Vanylglycol Valine Uridine Diphosphate Gl0.084943556

Total Page:16

File Type:pdf, Size:1020Kb

Vanylglycol Valine Uridine Diphosphate Gl0.084943556 Supplementary material Gut Supplementary Table S6. All metabolites analyzed metabolome in PDAC patients Sample Label P value Fold change of SMAD4+/SMAD4- Vanylglycol 0.155424904 3.137179109 Valine 0.004642878 0.589837251 Uridine diphosphate gl0.084943556 0.263274997 Uric acid 0.090790719 1.393871126 Tyrosine 0.003182454 0.514460059 Tryptophan 0.066090634 0.663198946 Thymol 0.146640203 2.916828638 Threonine 0.005124039 0.393216791 Thiosulfate 0.051860669 1.635639445 Succinic acid 0.364992 1.133060182 Suberic acid 0.133965924 1.163132453 Stearic acid 0.005186541 1.652773292 Sorbitol 0.004383992 1.618952122 Serine 0.002722175 0.519593603 Salicyluric acid 0.01643565 0.397706161 Quinic acid 0.034892334 2.174700019 Pyroglutamic acid 0.02033026 0.785242233 Pyridoxamine 0.30175314 0.637267947 Pseudoephedrine 0.127542773 2.835197206 Proline 0.00322716 0.54718818 Phosphoenolpyruvic ac0.20082072 2.509884702 Phenylalanine 0.008564006 0.567069702 Perillic acid 0.139725472 2.556597234 Pentadecanoic acid 0.021040611 1.5166969 Palmitoleic acid 0.179346121 1.186205247 Palmitic acid 0.004373542 1.50182052 Oxidized glutathione 0.240508659 2.271313826 O-Phosphoethanolamin0.049351827 0.629273759 Niacinamide 0.198513534 0.661777552 N-Acetyl-L-aspartic ac0.017293677 0.303552837 N-Acetylaspartylglutam0.071688124 0 Myristic acid 0.002221367 1.470162064 Methionine sulfoxide 0.044238216 0.632447594 Methionine 0.006936405 0.400639788 Maltotetraose 0.215648863 2.353750497 Malonic acid 0.303649525 0.705638171 Malic acid 0.000391647 0.509161372 LysoPC(18:0) 0.365579666 0.829193518 LysoPC(16:1(9Z)) 0.227278337 0.641851413 LysoPC(15:0) 0.204327924 0.688919299 Lysine 0.001970791 0.591957216 Liang C, et al. Gut 2019; 0:1–13. doi: 10.1136/gutjnl-2018-317163 Supplementary material Gut L-Histidine 0.108854619 0.886942965 L-Alpha-aminobutyric0.016983719 0.758368874 L-Acetylcarnitine 0.000824012 0.571840307 Iso-Valeraldehyde 0.093789075 3.237684774 Isoleucine 0.005711759 0.534670669 Isocitric acid 0.02822411 1.84052254 Inosine 0.037149871 0.710298595 Hypoxanthine 0.204652194 0.90869501 Hydrocinnamic acid 0.059559833 1.683631363 Histamine 0.294699277 1.285171925 Heptadecanoic acid 0.251350737 0.654049656 Guanosine monophosp0.012754796 0.392489061 Guanosine 0.472304488 0.990311535 Guaiacol 0.022630072 1.515521436 Glycylproline 0.045743052 0.670804946 Glycolic acid 0.483425265 1.014208082 Glycogen 0.284811176 2.369077276 Glycine 0.032556376 0.637661116 Glycerophosphocholin0.058059341 0.589648205 Glutathione 0.095832999 9.533320819 Glutamine 0.004304399 0.35862069 Glutamic acid 0.003091293 0.511474813 Glucose-1-phosphate 0.010296482 0.23762011 Glucose 6-phosphate 0.02299983 0.46270713 Gamma-Glutamylcyste0.079180553 0.131113761 Gamma-Butyrolactone0.058292869 0.558957302 Galactonic acid 0.320627538 1.104387506 Fumaric acid 0.089039789 0.39488764 Fructose 6-phosphate 0.008480565 0.33590814 Farnesol 0.142308931 2.611295426 Eugenol 0.097127305 2.422680784 Ethyl glucuronide 0.168280532 0.635949435 Erythronic acid 0.462948858 1.033635449 Epsilon-(gamma-Glutam0.077458532 0.351873395 Eicosenoic acid 0.21502013 0.586695361 D-Sedoheptulose 7-phos0.0314877 0.236806023 Dodecanoic acid 0.011326092 