Changes in Transpiration and Foliage Growth in Lodgepole Pine Trees Following Mountain Pine Beetle Attack and Mechanical Girdling ⇑ Robert M

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Transpiration and Foliage Growth in Lodgepole Pine Trees Following Mountain Pine Beetle Attack and Mechanical Girdling ⇑ Robert M Forest Ecology and Management 289 (2013) 312–317 Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling ⇑ Robert M. Hubbard , Charles C. Rhoades, Kelly Elder, Jose Negron USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526, United States article info abstract Article history: The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the Received 13 June 2012 importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem Received in revised form 18 September 2012 feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the Accepted 21 September 2012 tree’s vascular system by the bark beetles inhibit water transport from roots to canopy; the implications Available online 28 November 2012 of these processes for tree mortality are poorly understood. We hypothesized that the fungus must quickly disrupt tree water relations because phloem girdling, reported in other studies, requires much Keywords: longer than a year to cause mortality. We tested the hypothesis in lodgepole pine (Pinus contorta) by com- Blue stain fungi paring tree water use, foliar expansion and seasonal variation in predawn water potential on 8 mechan- Phloem Sap flow ically girdled trees, 10 control trees and 17 trees attacked by mountain pine beetle (Dendroctonous Pinus contorta ponderosae). Transpiration began to decline within ten days of beetle infestation; two months later, Dendroctonus ponderosae pre-dawn water potential had also dropped significantly as water transport to the canopy declined by 60% relative to healthy trees. There was no water transport or foliar expansion by beetle-infested trees the following year. Experimentally girdled trees continued to transpire, maintain leaf water potential and grow new foliage similar to healthy trees. Our data suggest that fungi introduced by bark beetles in this study are the primary cause of tree mortality following mountain pine beetle attack and signifi- cantly reduce transpiration soon after beetle infestation. Rapid decline and the eventual cessation of water uptake by infected trees have important implications for water and nutrient cycling in beetle impacted forests. Published by Elsevier B.V. 1. Introduction more temperate forests (Safranyik et al., 2010; Rice et al., 2007; Cullingham et al., 2011). Mountain pine beetle (Dendroctonus ponderosae Hopkins) coe- Bark beetles disrupt two basic life-sustaining transport pro- volved with conifer species and has been an important disturbance cesses trees they infest. Adult beetles consume phloem tissue in agent in North American pine forests for thousands of years. A to build egg galleries and developing larvae consume phloem for number of abiotic and biotic factors typically maintain populations food until maturity. Together, phloem feeding by adult and larval at endemic thresholds (Raffa et al., 2008). At low population levels, beetles contribute to some amount of phloem girdling, disrupting bark beetles usually attack stressed trees creating openings in for- the transport of photosynthate from the canopy to other tissues est stands that allow tree regeneration and dead trees to serve as within the tree. Bark beetles also carry a diversity of spores from habitat for wildlife. However, during the past decade and a half, four main genera of fungi, Ophiostoma, Ceratocystiopsis, Grosmannia mountain pine beetles are causing significant mortality in millions and Ceratocystis (Six and Wingfield, 2011) and a number of species of hectares of lodgepole pine forests that extend from western Can- in these groups have been shown to be phytopathogenic ada to the southern Rockies. The abundance of over mature stands, (Christiansen and Solheim, 1990; Yamaoka et al., 1995; Kim recent drought and warming winter temperatures has created con- et al., 2008). Once inside the tree, fungal spores introduced by bark ditions that support the current outbreak (Raffa et al., 2008). The beetles germinate and the spreading fungal hyphae penetrate possibility of further infestations are likely as beetles move into water conducting