Reproductive and Trophic Ecology of an Assemblage of Aquatic and Semi-Aquatic Snakes in Tonle Sap, Cambodia

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive and Trophic Ecology of an Assemblage of Aquatic and Semi-Aquatic Snakes in Tonle Sap, Cambodia Copeia 2009, No. 1, 7–20 Reproductive and Trophic Ecology of an Assemblage of Aquatic and Semi-Aquatic Snakes in Tonle Sap, Cambodia Sharon E. Brooks1, Edward H. Allison2, Jennifer A. Gill3, and John D. Reynolds4 We studied the reproductive and trophic ecology of a group of aquatic and semi-aquatic snakes that face severe hunting pressure in Cambodia. Over a two-year period we sampled hunters’ catches, measuring and dissecting a total of 8982 specimens of seven snake species, five of which belong to the family Homalopsidae. The seven species—Enhydris enhydris, Enhydris longicauda, Homalopsis buccata, Enhydris bocourti, Erpeton tentaculatus, Xenochrophis piscator, and Cylindrophis ruffus—all inhabit Tonle Sap Lake, the largest lake in South-East Asia. All species are sexually dimorphic in either body size or tail length. The larger species, E. bocourti and H. buccata, have a larger size at maturity, and the non- homalopsids, X. piscator and C. ruffus, have the highest and lowest fecundities, respectively. Clutch size increases significantly with female body size in all species, and with body conditioninE. enhydris. Our data also suggest that relative investment in reproduction increases with size in E. enhydris, which has the largest sample size. All species except one are synchronized in their timing of reproduction with the seasonally receding flood waters of the lake. There was variation in both the frequency of feeding and the prey size and type among species, with the homalopsids more similar to one another than to the other non-homalopsid species. The prey to predator mass ratio ranged from 0.04 to 0.1 in the homalopsids, compared to 0.15 to 0.17 in the non-homalopsids. There was also variation in the feeding frequency between the sexes that differed between species and six species continued to feed while gravid. These detailed life history analyses can help provide a basis for assessing conservation options for these heavily exploited species. ONLESapLakeinCambodiaishometoan in the 1970’s (Saint Girons and Pfeffer, 1971; Saint Girons, assemblage of aquatic and semi-aquatic snakes that 1972). T are heavily exploited and traded as a food supply for Tonle Sap Lake is the largest wetland in South-East Asia the numerous crocodile farms surrounding the lake (Stuart and exhibits an extraordinary seasonal fluctuation in water et al., 2000). As a result of the growing demand from this level and size. As a result of the rising waters of the Mekong industry over the last 20 years, this exploitation now River during the monsoon season each year, the Tonle Sap represents the world’s largest snake hunting operation, with River reverses and Mekong water flows into the Tonle Sap an estimated 6.9 million snakes removed annually (Brooks Lake, inundating a large expanse of forest (Bonheur and et al., 2007a, 2007b), yet it proceeds without knowledge of Lane, 2002). This lake receives intense fishing pressure, and the basic population biology of the species involved. This it has been suggested that homalopsids thrive in such areas study aims to increase our understanding of the reproduc- due to reductions in size composition of fish communities, tive and trophic ecology of these snake populations as part increasing the snakes’ food supply while decreasing the of a program to assess the severity of this threat. abundance of their natural predators (Murphy, 2007). Five of the species in this community belong to the family However, in recent years, decreasing fish catches from the Homalopsidae. There is also a member of the Natricidae lake have led to human exploitation of several snake species, (Xenochrophis) and a member of the Cylindrophiidae primarily to provide food for the growing number of (Cylindrophis). Homalopsidae consists of approximately 37 crocodile farms, and some snake species now face the viviparous species distributed throughout South and South- likelihood of population declines (Brooks et al., 2007a). East Asia from India to North Australia (Gyi, 1970; Voris et While most of the species in this study are widely distributed al., 2002; Murphy, 2007). The greatest diversity and throughout the region, the Tonle Sap Water Snake, Enhydris abundance is in South-East Asia, where the snakes are longicauda, is endemic to the Tonle Sap Lake and River. The largely found in lowland freshwater habitats (Voris and status of this species has not been assessed, but its limited Karns, 1996). Homalopsids can comprise a large part of the distribution and high level of exploitation throughout its vertebrate biomass of the aquatic systems they inhabit range raises strong conservation concerns. (Voris and Karns, 1996), and there is speculation that some The extreme level of exploitation of snakes at this study species