1.639334681 D-Maltose 0.293494036 1.077459931 D-Lactic acid 0.059593324 1.411747853 Dimethyl-L-arginine 0.263799905 0.826653736 Dihydroxyacetone phos0.032262539 0.242063767 DHEA sulfate 0.485580502 0.986760149 D-Glucuronic acid 0.494844559 0.997247966 Deoxycytidine 0.330875867 1.293421896 Liang C, et al. Gut 2019; 0:1–13. doi: 10.1136/gutjnl-2018-317163 Supplementary material Gut Dehydroascorbic acid 0.14097235 0.609627417 Cysteine-S-sulfate 0.44948058 0.973574509 Cysteine 0.029475059 0.37414372 Creatinine 0.036644525 0.627647191 Creatine 0.043187208 0.734847342 Citric acid 0.147679591 0.027816353 cis-4-Decenoic acid 0.110340957 3.382175973 Carnosine 0.174407148 0.466797763 Betaine 0.223642135 0.885230885 Aspartic acid 0.018004945 0.557060251 Asparagine 0.011110107 0.41559372 Ascorbic acid 0.443271159 1.070338037 Argininosuccinic acid 0.078236922 0.382951025 Arginine 0.003307611 0.614738031 Aminoadipic acid 0.191714431 2.003673729 Alpha-D-Glucose 1,6-b0.187676579 0.046153356 Alpha-CEHC 0.159569059 2.561077498 Adrenic acid 0.022858628 0.397211101 Adenine nucleotide mon0.01161879 0.383122601 Acetylglycine 0.111617018 3.10938363 5-Aminolevulinic acid 0.012050675 0.203872137 4-Hydroxynonenal 0.243391289 1.279101499 4-Hydroxydebrisoquin0.136378522 2.436970817 4-Hydroxybenzaldehyd0.0489137 1.14393601 4-Heptanone 0.17851337 1.313538248 3-Phosphoglycerate 0.003630041 0.105131414 2-Pyrrolidinone 0.005451898 0.441289802 2-Oxoarginine 0.460072722 1.14205627 2-Ketobutyric acid 0.277431468 1.060493257 2,4-Dihydroxybutanoic0.375329338 0.939999403 Liang C, et al. Gut 2019; 0:1–13. doi: 10.1136/gutjnl-2018-317163 Supplementary material Gut ients with distinct SMAD4 status. 23262 23172 22912 22792 22782 SMAD4- SMAD4- SMAD4- SMAD4- SMAD4- 0 0 0 1.234364313 0 40.08 34.43 33.76 24.58 20.9 31.90402876 7.517624151 0.568479853 0 0 4097.694267 3899.971835 4391.944229 4471.682631 6651.103722 462.06 430.99 470.08 317.59 223.34 582.94 912.26 856.4 574.79 151.46 0 1.592745304 0 0.335224849 0 400.07 504.33 806.59 442.65 169.89 5328.307624 6144.888153 3939.095529 5749.275715 8212.001154 7.23812068 20.73004832 9.234497787 14.80000881 8.603108625 20.38924055 29.06154682 28.46253097 39.37979356 33.94206789 6583.972814 7458.179325 4384.158169 8658.801825 11886.24077 846.1360161 750.955553 696.9618818 1002.464858 1353.426326 95.22 159.98 218.75 131.46 77.19 1953.336499 2408.898414 1803.160129 1076.337065 692.9379314 26.65059289 69.46612963 65.09866287 64.26810111 48.44247083 2911.879082 2948.397898 2416.902367 3125.432113 3384.656074 14.76859387 3.858528512 2.394588666 0.541503008 0 0 1.873022525 0 0.687657464 0 17.37 22.96 22.42 16.56 11.53 0.000123179 0.008744675 0 0.096001729 0 1529.81 1599.97 1836.12 1101.27 867.22 0 17.23825687 0 6.548758346 0 33.69097198 35.93001658 19.26728345 43.77636691 60.14121893 203.7377972 254.1654547 255.4033384 338.8265853 386.0432813 3334.506974 3531.962357 2410.506413 3983.790268 5962.480535 36.14114404 47.48246637 0 0 0 94.37896572 33.10196183 65.54615609 69.0074517 59.35275881 0.138471717 13.01046245 7.676465683 1.547365005 3.850772491 230.691106 101.5275311 71.54478209 69.7317269 106.4997903 0 5.415611778 4.182657424 0 0 86.6757722 87.5369437 69.71807365 103.7960103 141.4849852 13.53683236 25.21279801 26.26630965 17.12291728 2.884881128 70.19 77.12 36.97 25.22 17.35 222.2155748 