xylem tissue in the sapwood and block water alternate hosts such as jack pine (Pinus banksiana) in the boreal for- transport from the soil to the canopy (e.g. Ballard et al., 1984; ests of North America, and ponderosa pine (Pinus ponderosae)in Langstrom et al., 1993; Wullschleger et al., 2004). Both fungal infection of xylem tissue and phloem feeding by bark beetles have the potential to cause tree mortality. The link be- ⇑ Corresponding author. Tel.: +1 970 498 1260. tween phloem consumption by bark beetles and tree mortality has E-mail address: [email protected] (R.M. Hubbard). not been established, but mechanical girdling has been used to 0378-1127/$ - see front matter Published by Elsevier B.V. http://dx.doi.org/10.1016/j.foreco.2012.09.028 R.M. Hubbard et al. / Forest Ecology and Management 289 (2013) 312–317 313 examine tree and ecosystem carbon dynamics. In these studies, July 2006, we identified 36 lodgepole pine trees within a 30 m ra- girdled trees typically live for at least a growing season and often dius that showed no evidence of beetle activity and began monitor- longer before succumbing to the girdle treatment (Scott-Denton ing sap flux density on each tree using Granier style sap flow et al., 2006; Weintraub et al., 2007; Domec and Pruyn, 2008; Chen probes (see details below). Treatment trees had an average diame- et al., 2010). In contrast, experiments that inoculate trees with ter of 24.0 cm (±0.54 se) averaged 15.5 m (±0.3 se) in height and blue-stain fungi or that measured a transpiration response follow- had similar sapwood to leaf area ratios (0.080 cm2 mÀ2 ± 0.001 se). ing beetle infestation suggest that the fungal infection kills trees We randomly selected 24 of the 36 trees for the control and girdled relatively quickly (Yamaoka et al., 1995; Wullschleger et al., treatments and sprayed the stems of these trees with a wide spec- 2004). Although bark beetle fungal associates may not necessarily trum carbamate insecticide (SEVIN, Garden Tech Inc.) to protect support bark beetles in overwhelming tree defenses (Six and them against beetle attack. The insecticide was applied according Wingfield, 2011) the above studies suggest that disruption of pho- to the manufacture’s recommendation and care was taken not to tosynthate transport from the canopy and fungal infection of xy- excessively spray foliage. lem tissue may not be equal players in the eventual mortality of Bark beetle emergence began on July 17, 2006 within our study trees following mountain pine beetle infestation. area and by July 19 bark beetles had attacked eighteen of the treat- In spite of the importance of mountain pine beetle to the ecol- ment trees (including seven sprayed trees), as indicated by the ogy of North American pine forests, there has never been a study presence of abundant pitch tubes and boring dust on the ground, that attempted to simultaneously quantify changes in tree physiol- which are indicative of successful infestation. Consequently, we ogy induced by phloem feeding and fungal infection. Several stud- adjusted our sample size for each treatment by randomly selecting ies have examined changes in transpiration rates following pine non-attacked trees for the control (n = 10) and girdle (n = 8) treat- beetle infestations or inoculations with blue-stain fungi (e.g. ments and assigned the attacked trees to the beetle treatment Yamaoka et al., 1990; Wullschleger et al., 2004) while others have (n = 17). The girdled treatment was implemented late in the after- examined competitive interactions of different beetle species on noon on July 19 by carefully removing a 50 cm wide ring of bark phloem consumption, or attack densities of beetles relative to approximately 2 m above the ground (approximately 0.6 m above phloem carbohydrate concentrations (e.g. Miller and Berryman, the sap flow probes) using a sharp knife and draw blade. The bark 1986). Understanding the mechanisms behind tree mortality fol- peeled easily at the cambium allowing us to avoid injury to the xy- lowing beetle attack is important for development of control strat- lem. At the end of the study, we verified the presence (beetle in- egies as well as how the timing of mortality in trees and stands fested trees) or absence (control and girdled trees) of blue stain affects other ecosystem processes. Our goal in this study was to fungi