Parasite and Host Traits Predict the Zoonotic Risk of Protozoa

Total Page:16

File Type:pdf, Size:1020Kb

Parasite and Host Traits Predict the Zoonotic Risk of Protozoa ABSTRACTS SUBMISSION 248_Joy Vaz ‐ University of Georgia ‐ États‐Unis [email protected] Parasite and host traits predict the zoonotic risk of protozoa Joy Vaz, Barbara A. Han, John M. Drake Odum School of Ecology, University of Georgia, Athens, Georgia, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA; Cary Institute of Ecosystem Studies, Millbrook, New York, USA Protozoan zoonoses such Chagas disease and leishmaniasis remain endemic in large parts of the world, exacerbating social inequity and contributing heavily to the global burden of infectious disease. Novel protozoa species which have emerged from wildlife to humans in the recent decades (e.g., Plasmodium knowlesi, a causal agent of malaria) have proven difficult to control. Our ability to anticipate and prevent future emerging disease threats relies on identifying the characteristics of zoonotic pathogens and targeting surveillance efforts accordingly. While several studies have profiled the traits of zoonotic viruses, protozoa have received limited attention. We compiled a dataset of protozoa species which incorporates both parasite and host traits, including information on community structure and importance within a host‐parasite bipartite network. Using a machine learning algorithm, extreme gradient boosting, we distinguished zoonotic from non‐zoonotic protozoa with 85% accuracy. Our model found that traits of generalist protozoa (e.g., broad tissue tropism, high network centrality, multiple transmission modes) were most useful for predicting zoonotic status, compared to intrinsic biological traits (e.g., morphology), environmental traits (e.g., temperature), or host‐ related traits (e.g., life history). We ranked the zoonotic potential of protozoa species currently not known to be zoonotic based on their trait similarity to known zoonotic protozoa. Here we report parasitic protozoa species of wild mammals which are most likely to be undiscovered sources of current or future zoonoses, identifying them as priority targets for surveillance. 1. What is your pathogen? Multiple options possible (e.g. if working on coinfections) Coronavirus : Middle‐East Respiratory Syndrome Coronavirus Protozoan : Trypanosoma brucei, Toxoplasma gondii, Plasmodium brasilianum, Trypanosoma cruzi, Entamoeba coli, Balantidium coli, Trypanosoma rangeli, Leishmania shawi, Entamoeba chattoni, Plasmodium inui, Plasmodium cynomolgi, Plasmodium knowlesi, Sarcocystis hominis, 2. On a scale of 1‐5 is your work mostly eco/epidemiological or evolutionary? 1 (100% eco/epidemiological) 3. On a scale of 1‐5 is your work mostly theoretical or experimental/empirical? 4 Extraction du 10/5/2021 .
Recommended publications
  • Non-Invasive Surveillance for Plasmodium in Reservoir Macaque
    Siregar et al. Malar J (2015) 14:404 DOI 10.1186/s12936-015-0857-2 METHODOLOGY Open Access Non‑invasive surveillance for Plasmodium in reservoir macaque species Josephine E. Siregar1, Christina L. Faust2*, Lydia S. Murdiyarso1, Lis Rosmanah3, Uus Saepuloh3, Andrew P. Dobson2 and Diah Iskandriati3 Abstract Background: Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. Methods: Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. Results: The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3–99.4 %) sensitive for detecting Plasmo- dium in faecal samples of naturally infected macaques (n 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples= from naturally infected hosts.