46.70252162 95.07783013 54.23451927 221.4255201 3.335568003 28.65281054 14.59492388 22.85133197 0 123.99 66.48 90.25 96.03 44.74 333.3688252 242.3501115 1116.58992 1084.210622 390.234317 8.993190881 20.53994582 113.6296164 44.10878257 20.77055767 510.7044023 558.9649835 1937.427707 1798.0304 609.3726357 397.36 468.68 596.69 392.7 263.8 Liang C, et al. Gut 2019; 0:1–13. doi: 10.1136/gutjnl-2018-317163 Supplementary material Gut 1588.483241 1430.60439 1554.86223 1602.335741 1824.308977 1160.288133 1191.79926 981.1030454 1256.993691 1314.216127 1253.411991 548.5141731 534.0416991 800.0348854 1260.990443 0 2.827871086 0 1.168891544 0 1807.1 1697.49 2243.2 1366.4 1067.59 125.1435433 392.2325729 279.3477953 282.5279997 282.9869997 65.65392728 29.23653835 30.07507237 46.79270225 61.4678422 13319.17091 11644.99874 9914.935884 12828.92199 17263.65354 6.599608952 9.214587325 12.39184052 13.66895559 13.40974957 0.882468938 6.564459439 6.130064457 4.528990879 0.225490313 21.89810425 120.8817447 82.6565583 39.45286548 1.499596739 165.7010516 79.1516164 343.3127047 188.0849984 277.1134071 1896.968996 1186.243179 1579.143039 1237.45626 2061.969012 35.46964467 70.89259471 69.78108352 94.52226919 60.88279451 638.0904128 565.6555756 609.3301945 972.1839496 729.46759 10.72131189 30.63558178 16.40244078 25.02854845 13.06235493 62.94135029 7.936549196 1.63645679 16.53966417 0 21.94575453 20.79137143 26.89383364 23.22269897 17.72545169 261.087164 167.9161063 448.7341182 295.4175472 332.7070667 1.184496841 0 0.030495827 0.042280782 1.096384146 526.92 849.07 1137.51 662.06 314.61 1309.2 1784.46 1804.6 1533.22 947.41 182.04 189.49 322.03 165.71 84.53 394.7990898 613.3793996 694.4827329 789.8918564 679.2855644 45.37593818 1.912248945 0 0 0 4.932270835 5.586414272 4.334702478 5.107045341 2.440173079 437.7105885 181.610113 129.2123744 267.8481432 394.5343697 510.3535596 0.019951076 0 3.938157052 331.3992385 692.8501248 474.8567223 640.6034312 533.0062925 372.3750481 0.147150831 46.89310439 0.081589056 12.91230448 0.205154063 5.359601952 58.34686363 4.452038975 54.98430192 9.7355875 101.95477 111.7167461 12.29390765 108.9417219 79.16316783 252.65929 767.6181155 372.3607681 584.64598 351.230553 111.6641609 63.70757612 72.58114679 90.65305865 136.8582118 2.773752673 34.80856615 58.780049 22.80417723 11.20350043 172.954508 194.1741582 250.7549452 210.733497 255.5593741 15.53708785 12.83792212 8.465427355 15.97839778 26.19719626 2958.733966 2289.699322 2163.082792 2713.809546 3472.351056 427.6425755 315.6435827 354.3543649 604.878754 632.0486201 52.03217543 35.59626616 35.30510802 66.16487356 67.70886935 33.44 21.22 32.31 20.58 9.83 32.86198281 1019.695894 966.3565968 1214.182267 231.4249313 135.0795648 47.72950941 77.27745352 67.66284217 45.51095369 15.2392391 4.780369448 1.89712159 1.792867018 0.518255119 Liang C, et al. Gut 2019; 0:1–13. doi: 10.1136/gutjnl-2018-317163 Supplementary material Gut 152.7562809 47.82104404 65.38494874 214.1780254 45.14802269 98.71256614 68.23031228 77.93823863 96.55301921 115.5058089 95.68 109.09 196.01 103.27
Recommended publications
  • Chapter 6—Clove Oil (Eugenol)