in sapwood tissue of each treatment by extracting an incre- compare changes in water status and foliar growth of healthy trees, ment core from each tree and by visually examining the xylem tis- trees girdled to disrupt phloem transport, and trees attacked by sue below a 2 cm square section of bark. Blue stain fungal bark beetles and blue stain fungi. To accomplish this, we mechan- mycelium was present in the sapwood of all beetle infested trees ically removed phloem from the entire circumference of healthy and was absent in cores from the girdled and control trees. trees to simulate severe phloem feeding by bark beetles and com- pared transpiration, pre-dawn leaf water potential, leaf expansion 2.3. Environmental data and foliar nitrogen concentrations with beetle attacked and healthy trees over most of two growing
Recommended publications
  • Hwd”Rni -I I Southern Rest SO-296 Experimen?” Station July, 1963
    c=.. United States I &=*$ Departmenlt of ‘$!j’!&’ Argriculture Forest Service hWD”rnI -I I Southern rest SO-296 Experimen?” Station July, 1963 Lightning Strike Simulation for Studying Southern Pine Bark and Engraver Beetle Attacks Mitchel C. Miller SUMMARY Endemic populations of the southern pine beetle is probably conservative; actual values could be (Dendroctonus frontalis Zimm.) and Ips spp. at- considerably higher. tacked loblolly pilnes (Pinus taeda L.) on which light- Lightning struck trees may attract SPB with a re- ning strikes were simulated with detonating cord lease of volatile oleoresin fractions from the shower in the field. Southern pine beetles were reared in of finely divided bark and needle particles (Taylor successive generations in these trees from fall 1981 1973, Lorio and Yandle 1978); struck trees offer a through spring 1982; only Ips spp. attacked treated favorable attack and brood development site for trees through December 1982. Lightning strike SPB and Ips spp. as a result of reduced oleoresin simulation provides an alternative means of studying exudation pressure, reduced oleoresin flow, re- bark beetle attack and opens the way for com- duced relative water content and increased reduc- parisons with nat;ural lightning strikes. ing-sugar content of inner bark (Hodges and Pickard Keywords: Lightning strike simulation, southern 1971). Anderson and Anderson (1968) associated pine beetle, Ips, Dendroctonus frontalis. successful attack by three Ips species on a light- ning struck loblolly pine with reduced oleoresin
    [Show full text]
  • Overcoming Dormancy in Loblolly Pine (Pinus Taeda L.)
    Reprinted from: Edwards, D.G.W., compiler and editor. 1993. "Dormancy and barriers to germination." Proc. Internal. Sympos. IUFRO Project Group P2.04-00 (Seed Problems). Victoria, British Columbia Canada ' April 23-26, 1991. Forestry Canada, Pacific Forestry Centre, Victoria, B.C. Overcoming dormancy in loblolly pine (Pinus taeda L.) F.T. BONNER AND C.A. HARRINGTON u.s. Department of Agriculture, Forest Service Southern Forest Experiment Station, Starkville, MS 39759, U.S.A. and Pacific Northwest Research Station, Olympia, WA 98502, U.S.A. Abstract Dormancy patterns in loblolly pine (Pinus taeda L.) were examined by comparing various parameters of germination rate. Both linear and polynomial models showed that mean germination time (MGT) was the most sensitive to chilling period. MGT was then used in a test of a new chilling technique that employed 24-h warm interruptions of chilling. This procedure produced faster rates of germination (lower MGT) in one group of 9 lots, but a second test with 15 lots yielded negative responses to any type of stratification. Resume Chez Ie pin a encens (Pinus taeda L.), les caracteristiques de la dormance ont ete examinees par comparaison de differents parametres du taux de germination. Des modeles lineaires comme polynomiaux ont montre que Ie temps moyen de germination etait Ie plus sensible a la periode d'entreposage en chambre froide. Cette duree moyenne a ensuite ete mise a profit dans l'essai d'une nouvelle technique d'entreposage en chambre froide qui comporte des interruptions de 24 h de rechauffement. Cette technique a accelere les taux de germination (temps moyen de germination raccourci) dans un groupe de 9 lots, mais lors d'un second essai sur 15 lots, a conduit a des resultats negatifs, peu importe Ie type de stratification.