    [Show full text]
  • ~.. R---'------­ : KASMERA: Vol
    ~.. r---'--------------­ : KASMERA: Vol.. 9, No. 1 4,1981 Zulla. Maracaibo. Venezuela. PROTOZOOS DE VENEZUELA Carlos Diaz Ungrla· Tratamos con este trabajo de ofrecer una puesta al día de los protozoos estudiados en nuestro país. Con ello damos un anticipo de lo que será nuestra próxima obra, en la cual, además de actualizar los problemas taxonómicos, pensamos hacer énfasis en la ultraestructura, cuyo cono­ cimiento es básico hoy día para manejar los protozoos, comQ animales unicelulares que son. Igualmente tratamos de difundir en nuestro medio la clasificación ac­ tual, que difiere tanto de la que se sigue estudiando. y por último, tratamos de reunir en un solo trabajo toda la infor­ mación bibliográfica venezolana, ya que es sabido que nuestros autores se ven precisados a publicar en revistas foráneas, y esto se ha acentuado en los últimos diez (10) años. En nuestro trabajo presentaremos primero la lista alfabética de los protozoos venezolanos, después ofreceremos su clasificación, para terminar por distribuirlos de acuerdo a sus hospedadores . • Profesor de la Facultad de Ciencias Veterinarias de la Universidad del Zulia. Maracaibo-Venezuela. -147­ Con la esperanza de que nuestro trabajo sea útil anuestros colegas. En Maracaibo, abril de mil novecientos ochenta. 1 LISTA ALF ABETICA DE LOS PROTOZOOS DE VENEZUELA Babesia (Babesia) bigemina, Smith y Kilbome, 1893. Seflalada en Bos taurus por Zieman (1902). Deutsch. Med. Wochens., 20 y 21. Babesia (Babesia) caballi Nuttall y Stricldand. 1910. En Equus cabal/uso Gallo y Vogelsang (1051). Rev. Med.Vet. y Par~. 10 (1-4); 3. Babesia (Babesia) canis. Piana y Galli Valerio, 1895. En Canis ¡ami/iaris.
    [Show full text]
  • Plasmodium Scientific Classification
    Plasmodium - Wikipedia https://en.wikipedia.org/wiki/Plasmodium From Wikipedia, the free encyclopedia Plasmodium is a genus of parasitic alveolates, many of which cause malaria in their hosts.[1] The parasite always has two hosts in its life Plasmodium cycle: a Dipteran insect host and a vertebrate host. Sexual reproduction always occurs in the insect, making it the definitive host.[2] The life-cycles of Plasmodium species involve several different stages both in the insect and the vertebrate host. These stages include sporozoites, which are injected by the insect vector into the vertebrate host's blood. Sporozoites infect the host liver, giving rise to merozoites and (in some species) hypnozoites. These move into the blood where they infect red blood cells. In the red blood cells, the parasites can either form more merozoites to infect more red blood cells, or produce gametocytes which are taken up by insects which feed on the vertebrate host. In the insect host, gametocytes merge to sexually reproduce. After sexual reproduction, parasites grow into new sporozoites, which move to the insect's salivary glands, from which they can infect a vertebrate False-colored electron micrograph of a [1] host bitten by the insect. Plasmodium sp. sporozoite. The genus Plasmodium was first described in 1885. It now contains Scientific classification about 200 species, which are spread across the world where both the (unranked): SAR insect and vertebrate hosts are present. Five species regularly infect humans, while many others infect birds, reptiles,
    [Show full text]
  • P. Falciparum, Replicates Within a Membrane-Bound Intraerythrocytic Parasitophorous Vacuole (PV)
    Homing in on getting out: Characterisation of SERA6, a putative malarial protease with a role in egress Andrea Ruecker March 2012 MRC National Institute for Medical Research Division of Parasitology Mill Hill, London NW7 1AA Division of Infection and Immunity University College London This thesis is submitted to University College London for the degree of Doctor of Philosophy 1 Declaration Declaration I, Andrea Ruecker, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Andrea Ruecker 2 Abstract Abstract The human malaria parasite, P. falciparum, replicates within a membrane-bound intraerythrocytic parasitophorous vacuole (PV). The resulting daughter merozoites actively escape from the host cell in a process called egress. There is convincing evidence that proteases are key players in this step. These proteases could serve as excellent targets for the development of new antimalarial drugs. P. falciparum Serine Repeat Antigens (SERAs) form a family of 9 proteins all containing a central papain- like domain that identifies them as putative cysteine proteases. They are highly conserved throughout all Plasmodium species, and there is strong genetic evidence that they may play a role in egress. P. falciparum SERA6 is one of the most highly- expressed SERAs in asexual erythrocyte stages. In this study biochemical fractionation and indirect immunofluorescence analysis were used to confirm localisation of SERA6 to the PV. It was shown that SERA6 is a substrate for PfSUB1, a subtilisin-like protease which is crucial for egress and which is released into the PV just prior to egress.