    Chapter 6—Clove Oil (Eugenol) OH CH3 O Eugenol Chapter 6: Clove oil 6-2 6 Table of Contents — Clove Oil (Eugenol) 6.1 INTRODUCTION ......................................................................................................................................... 6-4 6.2 CLOVE OIL AND EUGENOL TOXICITY TO HUMANS AND LEVELS OF CONCERN ................ 6-6 6.2.1 HEALTH EFFECTS ...................................................................................................................................... 6-7 6.2.1.A Acute Effects—Sensitization ........................................................................................................... 6-7 6.2.1.B Acute Effects—Skin, Eyes and Respiratory System ........................................................................ 6-7 6.2.1.C Acute Effects—Systemic Poisoning ................................................................................................ 6-7 6.2.1.D Effects in Human Cells .................................................................................................................... 6-8 6.2.1.E Levels of Concern for Humans ........................................................................................................ 6-8 6.2.2 PESTICIDE ILLNESS REPORTS .................................................................................................................... 6-9 6.3 EUGENOL TOXICITY TO ANIMALS AND PLANTS AND LEVELS OF CONCERN .................... 6-10 6.3.1 MAMMALS .............................................................................................................................................
    [Show full text]
  • We Have Previously Reported' the Isolation of Guanosine Diphosphate
    VOL. 48, 1962 BIOCHEMISTRY: HEATH AND ELBEIN 1209 9 Ramel, A., E. Stellwagen, and H. K. Schachman, Federation Proc., 20, 387 (1961). 10 Markus, G., A. L. Grossberg, and D. Pressman, Arch. Biochem. Biophys., 96, 63 (1962). "1 For preparation of anti-Xp antisera, see Nisonoff, A., and D. Pressman, J. Immunol., 80, 417 (1958) and idem., 83, 138 (1959). 12 For preparation of anti-Ap antisera, see Grossberg, A. L., and D. Pressman, J. Am. Chem. Soc., 82, 5478 (1960). 13 For preparation of anti-Rp antisera, see Pressman, D. and L. A. Sternberger, J. Immunol., 66, 609 (1951), and Grossberg, A. L., G. Radzimski, and D. Pressman, Biochemistry, 1, 391 (1962). 14 Smithies, O., Biochem. J., 71, 585 (1959). 15 Poulik, M. D., Biochim. et Biophysica Acta., 44, 390 (1960). 16 Edelman, G. M., and M. D. Poulik, J. Exp. Med., 113, 861 (1961). 17 Breinl, F., and F. Haurowitz, Z. Physiol. Chem., 192, 45 (1930). 18 Pauling, L., J. Am. Chem. Soc., 62, 2643 (1940). 19 Pressman, D., and 0. Roholt, these PROCEEDINGS, 47, 1606 (1961). THE ENZYMATIC SYNTHESIS OF GUANOSINE DIPHOSPHATE COLITOSE BY A MUTANT STRAIN OF ESCHERICHIA COLI* BY EDWARD C. HEATHt AND ALAN D. ELBEINT RACKHAM ARTHRITIS RESEARCH UNIT AND DEPARTMENT OF BACTERIOLOGY, THE UNIVERSITY OF MICHIGAN Communicated by J. L. Oncley, May 10, 1962 We have previously reported' the isolation of guanosine diphosphate colitose (GDP-colitose* GDP-3,6-dideoxy-L-galactose) from Escherichia coli 0111-B4; only 2.5 umoles of this sugar nucleotide were isolated from 1 kilogram of cells. Studies on the biosynthesis of colitose with extracts of this organism indicated that GDP-mannose was a precursor;2 however, the enzymatically formed colitose was isolated from a high-molecular weight substance and attempts to isolate the sus- pected intermediate, GDP-colitose, were unsuccessful.