    [Show full text]
  • Introgression Between Pinus Taeda L. and Pinus Echinata Mill
    Introgression between Pinus taeda L. and Pinus echinata Mill. Jiwang Chen 1, C. G. Tauer l , Guihua Bai1, and Yinghua Huang1 Key words: cpDNA; introgression; microsatellite; nuclear ribosomal DNA; loblolly pine; shortleaf pine INTRODUCTION Loblolly pine (Pinus taeda L.) and shortleaf pine (Pinus echinata Mill.) have widely overlapping geographic ranges. Hybridization between the two species has interested tree breeders for a long time. Morphologically, the two pine species are different. The needles of loblolly pine are 6 to 9 inches long, usually with three yellow-green needles per fascicle; but shortleaf pine needles are 3 to 5 inches long, with two or three dark yellow- green slender and flexible needles per fascicle. Loblolly pine also has larger cones than shortleaf, as well as other differences, however, these characters offer limited help when the genotypes of the parents and their probable hybrids are compounded by environmental factors The limitations of morphological characters resulted in the identification of the allozyme marker IDH (isocitrate dehydrogenase) to identify hybrids (Huneycutt and Askew, 1989). The high frequency of IDH variation seen in natural shortleaf pine populations outside the natural range of loblolly pine (Rajiv et al., 1997) suggests either profuse hybridization between the two species or that IDH is an unreliable marker. These data required us to look for new markers to confirm the identity of putative hybrids. A more extensive study (relative to the study of Rajiv et al., 1997), sampling a larger portion of shortleaf-loblolly pine sympatric population, was conducted to further explore the nature and extent of these hybrids in the native populations.
    [Show full text]
  • Tfsbbstudy.Pdf
    Introduction Results Pine bark beetles, including the mountain pine beetle (MPB), Table 1. Effects of abamectin (Aba) injection treatments on the success of Ips engraver beetle adult Trial 1: Evaluation of bolts collected from treated and untreated Dendroctonus ponderosae Hopkins, and southern pine beetle (SPB), D. attack, brood development, and success of cerambycid larvae in loblolly pine logs in Texas: 2008 - loblolly pine trees in 2008 - 2011 indicated that a similar number frontalis Zimmermann, are some of the more important forest pests in 2011. of Ips engraver beetles attacked the bolts regardless of treatment the United States (Billings et al. 2004) with local and regional outbreaks (Table 1). However, the success of the Ips in constructing galleries causing severe economic losses on a nearly annual basis. Other species (> 2.5 cm) or producing brood was significantly less for both of pine bark beetles, including the secondary pests Ips avulsus (Eichoff), injection treatments, regardless of season, compared to the I. grandicollis (Eichoff), and I. calligraphus (Germar), also are known to checks (Fig. 3). Similarly, the number of cerambycid egg niches cause significant tree mortality particularly during severe drought periods was similar for all treatments, but there were significantly less in the southeastern U.S (Wilkinson & Foltz 1982). The current abundance phloem consumed by larvae in the injected logs. of susceptible trees and forests underlines the need to develop new methods to protect individual trees from bark beetle attacks. Trial 2: Nearly all baited trees were heavily attacked by MPB within 3 weeks. A final assessment for the 2010 season was Protection of individual trees with conducted in September 2011 and showed heavy mortality (60%, insecticides has historically 18 of 30) of untreated lodgepole pine trees (Fig.
    [Show full text]
  • Proceedings 33Rd Southern Forest Tree Improvement Conference Using Tree Improvement to Grow New Products for a Changing World Ho
    Proceedings 33rd Southern Forest Tree Improvement Conference Using Tree Improvement to Grow New Products for a Changing World Hosted by: Arkansas Forest Resources Center; University of Arkansas Division of Agriculture School of Forest and Natural Resources; University of Arkansas at Monticello Weyerhaeuser Inc. Hot Springs, AR June 8-11, 2015 Proceedings of the 33rd Southern Forest Tree Improvement Conference Edited by Joshua P. Adams Louisiana Tech University Ruston, LA 71270 The papers and abstracts in these proceedings were submitted by the authors as electronic files. Modifications were made in format to provide for consistency and to allow best possible placement of figures and tables. The authors are responsible for the technical content of their respective papers. Citation for the 33rd SFTIC Proceedings: Adams, J.P., editor. 2016. Proceedings of the 33rd Southern Forest Tree Improvement Conference; 8-11 June 2015; Hot Springs, Arkansas. http://www.sftic.org 113 p. Citation of papers in the 33rd SFTIC Proceedings: Authors’ Names. 2016. Name of paper. In: Proceedings of the 33rd Southern Forest Tree Improvement Conference; 8-11 June 2015 Hot Springs, Arkansas. http://www.sftic.org , pp. x-y. Links to electronic copies may be obtained at: http://www.sftic.org ii Foreword The 33rd Southern Forest Tree Improvement Conference (SFTIC), marking 64 years of biennial technical conferences, was held June 8-11, 2015 in Hot Springs, Arkansas. This marks the first time the conference has been in the state of Arkansas. Direction of the conference was coordinated by the Southern Forest Tree Improvement Committee and with co-hosts Arkansas Forest Resources Center; University of Arkansas Division of Agriculture School of Forest and Natural Resources; University of Arkansas at Monticello and Weyerhaeuser Inc.