    [Show full text]
  • A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
    J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis.
    [Show full text]
  • A Meta-Analysis of the Genus Alouatta
    Chapter 17 Ecological and Anthropogenic Influences on Patterns of Parasitism in Free-Ranging Primates: A Meta-analysis of the Genus Alouatta Martin M. Kowalewski and Thomas R. Gillespie 17.1 Introduction Parasites play a central role in tropical ecosystems, affecting the ecology and evolution of species interactions, host population growth and regulation, and com- munity biodiversity (Esch and Fernandez 1993; Hudson, Dobson and Newborn 1998; Hochachka and Dhondt 2000; Hudson et al. 2002). Our understanding of how nat- ural and anthropogenic factors affect host-parasite dynamics in free-ranging pri- mate populations (Gillespie, Chapman and Greiner 2005a; Gillespie, Greiner and Chapman 2005b; Gillespie and Chapman 2006) and the relationship between wild primates and human health in rural or remote areas (McGrew et al. 1989; Stuart et al. 1990; Muller-Graf, Collins and Woolhouse 1997; Gillespie et al. 2005b; Pedersen et al. 2005) remain largely unexplored. The majority of emerging infec- tious diseases are zoonotic – easily transferred among humans, wildlife, and domes- ticated animals – (Nunn and Altizer 2006). For example, Taylor, Latham and Woolhouse (2001) found that 61% of human pathogens are shared with animal hosts. Identifying general principles governing parasite occurrence and prevalence is critical for planning animal conservation and protecting human health (Nunn et al. 2003). In this review, we examine how various ecological and anthropogenic factors affect patterns of parasitism in free-ranging howler monkeys (Genus Alouatta). 17.1.1 Evidence of the Relationships Between Howlers and Parasitic Diseases in South America The genus Alouatta is the most geographically widespread non-human primate in South America, with 8 of 10 Alouatta species ranging from Northern Colombia M.M.
    [Show full text]
  • Marmoset Models Commonly Used in Biomedical Research
    Comparative Medicine Vol 53, No 4 Copyright 2003 August 2003 by the American Association for Laboratory Animal Science Pages 383-392 Overview Marmoset Models Commonly Used in Biomedical Research Keith Mansfield, DVM The common marmoset (Callithrix jacchus ) is a small, nonendangered New World primate that is native to Brazil and has been used extensively in biomedical research. Historically the common marmoset has been used in neuro- science, reproductive biology, infectious disease, and behavioral research. Recently, the species has been used in- creasingly in drug development and safety assessment. Advantages relate to size, cost, husbandry, and biosafety issues as well as unique physiologic differences that may be used in model development. Availability and ease of breeding in captivity suggest that they may represent an alternative species to more traditional nonhuman pri- mates. The marmoset models commonly used in biomedical research are presented, with emphasis on those that may provide an alternative to traditional nonhuman primate species. In contrast to many other laboratory animal species, use of nonhuman primate species. nonhuman primates has increased in recent years and there Common marmosets represent an attractive alternative non- currently exists a substantial shortage of such animals for use human primate species for a variety of reasons. These small in biomedical research. The national supply of macaque mon- hardy animals breed well in captivity, with reproductive effi- keys has been unable to meet the current or projected demands ciency that may exceed 150% (number of live born per year/ of the research community. Although efforts are underway to number of breeding females). Furthermore, sexual maturity is increase domestic production and to identify alternative foreign reached by 18 months of age, allowing rapid expansion of exist- sources, this will unlikely alter short-term availability.