    [Show full text]
  • Understanding and Managing the Transition Using Essential Oils Vs
    MENOPAUSE: UNDERSTANDING AND MANAGING THE TRANSITION USING ESSENTIAL OILS VS. TRADITIONAL ALLOPATHIC MEDICINE by Melissa A. Clanton A thesis submitted in partial fulfillment of the requirements for the Diploma of Aromatherapy 401 Australasian College of Health Sciences Instructors: Dorene Petersen, Erica Petersen, E. Joy Bowles, Marcangelo Puccio, Janet Bennion, Judika Illes, and Julie Gatti TABLE OF CONTENTS List of Tables and Figures............................................................................ iv Acknowledgments........................................................................................ v Introduction.................................................................................................. 1 Chapter 1 – Female Reproduction 1a – The Female Reproductive System............................................. 4 1b - The Female Hormones.............................................................. 9 1c – The Menstrual Cycle and Pregnancy....................................... 12 Chapter 2 – Physiology of Menopause 2a – What is Menopause? .............................................................. 16 2b - Physiological Changes of Menopause ..................................... 20 2c – Symptoms of Menopause ....................................................... 23 Chapter 3 – Allopathic Approaches To Menopausal Symptoms 3a –Diagnosis and Common Medical Treatments........................... 27 3b – Side Effects and Risks of Hormone Replacement Therapy ...... 32 3c – Retail Cost of Common Hormone Replacement
    [Show full text]
  • The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol
    molecules Article The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol, and Terpineol on Escherichia coli Biofilm Control as Assessed by Culture-Dependent and -Independent Methods Magdalena A. Olszewska 1,* , Astrid G˛edas 1 and Manuel Simões 2,* 1 Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszy´nski1, 10-726 Olsztyn, Poland; [email protected] 2 LEPABE–Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal * Correspondence: [email protected] (M.A.O.); [email protected] (M.S.); Tel.: +48-89-5233729 (M.A.O.); +351-22508-1654 (M.S.); Fax: +351-22508-1449 (M.S.) Received: 14 May 2020; Accepted: 5 June 2020; Published: 6 June 2020 Abstract: Bacterial biofilms contribute to problems with preserving food hygiene, jeopardizing any conventional intervention method used by the food industry. Hence, the approach of using essential oil (EO) compounds effective in biofilm control has considerable merit and deserves in-depth research. In this study, the effect of selected EO compounds (eugenol, trans-cinnamaldehyde, citronellol, and terpineol) was assessed on Escherichia coli biofilm control by plate count, resazurin assay, and Syto® 9/PI (-/propidium iodide) staining coupled with flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The selected EO compounds effectively inhibited the growth of planktonic E. coli at low concentrations of 3–5 mM, revealing a high antimicrobial activity. EO compounds markedly interfered with biofilms too, with trans-cinnamaldehyde causing the most prominent effects. Its antibiofilm activity was manifested by a high reduction of cell metabolic activity (>60%) and almost complete reduction in biofilm cell culturability.
