-Mediated Polymerization 1980–2000 was presented in [11].
    [Show full text]
  • Is Human Hibernation Possible?
    ANRV334-ME59-12 ARI 16 December 2007 14:50 Is Human Hibernation Possible? Cheng Chi Lee Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030; email: [email protected] Annu. Rev. Med. 2008. 59:177–86 Key Words The Annual Review of Medicine is online at hypothermia, 5-AMP, torpor, hypometabolism http://med.annualreviews.org This article’s doi: Abstract 10.1146/annurev.med.59.061506.110403 The induction of hypometabolism in cells and organs to reduce is- Copyright c 2008 by Annual Reviews. chemia damage holds enormous clinical promise in diverse fields, in- All rights reserved cluding treatment of stroke and heart attack. However, the thought 0066-4219/08/0218-0177$20.00 that humans can undergo a severe hypometabolic state analogous to hibernation borders on science fiction. Some mammals can enter a severe hypothermic state during hibernation in which metabolic activity is extremely low, and yet full viability is restored when the animal arouses from such a state. To date, the underlying mecha- nism for hibernation or similar behaviors remains an enigma. The beneficial effect of hypothermia, which reduces cellular metabolic demands, has many well-established clinical applications. However, severe hypothermia induced by clinical drugs is extremely difficult and is associated with dramatically increased rates of cardiac arrest for nonhibernators. The recent discovery of a biomolecule, 5-AMP, which allows nonhibernating mammals to rapidly and safely enter severe hypothermia could remove this impediment and enable the wide adoption of hypothermia as a routine clinical tool. 177 ANRV334-ME59-12 ARI 16 December 2007 14:50 INTRODUCTION ing mammals.
    [Show full text]
  • IVPAIRED RENAL EXCRETION of HYPOXANTHINE Ihx) and Clinical
    IVPAIRED RENAL EXCRETION OF HYPOXANTHINE IHx) AND RED BLOOD CELL MORPHOLOGY IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD): EFFECT OF OXYGEN THERAPY 122 VERSUS ALLOPURINOL. A MichBn, J Puig. P Crespo*. F Maccas", A GonzBlez, and J Ortiz. 'La Paz' Hospital, Clinical Biochemistry, Universidad Autbnoma, Madrid, Department of Internal Medicine, Universidad Aut6nomq Spain. Madrid, and 'Department of Histology, Granada, Spain. Most patients with primary gout show normal uric acid (UA) production rates and a relative underexcretion of UA. To examine Morphologic abnormalities in red blood cells depend on dlverse if the renal dysfunction for UA excretion in primary gout also factors which may include the intracellular centent of oxygen. affects the excretion of UA precursors, we compared the plasma Hypoxemia increases adenine nucleotide turnover and may influence concentrations and 24 hour urinary excretion of Hx and X in 10 erythrocyte morphology. To test this hypothesis in 7 patients normal srlojects, 15 patients with primary gout and UA under- with cliilically stable COPD we measured red cell ATP (iATP) excretioli and 10 patients with diverse enzyme deficiencies known levels by HPLC and observed erythrocyte morphology by scanning to overproduce UA. All subjects showed a creatinine clearance electron microscopy. Studies were carried out in 3 situations: above 80 ml/min/1.73 m2. Results (mean+SEM) were as follows basal state (mean+SEM; Pa02, 5823 mm Hg), after 7 days on oxygen therapy (Pa02, 79~4mm Hg; Pc0.01) and following a 7 day course PW URINE on allopurinol (300 mg/24 h; Pa02, 58+3 mm Hg). iATP concentra- UAHxX UA Hx X tions were similar in the 3 expermental conditions.