may thrive in areas dominated by human activities site allowed assessment of a large number of specimens that such as rice cultivation, which may provide suitable habitat had been killed during routine hunting operations. Here we and food supplies (Gyi, 1970; Murphy and Voris, 1994). explore life history variation within and among species While there is a growing literature on the ecology of throughout the year, to identify breeding seasons and to homalopsid species (Jayne et al., 1995; Voris and Karns, describe the ecological traits of this aquatic and semi-aquatic 1996; Murphy et al., 1999; Karns et al., 1999–2000), snake community. Inter-specific comparisons are included reviewed by Murphy (2007), the Cambodian populations as they can be useful for predicting how species will differ in have received little attention since the work of Saint Girons their response to exploitation. The large sample sizes 1 Department of Geography, University of Cambridge, CB2 3EN, Cambridge, U.K.; E-mail: [email protected]. Send reprint requests to this address. 2 The WorldFish Center, P.O. Box 500, GPO, 10670 Penang, Malaysia, and School of Development Studies, University of East Anglia, Norwich NR4 7TJ, U.K. 3 School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K. 4 Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Submitted: 20 April 2007. Accepted: 11 June 2008. Associate Editor: G. Haenel. F 2009 by the American Society of Ichthyologists and Herpetologists DOI: 10.1643/CE-07-102 8 Copeia 2009, No. 1 available for some species have allowed us to adopt some used as an indication, which we include here for compar- analytical approaches used by fish biologists for studies of ative purposes (Fitzgerald et al., 1993; Blouin-Demers et al., population dynamics. 2002). However, variation between individuals in size at maturity makes this method heavily sample-size dependent. MATERIALS AND METHODS We therefore also adopted a more representative and statistically robust method, which is widely used in fisheries research (Jennings et al., 2001), to estimate the length at Study site.—Biological monitoring programs were based at which 50% of the female population is mature (SVL50), Chong Khneas landing site in Siem Reap province on the based on a logistic regression of the length of mature versus northern side of Tonle Sap Lake in Cambodia. This is the immature females: most important location for snakes being transported from . { z the lake as a result of the high number of crocodile farms in PMðÞ~ 1 1 z e ðÞa bðÞSVL , Siem Reap province. where P(M) is the probability of being mature, a is the y- Study species.—We purchased a total of 8982 dead snakes intercept, and b is the coefficient for the predictor variable from traders on a weekly basis during two hunting seasons (SVL). The SVL when the probability of being mature is 50% that extended from June 2004 to March 2005 and June 2005 was then calculated as: to March 2006. Seven species that occur regularly in the ~ trade were included in the study, with sample sizes that vary SVL a=b: according to their abundance in catches. We measured (snout to vent length [SVL] and total length), weighed, and An alternative indicator of size is mass, which might be sexed 4356 Enhydris enhydris, 1634 Enhydris longicauda, 1609 more appropriate for comparisons among species, due to Homalopsis buccata, 141 Enhydris bocourti,869Erpeton differences in shape. As our mass measurements included tentaculatus, 234 Xenochrophis piscator, and 139 Cylindrophis gravid females, we could not use the above method to make ruffus. We analyzed each species for sexual dimorphism of direct calculations of the mass at which 50% of the female body mass, length, and tail length and for the relationship population is mature. Instead, we used length–mass rela- between body length and mass, which we square-root tionships within each species to convert the length at 50% transformed. Only non-reproductive females were used in female maturity to mass at 50% female maturity. analyses using mass, as the mass of the clutch could bias the We measured the right testis of dissected males and results. estimated volume from length and width based on the formula for a prolate spheroid (vol 5 4/3p (K teste length) N 2 Sampling issues.—We sampled snakes by haphazardly select- (K teste width) (Harlow and Taylor, 2000). As the mass of ing crates of snakes as they arrived at the landing site to the gonads was unknown, the gonadosomatic index (GSI), ensure the data were as representative of catch composition which is a measure of the mass of the testis relative to the as possible. The size composition of the catch is influenced mass of the animal, could not be calculated. Instead we by the size-selective capture technique. The gill nets used in calculated the testis volume per 100 g snake in order to take Tonle Sap capture a large range of sizes of reproductive-aged account of the varying size of males. individuals of most species, but large adults of the two larger species, H.