    [Show full text]
  • The Synthesis of Vanillin
    The synthesis of vanillin - learning about aspects of sustainable chemistry by comparing different syntheses La síntesis de la vainilla - aprendiendo sobre aspectos de química sostenible mediante la comparación de diferentes síntesis NICOLE GARNER1, ANTJE SIOL2 , INGO EILKS1 1 Institute for Science Education, University of Bremen, 2 Center for Environmental Research and Sustainable Technology, University of Bremen, Germany, [email protected] Abstract • Prevention This paper discusses one way of integrating the aspects of sustainable chemistry into • Atom Economy secondary and undergraduate chemistry education. Two different synthesis reactions • Less Hazardous Chemical Syntheses for vanillin are presented, which both use isoeugenol as the starting reagent. Whereas • Designing Safer Chemicals the first synthesis is performed using conventional chemistry techniques, second • Safer Solvents and Auxiliaries approach employs strategies inspired by sustainable chemistry. The discussion • Design for Energy Efficiency covers how comparison of these two experiments can aid in learning about selected • Use of Renewable Feedstocks sustainable chemistry principles. • Reduce Derivatives Key words: education for sustainable development, chemistry education, green • Catalysis chemistry, vanillin • Design for Degradation • Real-time Analysis for Pollution Prevention Resumen • Inherently Safer Chemistry for Accident Prevention Este artículo analiza una manera de integrar los aspectos de la química sostenible en la escuela secundaria y en bachillerato.
    [Show full text]
  • Electroanalysis May Be Used in the Vanillin Biotechnological Production
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/20317 Official URL: https://doi.org/10.1007/s12010-013-0631-2 To cite this version: Giraud, William and Mirabel, Marie and Comtat, Maurice Electroanalysis may be used in the Vanillin Biotechnological Production. (2014) Applied Chemistry and Biotechnology, 172 (4). 1953-1963. ISSN 0273-2289 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Electroanalysis may be used in the Vanillin Biotechnological Production William Giraud & Marie Mirabel & Maurice Comtat Abstract This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode.
    [Show full text]
  • Identification of Flavour Additives in Tobacco Products to Develop A
    Research paper Tob Control: first published as 10.1136/tobaccocontrol-2016-052961 on 11 February 2017. Downloaded from Identification of flavour additives in tobacco products to develop a flavour library Erna JZ Krüsemann, Wouter F Visser, Johannes WJM Cremers, Jeroen LA Pennings, Reinskje Talhout ► Additional material is ABStract flavoured tobacco products over unflavoured 2 published online only. To view Objectives This study combines chemical analysis products. Furthermore, Kreslake and colleagues please visit the journal online (http:// dx. doi. org/ 10. 1136/ and flavour descriptions of flavour additives used in analysed data from tobacco industry documents, tobaccocontrol- 2016- 052961). tobacco products, and provides a starting point to build which show that tobacco companies use strat- an extensive library of flavour components, useful for egies to manipulate sensory characteristics of National Institute for Public product surveillance. cigarettes, for instance the menthol content, to Health and the Environment Methods Headspace gas chromatography-mass facilitate smoking initiation.3 According to them, (RIVM), Bilthoven, The Netherlands spectrometry (GC-MS) was used to compare 22 this strategy has been most successful in attracting commercially available tobacco products (cigarettes youth and young adult smokers. Correspondence to and roll-your-own) expected to have a characterising Overall, tobacco products with a characterising Professor Reinskje Talhout, flavour and 6 commercially available products not flavour stimulate young people to initiate smoking National Institute for Public expected to have a characterising flavour with 5 and therefore contribute to an increased use of Health and the Environment reference products (natural tobacco leaves and research 1 4 (RIVM), Antonie van tobacco products. Leeuwenhoeklaan 9, 3721 MA cigarettes containing no flavour additives).