    [Show full text]
  • The Historical Ecology of Human and Wild Primate Malarias in the New World
    Diversity 2010, 2, 256-280; doi:10.3390/d2020256 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article The Historical Ecology of Human and Wild Primate Malarias in the New World Loretta A. Cormier Department of History and Anthropology, University of Alabama at Birmingham, 1401 University Boulevard, Birmingham, AL 35294-115, USA; E-Mail: [email protected]; Tel.: +1-205-975-6526; Fax: +1-205-975-8360 Received: 15 December 2009 / Accepted: 22 February 2010 / Published: 24 February 2010 Abstract: The origin and subsequent proliferation of malarias capable of infecting humans in South America remain unclear, particularly with respect to the role of Neotropical monkeys in the infectious chain. The evidence to date will be reviewed for Pre-Columbian human malaria, introduction with colonization, zoonotic transfer from cebid monkeys, and anthroponotic transfer to monkeys. Cultural behaviors (primate hunting and pet-keeping) and ecological changes favorable to proliferation of mosquito vectors are also addressed. Keywords: Amazonia; malaria; Neotropical monkeys; historical ecology; ethnoprimatology 1. Introduction The importance of human cultural behaviors in the disease ecology of malaria has been clear at least since Livingstone‘s 1958 [1] groundbreaking study describing the interrelationships among iron tools, swidden horticulture, vector proliferation, and sickle cell trait in tropical Africa. In brief, he argued that the development of iron tools led to the widespread adoption of swidden (―slash and burn‖) agriculture. These cleared agricultural fields carved out a new breeding area for mosquito vectors in stagnant pools of water exposed to direct sunlight. The proliferation of mosquito vectors and the subsequent heavier malarial burden in human populations led to the genetic adaptation of increased frequency of sickle cell trait, which confers some resistance to malaria.
    [Show full text]
  • Highly Rearranged Mitochondrial Genome in Nycteria Parasites (Haemosporidia) from Bats
    Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjiana,1,2, Alexandre Hassaninb,1, Benjamin Saintpierrec, Guy-Crispin Gembu Tungalunad, Frederic Arieye, Francisco J. Ayalaf,3, Irene Landaua, and Linda Duvala,3 aUnité Molécules de Communication et Adaptation des Microorganismes (UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, CP52, 75005 Paris, France; bInstitut de Systématique, Evolution, Biodiversité (UMR 7205), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, Université Pierre et Marie Curie, CP51, 75005 Paris, France; cUnité de Génétique et Génomique des Insectes Vecteurs (CNRS URA3012), Département de Parasites et Insectes Vecteurs, Institut Pasteur, 75015 Paris, France; dFaculté des Sciences, Université de Kisangani, BP 2012 Kisangani, Democratic Republic of Congo; eLaboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Inserm U1016, CNRS UMR 8104, Cochin Institute, 75014 Paris, France; and fDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by Francisco J. Ayala, July 6, 2016 (sent for review March 18, 2016; reviewed by Sargis Aghayan and Georges Snounou) Haemosporidia parasites have mostly and abundantly been de- and this lack of knowledge limits the understanding of the scribed using mitochondrial genes, and in particular cytochrome evolutionary history of Haemosporidia, in particular their b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria basal diversification. parasites isolated from Nycteridae bats has been recently reported. Nycteria parasites have been primarily described, based on Bats are hosts to a diverse and profuse array of Haemosporidia traditional taxonomy, in African insectivorous bats of two fami- parasites that remain largely unstudied.
    [Show full text]
  • Plasmodium Malariae and P. Ovale Genomes Provide Insights Into Malaria Parasite Evolution Gavin G
    OPEN LETTER doi:10.1038/nature21038 Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution Gavin G. Rutledge1, Ulrike Böhme1, Mandy Sanders1, Adam J. Reid1, James A. Cotton1, Oumou Maiga-Ascofare2,3, Abdoulaye A. Djimdé1,2, Tobias O. Apinjoh4, Lucas Amenga-Etego5, Magnus Manske1, John W. Barnwell6, François Renaud7, Benjamin Ollomo8, Franck Prugnolle7,8, Nicholas M. Anstey9, Sarah Auburn9, Ric N. Price9,10, James S. McCarthy11, Dominic P. Kwiatkowski1,12, Chris I. Newbold1,13, Matthew Berriman1 & Thomas D. Otto1 Elucidation of the evolutionary history and interrelatedness of human parasite P. falciparum than in its chimpanzee-infective relative Plasmodium species that infect humans has been hampered by a P. reichenowi8. In both cases, the lack of diversity in human-infective lack of genetic information for three human-infective species: P. species suggests recent population expansions. However, we found malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri)1. that a species that infects New World primates termed P. brasilianum These species are prevalent across most regions in which malaria was indistinguishable from P. malariae (Extended Data Fig. 2b), as is endemic2,3 and are often undetectable by light microscopy4, previously suggested9. Thus host adaptation in the P. malariae lineage rendering their study in human populations difficult5. The exact appears to be less restricted than in P. falciparum. evolutionary relationship of these species to the other human- Using additional samples to calculate standard measures of molecular infective species has been contested6,7. Using a new reference evolution (Methods; Supplementary Information), we identified a genome for P.