    [Show full text]
  • Species Comparison of the Physical Properties of Loblolly and Slash Pine Wood and Bark Thomas L
    1495 ARTICLE Species comparison of the physical properties of loblolly and slash pine wood and bark Thomas L. Eberhardt, Joseph Dahlen, and Laurence Schimleck Abstract: Composition of the southern pine forest is now predominated by two species, loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.), owing to fire suppression activities, natural regeneration on abandoned agricultural lands, and extensive planting. Comparison of the wood and bark physical properties of these pines is of interest in terms of the yields of usable biomass and, for the bark, its ecological functionality on a living tree. Trees from a species comparison study were used to generate wood and bark property data, on a whole-tree basis, and for stem disks collected at breast height. Models were constructed to explain the effect of relative height on wood and bark properties. When comparing the whole-tree data, slash pine wood (0.523 versus 0.498) and bark (0.368 versus 0.311) specific gravity values were higher, both offset by lower moisture contents; slash pine also produced a higher percentage of bark on a dry-mass basis (17% versus 12.5%). Unlike wood properties, bark properties showed significant between-species differences when determined at breast height alone, the exception being moisture content. In terms of yield, harvests of a green tonne of loblolly pine and slash pine would give approximately the same dry mass of wood, but slash pine provides more bark. Key words: bark thickness, moisture content, specific gravity, wood quality, yield. Résumé : La composition de la forêt de pins du sud est maintenant dominée par deux espèces, le pin a` encens (Pinus taeda L.) et le pin d’Elliott (Pinus elliottii Engelm.) a` cause des activités de suppression des feux, de la régénération naturelle sur les terres agricoles abandonnées et de la plantation intensive.
    [Show full text]
  • Screening Pinus Taeda (Loblolly Pine) Families for Physical and Mechanical Properties Using Vibrational Spectroscopy
    SCREENING PINUS TAEDA (LOBLOLLY PINE) FAMILIES FOR PHYSICAL AND MECHANICAL PROPERTIES USING VIBRATIONAL SPECTROSCOPY Gifty E. Acquah, Brian K. Via, Lori G. Eckhardt, and Oladiran O. Fasina1 Abstract—In a bid to control the loblolly pine decline complex, stakeholders are using the selection and deployment of genetically superior families that are disease tolerant. It is vital that we do not compromise other important properties while breeding for disease tolerance. In this preliminary study, near infrared spectroscopy was utilized in conjunction with data collected via conventional methods to develop partial least squares regression models that were used to rapidly predict the basic density, stiffness and ultimate strength of 14 genetically superior loblolly pine families that have been selectively bred to be disease tolerant. Calibration and independent validation data were from southern pines acquired from a commercial sawmill. Seven or eight latent variables were used in model development. The coefficients of determination of the predictive models were more promising for MOE (0.58) and MOR (0.42). INTRODUCTION product. Furthermore, it is essential that strength is not Pinus taeda (loblolly pine) is the most economically compromised else mortality due to reasons other than important tree species in the USA. With 30 million acres forest disease such as wind failure could occur. in plantations in the southern US alone, it provides 110,000 jobs and contributes approximately $30 billion MATERIALS to the economy of this region. However, over the Fourteen year old loblolly pine trees were harvested past 50 years, reduced growth, decline and eventual from two forest sites. Seven families were harvested mortality have been associated with loblolly pine trees from Yulee FL and seven from Waycross GA in February (Eckhardt and others 2010).