    [Show full text]
  • Bio-Based Thermosetting Copolymers of Eugenol and Tung Oil Harris Handoko Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Bio-based thermosetting copolymers of eugenol and tung oil Harris Handoko Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mechanics of Materials Commons, and the Polymer Chemistry Commons Recommended Citation Handoko, Harris, "Bio-based thermosetting copolymers of eugenol and tung oil" (2014). Graduate Theses and Dissertations. 13757. https://lib.dr.iastate.edu/etd/13757 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Bio-based thermosetting copolymers of eugenol and tung oil by Harris Handoko A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Material Science and Engineering Program of Study Committee: Samy Madbouly, Co-Major Professor Lawrence Genalo, Co-Major Professor Xiaoli Tan David Grewell Iowa State University Ames, Iowa 2014 Copyright © Harris Handoko, 2014. All rights reserved. ii TABLE OF CONTENTS LIST OF ABBREVIATIONS………………………………………………………………...... iv ACKNOWLEDGEMENT…………………………………………………………………..… vi ABSTRACT…………………………………………………………………………………..... vii CHAPTER 1: BACKGROUND INFORMATION 1.1
    [Show full text]
  • On the Action of Fluorouracil on Leukemia Cells1
    [CANCER RESEARCH 26 Part 1, 1611-1615,August 1966] On the Action of Fluorouracil on Leukemia Cells1 ALLAN R. GOLDBERG, JOHN H. MACHLEDT, JR., AND ARTHUR B. PARDEE Department of Biology, Princeton University, Princeton, New Jersey Summary In the present study the lymphoid leukemia L1210 of the mouse and a FU-resistant line were investigated. The problem The uptake and metabolism of radioactive uracil, uridine, posed was to discover a site of FU inhibition in the sensitive phosphate, and 5-fluorouracil by the mouse L1210 leukemic cells. The results suggest that the "salvage" pathway of pyrimi leukocytes and a fluorouracil-resistant variant were investigated. dine synthesis (see Chart 1) is sensitive to FU, with a resulting The dual aims of the research were to locate a metabolic differ inhibition of nucleic acid synthesis in the sensitive cells. The re ence responsible for resistance, and to define the site of action of the inhibitor. The resistant cells possess a much less active "sal sistant cells do not depend on this pathway, and hence are not vage" pathway, from uracil to nucleic acids, owing to a weaker susceptible to the inhibitor. uridine phosphorylase activity. They depend on the de novo pathway for a supply of pyrimidine nucleotides. Also, the con Materials and Methods version of fluorouracil to phosphorylated derivatives and its Uracil-3H and uridine-3H were obtained from the New Eng incorporation into RNA is somewhat reduced. Fluorouracil is land Nuclear Corporation, 5-FU-3H from Schwarz BioResearch, postulated to be less effective against these cells because its main Inc., and Na2H32PO4from Volk Radiochemical Co.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0054021 A1 Dalko Et Al
    US 20030054021A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0054021 A1 Dalko et al. (43) Pub. Date: Mar. 20, 2003 (54) 7-OXO-DHEACOMPOUNDS FOR TREATING (30) Foreign Application Priority Data KERATINOUS CONDITIONS/AFFLICTIONS Jun. 14, 2001 (FR)............................................ 01/07804 (76) Inventors: Maria Dalko, Gif Sur Yvette (FR); Publication Classification Alexandre Cavezza, Tremblay-En-France (FR); Elisabeth (51) Int. Cl." ....................... A61K 31/695; A61K 31/66; Picard-Lesboueyries, Velizy (FR); A61K 31/58; A61K 31/56; Beatrice Renault, Saint Maurice (FR); A61K 7/OO Veronique Burnier, Paris (FR) (52) U.S. Cl. ............................ 424/401; 514/63; 514/172; 514/176; 514/177; 514/143 Correspondence Address: (57) ABSTRACT Norman H. Stepno, Esquire BURNS, DOANE, SWECKER & MATHIS, 7-Oxo-DHEA derivatives, various of which are themselves L.L.P. novel compounds, are well Suited for cosmetically/therapeu P.O. Box 1404 tically treating adverse conditions/afflictions of a keratinous Alexandria, VA 22313-1404 (US) Substrate/material, notably of human skin, hair, eyelashes and nails, to improve the appearance thereof, in particular to prevent or treat Signs of aging of the Skin and/or a dull (21) Appl. No.: 10/170,679 complexion and/or skin or hair pigmentation disorders and/ or dryneSS of the skin and/or hyperSeborrhoea and/or hyper Seborrhoea-related imperfections and/or Sensitive skin and/ (22) Filed: Jun. 14, 2002 or dandruff and/or natural hair loSS and/or baldness. US 2003/0054021 A1 Mar. 20, 2003 7-OXO-DHEACOMPOUNDS FOR TREATING KERATINOUS CONDITIONS/AFFLICTIONS (I) Me O CROSS-REFERENCE TO PRIORITY APPLICATION Me 0001.