    [Show full text]
  • Structural and Functional Insights Into Apicomplexan Gliding and Its Regulation
    Structural and functional insights into apicomplexan gliding and its regulation Dissertation to obtain the degree of Doctor of Natural Sciences University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences at the Department of Biology by Samuel Pažický from Bratislava, Slovakia Hamburg 2020 Examination commission Examination commission chair Prof. Dr. Jörg Ganzhorn (University of Hamburg) Examination commission members Prof. Jonas Schmidt-Chanasit (Bernhard Nocht Institute for Tropical Medicine and University of Hamburg) Prof. Tim Gilberger (Bernhard Nocht Institute for Tropical Medicine, Centre for Structural Systems Biology and University of Hamburg) Dr. Maria Garcia-Alai (European Molecular Biology Laboratory and Centre for Structural Systems Biology) Dr. Christian Löw (European Molecular Biology Laboratory and Centre for Structural Systems Biology) Date of defence: 29.01.2021 This work was performed at European Molecular Biology Laboratory, Hamburg Unit under the supervision of Dr. Christian Löw and Prof. Tim-Wolf Gilberger. The work was supported by the Joachim Herz Foundation. Evaluation Prof. Dr. rer. nat. Tim-Wolf Gilberger Bernhard Nocht Institute for Tropical Medicine (BNITM) Department of Cellular Parasitology Hamburg Dr. Christian Löw European Molecular Biology Laboratory Hamburg unit Hamburg Prof. Dr. vet. med. Thomas Krey Hannover Medical School Institute of Virology Declaration of academic honesty I hereby declare, on oath, that I have written the present dissertation by my own and have not used other than the acknowledged resources and aids. Eidesstattliche Erklärung Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Hamburg, 22.9.2020 Samuel Pažický List of contents Declaration of academic honesty 4 List of contents 5 Acknowledgements 6 Summary 7 Zusammenfassung 10 List of publications 12 Scientific contribution to the manuscript 14 Abbreviations 16 1.
    [Show full text]
  • Rodent Blood-Stage Plasmodium Survive in Dendritic Cells That Infect Naive Mice
    Rodent blood-stage Plasmodium survive in dendritic cells that infect naive mice Michelle N. Wykesa,1, Jason G. Kayb,2,3, Anthony Mandersonb,2,4, Xue Q. Liua,2,5, Darren L. Brownb,2, Derek J. Richarda,2,6, Jiraprapa Wipasac, Suhua H. Jianga,d,e, Malcolm K. Jonesa,f, Chris J. Janseg, Andrew P. Watersh, Susan K. Piercei, Louis H. Millerj,1, Jennifer L. Stowb, and Michael F. Gooda,1,5 aQueensland Institute of Medical Research, Brisbane, Queensland, Australia 4029; bInstitute for Molecular Bioscience, and fSchool of Veterinary Science, University of Queensland, Brisbane, Queensland, Australia 4072; cUniversity of Chiang Mai Research Institute for Health Sciences, Chiang Mai 50200, Thailand; dDepartment of Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei, People’s Republic of China 430030; eDepartment of Pathogenic Biology and Immunology, Shihezi University School of Medicine, Shihezi City, Xinjiang, People’s Republic of China 832002; gDepartment of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands; hWellcome Centre for Molecular Parasitology and Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom; and iLaboratory of Immunogenetics, and jHead, Malaria Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 Contributed by Louis H. Miller, June 2, 2011 (sent for review January 28, 2011) Plasmodium spp. parasites cause malaria in 300 to 500 million indi- RBC, but it has long been suspected that they may also have an- viduals each year. Disease occurs during the blood-stage of the other survival strategy.
    [Show full text]