Recommended publications
  • Scale Sensillae of the File Snake (Serpentes: Acrochordidae) and Some Other Aquatic and Burrowing Snakes
    SCALE SENSILLAE OF THE FILE SNAKE (SERPENTES: ACROCHORDIDAE) AND SOME OTHER AQUATIC AND BURROWING SNAKES by DAVID POVEL and JEROEN VAN DER KOOIJ (Section Dynamic Morphology,Institute of Evolutionaryand Ecological Sciences, Leiden University,P.O. Box 9516, 2300 RA Leiden, The Netherlands) ABSTRACT The acrochordid snakes are aquatic, living in environmentswith often a poor visibility. It therefore was investigatedhow these animals detect their prey. Two earlier studies of their scales revealed a rather complex scale organ, composedof hairlike protrusions and plate-like structures. However, no satisfactory explanation was given for the structures found, e.g., an undefined sensilla or a gland. Skin samples from various sites of the body of Acrochordus granulatus and A. javanicus were studied. Scanning electron microscopic pictures revealed that each scale of the head contains up to seven sensillae, and each of the keeled scales of the rest of the body has one. Also a modified Allochrome staining procedure on tissue samples was performed to detect glycogen, which is known to occur in discoidal nerve endings of tactile sense organs of reptiles. Light microscopicslides revealedglycogen particles in a small pillow-shaped area just below the hairlike protrusions of an organ. Moreover, small nerves were recognized near the same location. No indications were found for the scale organs to have a glandular function. Because of the reported reactions of a snake when it is touched by a fish, these scale sensilla are proposed to be very sensitivemechanoreceptors. Comparisons were made with the scale organs of snakes from various habitats, viz. the seasnake Lapemis hardwicki, and burrowing snakes such as Xenopeltis unicolor and Cylindrophisrufus.
    [Show full text]
  • Snakes of the Siwalik Group (Miocene of Pakistan): Systematics and Relationship to Environmental Change
    Palaeontologia Electronica http://palaeo-electronica.org SNAKES OF THE SIWALIK GROUP (MIOCENE OF PAKISTAN): SYSTEMATICS AND RELATIONSHIP TO ENVIRONMENTAL CHANGE Jason J. Head ABSTRACT The lower and middle Siwalik Group of the Potwar Plateau, Pakistan (Miocene, approximately 18 to 3.5 Ma) is a continuous fluvial sequence that preserves a dense fossil record of snakes. The record consists of approximately 1,500 vertebrae derived from surface-collection and screen-washing of bulk matrix. This record represents 12 identifiable taxa and morphotypes, including Python sp., Acrochordus dehmi, Ganso- phis potwarensis gen. et sp. nov., Bungarus sp., Chotaophis padhriensis, gen. et sp. nov., and Sivaophis downsi gen. et sp. nov. The record is dominated by Acrochordus dehmi, a fully-aquatic taxon, but diversity increases among terrestrial and semi-aquatic taxa beginning at approximately 10 Ma, roughly coeval with proxy data indicating the inception of the Asian monsoons and increasing seasonality on the Potwar Plateau. Taxonomic differences between the Siwalik Group and coeval European faunas indi- cate that South Asia was a distinct biogeographic theater from Europe by the middle Miocene. Differences between the Siwalik Group and extant snake faunas indicate sig- nificant environmental changes on the Plateau after the last fossil snake occurrences in the Siwalik section. Jason J. Head. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA. [email protected] School of Biological Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom. KEY WORDS: Snakes, faunal change, Siwalik Group, Miocene, Acrochordus. PE Article Number: 8.1.18A Copyright: Society of Vertebrate Paleontology May 2005 Submission: 3 August 2004.
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS)– 2009-2012 Version
    Information Sheet on Ramsar Wetlands (RIS)– 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar Site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3nd edition). 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: Dr. Srey Sunleang, FOR OFFICE USE ONLY. Director, DD MM YY Department of Wetlands and Coastal Zones, Ministry of Environment, #48 Preah Sihanouk Blvd., Tonle Bassac, Chamkar Morn, Phnom Penh, Cambodia Designation date Site Reference Number Tel: (855) 77-333-456 Fax (855)-23-721-073 E-mail: [email protected] 2. Date this sheet was completed: 9 September, 2011 3. Country: Cambodia 4. Name of the Ramsar Site: The precise name of the designated Site in one of the three official languages (English, French or Spanish) of the Convention.