    [Show full text]
  • Non-Enzymatic Synthesis of the Coenzymes, Uridine Diphosphate
    N O N - E N Z Y M A T I C S Y N T H E S I S OF THE C O E N Z Y M E S , U R I D I N E D I P H O S P H A T E G L U C O S E A N D C Y T I D I N E D I P H O S P H A T E C H O L I N E , A N D O T H E R P H O S P H O R Y L A T E D M E T A B O L I C I N T E R M E D I A T E S A. M A R , J. D W O R K I N , and J. ORO* Department of Biochemical and Biophysical Sciences, University of Houston, Houston, TX 77004, U.S.A. (Received 3 November, 1986) Abstract. The synthesis of uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP- choline), glucose-l-phosphate (G1P) and glucose-6-phosphate (G6P) has been accomplished under simulated prebiotic conditions using urea and cyanamide, two condensing agents considered to have been present on the primitive Earth. The synthesis of UDPG was carried out by reacting G1P and UTP at 70 °C for 24 hours in the presence of the condensing agents in an aqueous medium. CDP-choline was obtained under the same conditions by reacting choline phosphate and CTP. G1P and G6P were synthesized from glucose and inorganic phosphate at 70°C for 16 hours.
    [Show full text]
  • Method of Preparing Vanillin
    (19) TZZ¥Z_T (11) EP 3 045 444 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 20.07.2016 Bulletin 2016/29 C07C 47/58 (2006.01) (21) Application number: 15750614.8 (86) International application number: PCT/CN2015/085408 (22) Date of filing: 29.07.2015 (87) International publication number: WO 2016/000664 (07.01.2016 Gazette 2016/01) (84) Designated Contracting States: • LIU, Zhenjiang AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Jiaxing City, Zhejiang 314000 (CN) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • YAO, Yueliang PL PT RO RS SE SI SK SM TR Jiaxing City, Zhejiang 314000 (CN) Designated Extension States: • WANG, Chaoyang BA ME Jiaxing City, Zhejiang 314000 (CN) Designated Validation States: • WU, Jianxin MA Jiaxing City, Zhejiang 314000 (CN) • ZHAO, Feifei (30) Priority: 30.06.2014 CN 201410304472 Jiaxing City, Zhejiang 314000 (CN) (71) Applicant: JIAXING ZHONGHUA CHEMICAL CO., (74) Representative: Johnson, Richard Alan et al LTD. Mewburn Ellis LLP Nanhu District City Tower Jiaxing City, 40 Basinghall Street Zhejiang 314000 (CN) London EC2V 5DE (GB) (72) Inventors: Remarks: • MAO, Haifang A request for restoration of the right of priority under Jiaxing City, Zhejiang 314000 (CN) Rule 49ter.2 PCT is pending before the EPO as • WANG, Lizhi designated Office. Jiaxing City, Zhejiang 314000 (CN) (54) METHOD OF PREPARING VANILLIN (57) A method of preparing vanillin comprises weigh- water with the volume ratio of water to the first solvent ing eugenol, a strong alkali,
    [Show full text]