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Functional Food Ingredients
    B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION FUNCTIONAL FOOD INGREDIENTS www.bhbiotech.com B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION GREAT PRODUCT OPPORTUNITIES B&H Biotechnology Co., Ltd (Hong Kong) is an international trading company specializing in pharmaceutical products and functional food ingredients. We have more than 20 years of experience in international trading business and have customers in more than 30 countries. Quick response, best service and competitive prices have made us the preferred partner. FUNCTIONAL FOOD INGREDIENTS PRODUCT PORTFOLIO 5’- Nucleotide (NUC) products Fructose – 1,6-diphosphate (FDP) products Alpha-amylase inhibitor (wheat origin) Yeast RNA (Ribonucleic Acid) Casein Phosphopeptides, CPP Citicoline Sodium, CDPC S-Ademetionine, SAM Adenosine Monophophate, AMP Adenosine Cyclphosphate, cAMP Cytidine Monophosphate, CMP Feed Nucleotides Other food ingredients and supplements www.bhbiotech.com B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION 5’- NUCLEOTIDES AND FRUCTOSE-1,6-DIPHOSPHATE PRODUCTS B&H Biotechnology Co., Ltd provides high quality 5′-nucleotides, fructose-1,6- diphosphate salts and their derivatives from the most reliable manufactures. These products are widely used in pharmaceutical and food industries. Among them, 5'-nucleotides are particularly competitive owing to breakthroughs in the bio-catalysis, bio- process and separation technologies. All products have the certifications of HACCP, Halal and Kosher. These products have a strong market position in China, and are exported into EU, USA, South America , Australia and Middle-East. 5’-Nucleotide (NUC) products 5’-nucleotides are widely used in the pharmaceutical and food industries, especially as infant powder milk additives. They can improve the human immunity, enhance the ability of babies to resist bacillary dysentery and can reduce the incidence rate of diarrhea.
    [Show full text]
  • 2'-Deoxyguanosine Toxicity for B and Mature T Lymphoid Cell Lines Is Mediated by Guanine Ribonucleotide Accumulation
    2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. Y Sidi, B S Mitchell J Clin Invest. 1984;74(5):1640-1648. https://doi.org/10.1172/JCI111580. Research Article Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8- aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'- deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine.
    [Show full text]
  • Metabolism of Purines and Pyrimidines in Health and Disease
    39th Meeting of the Polish Biochemical Society Gdañsk 16–20 September 2003 SESSION 6 Metabolism of purines and pyrimidines in health and disease Organized by A. C. Sk³adanowski, A. Guranowski 182 Session 6. Metabolism of purines and pyrimidines in health and disease 2003 323 Lecture The role of DNA methylation in cytotoxicity mechanism of adenosine analogues in treatment of leukemia Krystyna Fabianowska-Majewska Zak³ad Chemii Medycznej IFiB, Uniwersytet Medyczny, ul. Mazowiecka 6/8, 92 215 £ódŸ Changes in DNA methylation have been recognized tory effects of cladribine and fludarabine on DNA as one of the most common molecular alterations in hu- methylation, after 48 hr growth of K562 cells with the man neoplastic diseases and hypermethylation of drugs, are non-random and affect mainly CpG rich is- gene-promoter regions is one of the most frequent lands or CCGG sequences but do not affect sepa- mechanisms of the loss of gene functions. For this rea- rately-located CpG sequences. The analysis showed son, DNA methylation may be a tool for detection of that cladribine (0.1 mM) reduced the methylated early cell transformations as well as predisposition to cytosines in CpG islands and CCGG sequences to a sim- metastasis process. Moreover, DNA methylation seems ilar degree. The inhibition of cytosine methylation by to be a promissing target for new preventive and thera- fludarabine (3 mM) was observed mainly in CCGG se- peutic strategies. quences, sensitive to HpaII, but the decline in the meth- Our studies on DNA methylation and cytotoxicity ylated cytosine, located in CpG island was 2-fold lower mechanism of antileukemic drugs, cladribine and than that with cladribine.