    [Show full text]
  • Pinus Echinata, Shortleaf Pine
    PinusPinus echinataechinata shortleafshortleaf pinepine by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia One of the most widespread pines of the Eastern United Sates is Pinus echinata, shortleaf pine. Shortleaf pine was identified and named in 1768. The scientific name means a “prickly pine cone tree.” Other common names for shortleaf pine include shortstraw pine, yellow pine, Southern yellow pine, shortleaf yellow pine, Arkansas soft pine, Arkansas pine, and old field pine. Among all the Southern yellow pines it has the greatest range and is most tolerant of a variety of sites. Shortleaf pine grows Southeast of a line between New York and Texas. It is widespread in Georgia except for coastal coun- ties. Note the Georgia range map figure. Pinus echinata is found growing in many mixtures with other pines and hardwoods. It tends to grow on medium to dry, well-drained, infertile sites, as compared with loblolly pine (Pinus taeda). It grows quickly in deep, well-drained areas of floodplains, but cannot tolerate high pH and high calcium concentrations. Compared with other Southern yellow pines, shortleaf is less demanding of soil oxygen content and essential element availability. It grows in Hardiness Zone 6a - 8b and Heat Zone 6-9. The lowest number of Hardiness Zone tends to delineate the Northern range limit and the largest Heat Zone number tends to define the South- ern edge of the range. This native Georgia pine grows in Coder Tree Grow Zone (CTGZ) A-D (a mul- tiple climatic attribute based map), and in the temperature and precipitation cluster based Coder Tree Planting Zone 1-6.
    [Show full text]
  • Pinus Palustris Longleaf Pine
    PinusPinus palustrispalustris longleaflongleaf pinepine by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Longleaf pine (Pinus palustris) is one of our heritage trees because it represents a historic forest type. The cultural and romantic connections to longleaf pine and the forest ecosystem it dominates is seeped in traditions of the South. Longleaf pine was first identified as a species in 1768. Historic scientific names included Pinus australis (1810). Other common names for longleaf pine include long- leaf pine, long-leaved pine, longleaf yellow pine, Southern yellow pine, swamp pine, Georgia pine, marsh pine, yellow pine, Southern pine, longstraw pine, hill pine, pitch pine, hard pine, and heart pine. The scientific name means “pine of the marshes.” Longleaf pine grows on sandy, well drained upland soils, and in flatwoods along the Coastal Plain from Southeast Virginia to far Eastern Texas, dropping South into central Florida. It does grow up into the Piedmont and foot hill areas of Georgia and Alabama. Note the Georgia range map figure. Only tattered fragments of longleaf pine forests remain today even though it once covered large areas of the Southern Coastal Plain. It grows in Hardiness Zone 7b - 9b and Heat Zone 7 - 11. The lowest number of Hardiness Zone tends to delineate the Northern range limit and the largest Heat Zone number tends to define the South- ern edge of the range. This native Georgia pine grows in Coder Tree Grow Zone (CTGZ) B-E (a mul- tiple climatic attribute based map), and in temperature and precipitation cluster based Coder Tree Plant- ing Zone 4-7.
    [Show full text]
  • Pinus Taeda ‘Nana’ ‘Nana’ Loblolly Pine1 Edward F
    Fact Sheet ST-479 October 1994 Pinus taeda ‘Nana’ ‘Nana’ Loblolly Pine1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Loblolly Pine is a North American native which is usually seen from 50 to 80 feet tall with a 30-foot- spread though it is capable of reaching more than 150 feet in height (Fig. 1). This cultivar probably grows to only 10 to 20 feet in height making it ideal for use as a specimen or screen. It has a dense, rounded silhouette and may become popular, especially for small-scale landscapes, once people discover it. The pyramidal, dense form stays with the tree throughout its life making it ideal for screening. It does not appear to lose its lower limbs as it grows older as does the species. The six to nine-inch-long evergreen needles turn light green during the winter. The often- paired cones are three to six inches long, red/brown, and have very sharp spines. They persist on the tree for several years and mature in the fall. The bark of Loblolly Pine is very thick which helps make this tree very resistant to fire in the wild. GENERAL INFORMATION Scientific name: Pinus taeda ‘Nana’ Figure 1. Young ‘Nana’ Loblolly Pine. Pronunciation: PIE-nus TEE-duh Common name(s): ‘Nana’ Loblolly Pine Family: Pinaceae DESCRIPTION USDA hardiness zones: 6B through 9 (Fig. 2) Origin: native to North America Height: 15 to 20 feet Uses: Bonsai; container or above-ground planter; Spread: 15 to 20 feet recommended for buffer strips around parking lots or Crown uniformity: symmetrical canopy with a for median strip plantings in the highway; screen; regular (or smooth) outline, and individuals have more specimen; no proven urban tolerance or less identical crown forms Availability: somewhat available, may have to go out Crown shape: round of the region to find the tree 1.
    [Show full text]
  • IAWA List of Microscopic Features for Softwood Identification 1
    IAWA List of microscopic features for softwood identification 1 IAWA LIST OF MICROSCOPIC FEATURES FOR SOFTWOOD IDENTIFICATION IAWA Committee Pieter Baas – Leiden, The Netherlands Nadezhda Blokhina – Vladivostok, Russia Tomoyuki Fujii – Ibaraki, Japan Peter Gasson – Kew, UK Dietger Grosser – Munich, Germany Immo Heinz – Munich, Germany Jugo Ilic – South Clayton, Australia Jiang Xiaomei – Beijing, China Regis Miller – Madison, WI, USA Lee Ann Newsom – University Park, PA, USA Shuichi Noshiro – Ibaraki, Japan Hans Georg Richter – Hamburg, Germany Mitsuo Suzuki – Sendai, Japan Teresa Terrazas – Montecillo, Mexico Elisabeth Wheeler – Raleigh, NC, USA Alex Wiedenhoeft – Madison, WI, USA Edited by H.G. Richter, D. Grosser, I. Heinz & P.E. Gasson © 2004. IAWA Journal 25 (1): 1–70 Published for the International Association of Wood Anatomists at the Nationaal Herbarium Nederland, Leiden, The Netherlands 2 IAWA Journal, Vol. 25 (1), 2004 IAWA List of microscopic features for softwood identification 3 2 IAWA Journal, Vol. 25 (1), 2004 IAWA List of microscopic features for softwood identification 3 PREFACE A definitive list of anatomical features of softwoods has long been needed. The hard- wood list (IAWA Committee 1989) has been adopted throughout the world, not least because it provides a succinct, unambiguous illustrated glossary of hardwood charac- ters that can be used for a variety of purposes, not just identification. This publication is intended to do the same job for softwoods. Identifying softwoods relies on careful observation of a number of subtle characters, and great care has been taken to show high quality photomicrographs that remove most of the ambiguity that definitions alone would provide. Unlike the Hardwood Committee, the Softwood Committee never met in its full com- position.
    [Show full text]
  • Pinus Taeda Loblolly Pine1 Edward F
    Fact Sheet ST-478 October 1994 Pinus taeda Loblolly Pine1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Loblolly Pine is a North American native which is usually seen from 50 to 80 feet tall with a 30-foot- spread though it is capable of reaching more than 150 feet in height (Fig. 1). This extremely fast-growing pine is pyramidal when young making it ideal for screening but loses its lower limbs as it grows older becoming a tall, stately specimen, windbreak, or dappled-shade tree. The six to nine-inch-long evergreen needles turn light green to brown during the winter. The often-paired cones are three to six inches long, red/brown, and have very sharp spines. They persist on the tree for several years and mature in the fall. The bark of Loblolly Pine is very thick which helps make this tree very resistant to fire in the wild. GENERAL INFORMATION Scientific name: Pinus taeda Pronunciation: PIE-nus TEE-duh Common name(s): Loblolly Pine Family: Pinaceae USDA hardiness zones: 6B through 9 (Fig. 2) Origin: native to North America Uses: reclamation plant; screen; shade tree; specimen; no proven urban tolerance Availability: generally available in many areas within its hardiness range Figure 1. Mature Loblolly Pine. DESCRIPTION Height: 50 to 80 feet Spread: 30 to 35 feet Crown uniformity: irregular outline or silhouette 1. This document is adapted from Fact Sheet ST-478, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October 1994.
    [Show full text]