    [Show full text]
  • We Have Previously Reported' the Isolation of Guanosine Diphosphate
    VOL. 48, 1962 BIOCHEMISTRY: HEATH AND ELBEIN 1209 9 Ramel, A., E. Stellwagen, and H. K. Schachman, Federation Proc., 20, 387 (1961). 10 Markus, G., A. L. Grossberg, and D. Pressman, Arch. Biochem. Biophys., 96, 63 (1962). "1 For preparation of anti-Xp antisera, see Nisonoff, A., and D. Pressman, J. Immunol., 80, 417 (1958) and idem., 83, 138 (1959). 12 For preparation of anti-Ap antisera, see Grossberg, A. L., and D. Pressman, J. Am. Chem. Soc., 82, 5478 (1960). 13 For preparation of anti-Rp antisera, see Pressman, D. and L. A. Sternberger, J. Immunol., 66, 609 (1951), and Grossberg, A. L., G. Radzimski, and D. Pressman, Biochemistry, 1, 391 (1962). 14 Smithies, O., Biochem. J., 71, 585 (1959). 15 Poulik, M. D., Biochim. et Biophysica Acta., 44, 390 (1960). 16 Edelman, G. M., and M. D. Poulik, J. Exp. Med., 113, 861 (1961). 17 Breinl, F., and F. Haurowitz, Z. Physiol. Chem., 192, 45 (1930). 18 Pauling, L., J. Am. Chem. Soc., 62, 2643 (1940). 19 Pressman, D., and 0. Roholt, these PROCEEDINGS, 47, 1606 (1961). THE ENZYMATIC SYNTHESIS OF GUANOSINE DIPHOSPHATE COLITOSE BY A MUTANT STRAIN OF ESCHERICHIA COLI* BY EDWARD C. HEATHt AND ALAN D. ELBEINT RACKHAM ARTHRITIS RESEARCH UNIT AND DEPARTMENT OF BACTERIOLOGY, THE UNIVERSITY OF MICHIGAN Communicated by J. L. Oncley, May 10, 1962 We have previously reported' the isolation of guanosine diphosphate colitose (GDP-colitose* GDP-3,6-dideoxy-L-galactose) from Escherichia coli 0111-B4; only 2.5 umoles of this sugar nucleotide were isolated from 1 kilogram of cells. Studies on the biosynthesis of colitose with extracts of this organism indicated that GDP-mannose was a precursor;2 however, the enzymatically formed colitose was isolated from a high-molecular weight substance and attempts to isolate the sus- pected intermediate, GDP-colitose, were unsuccessful.
    [Show full text]
  • A New Crystal Form of Bovine Pancreatic Rnase a in Complex with 2
    protein structure communications Acta Crystallographica Section F Structural Biology A new crystal form of bovine pancreatic RNase A in 000 and Crystallization complex with 2 -deoxyguanosine- Communications 5000-monophosphate ISSN 1744-3091 Steven B. Larson,a John S. Day,a The structure of bovine pancreatic RNase A has been determined in complex Robert Cudneyb and Alexander with 20-deoxyguanosine-50-monophosphate (dGMP) at 1.33 A˚ resolution at McPhersona* room temperature in a previously unreported unit cell belonging to space group P31. There are two molecules of nucleotide per enzyme molecule, one of which aDepartment of Molecular Biology and lies in the active-site cleft in the productive binding mode, whilst the guanine Biochemistry, The University of California, base of the other dGMP occupies the pyrimidine-specific binding site in a Irvine, CA 92697-3900, USA, and bHampton nonproductive mode such that it forms hydrogen bonds to the phosphate group Research, Aliso Viejo, CA 92656-3317, USA of the first dGMP. This is the first RNase A structure containing a guanine base in the B2 binding site. Each dGMP molecule is involved in intermolecular interactions with adjacent RNase A molecules in the lattice and the two Correspondence e-mail: [email protected] nucleotides appear to direct the formation of the crystal lattice. Because GMP may be produced during degradation of RNA, this association could represent Received 19 June 2007 an inhibitor complex and thereby affect the observed enzyme kinetics. Accepted 9 August 2007 PDB Reference: RNase A–dGMP complex, 2qca, r2qcasf. 1. Introduction Bovine pancreatic ribonuclease (EC 3.1.27.5), commonly known as RNase A, has been extensively studied by physical-chemical approaches and by X-ray crystallography for nearly 75 years.
    [Show full text]