    [Show full text]
  • Cobra Risk Assessment
    Invasive animal risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Cobra (all species) Steve Csurhes and Paul Fisher First published 2010 Updated 2016 Pest animal risk assessment © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Photo: Image from Wikimedia Commons (this image is reproduced under the terms of a GNU Free Documentation License) Invasive animal risk assessment: Cobra 2 Contents Summary 4 Introduction 5 Identity and taxonomy 5 Taxonomy 3 Description 5 Diet 5 Reproduction 6 Predators and diseases 6 Origin and distribution 7 Status in Australia and Queensland 8 Preferred habitat 9 History as a pest elsewhere 9 Uses 9 Pest potential in Queensland 10 Climate match 10 Habitat suitability 10 Broad natural geographic range 11 Generalist diet 11 Venom production 11 Disease 11 Numerical risk analysis 11 References 12 Attachment 1 13 Invasive animal risk assessment: Cobra 3 Summary The common name ‘cobra’ applies to 30 species in 7 genera within the family Elapidae, all of which can produce a hood when threatened. All cobra species are venomous. As a group, cobras have an extensive distribution over large parts of Africa, Asia, Malaysia and Indonesia.
    [Show full text]
  • Briefly Foreign Aid to Small Island Nations in Gests That Deserts May Be Among Those Return for Their Support Within the Ecosystems Most Affected
    the buying of votes by promising to give Nations Environment Programme sug- Briefly foreign aid to small island nations in gests that deserts may be among those return for their support within the ecosystems most affected. Climatic commission. It seems, however, that pulses are more important than average these tactics are similar to those insti- conditions in desert ecosystems, and gated by Peter Scott, then head of WWF, because of this even moderate changes International to obtain the original moratorium on in precipitation and temperature can whaling. Evidence shows that many of have a severe impact. Contrary to the countries that voted in favour of the appearance, the 3.7 million km2 of the moratorium in 1982 had been offered world’s deserts provide a habitat for Hope for coral reefs help with providing suitable delegates many species, which will be adversely Many coral species are sensitive to rises and expenses. Scott’s biographer writes affected should the report’s projected in ocean temperature, and coral bleach- that China’s decision to join the IWC scenario of an increase in desert tem- ing events have increased in frequency and vote for the moratorium was influ- perature by 7˚C and a decrease in rain- in recent years. Now researchers have enced by a WWF promise to provide fall of 20% prove correct. However, shown that some corals may be able USD 1 million towards a panda reserve. deserts could also have a role to play to acclimatize to higher temperatures. Source: New Scientist (2006), 190(2556), in mitigating future environmental Experiments involving the hard coral 14.
    [Show full text]
  • Chec List Amphibians and Reptiles, Romblon Island
    Check List 8(3): 443-462, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Amphibians and Reptiles, Romblon Island Group, central PECIES Philippines: Comprehensive herpetofaunal inventory S OF Cameron D. Siler 1*, John C. Swab 1, Carl H. Oliveros 1, Arvin C. Diesmos 2, Leonardo Averia 3, Angel C. ISTS L Alcala 3 and Rafe M. Brown 1 1 University of Kansas, Department of Ecology and Evolutionary Biology, Biodiversity Institute, Lawrence, KS 66045-7561, USA. 2 Philippine National Museum, Zoology Division, Herpetology Section. Rizal Park, Burgos St., Manila, Philippines. 3 Silliman University Angelo King Center for Research and Environmental Management, Dumaguete City, Negros Oriental, Philippines. * Corresponding author. E-mail: [email protected] Abstract: We present results from several recent herpetological surveys in the Romblon Island Group (RIG), Romblon Province, central Philippines. Together with a summary of historical museum records, our data document the occurrence of 55 species of amphibians and reptiles in this small island group. Until the present effort, and despite past studies, observations of evolutionarily distinct amphibian species, including conspicuous, previously known, endemics like the forestherpetological frogs Platymantis diversity lawtoni of the RIGand P.and levigatus their biogeographical and two additional affinities suspected has undescribedremained poorly species understood. of Platymantis We . reportModerate on levels of reptile endemism prevail on these islands, including taxa like the karst forest gecko species Gekko romblon and the newly discovered species G. coi. Although relatively small and less diverse than the surrounding landmasses, the islands of Romblon Province contain remarkable levels of endemism when considered as percentage of the total fauna or per unit landmass area.
    [Show full text]
  • The Tentacled Snake, Erpeton Tentaculatum Lacépède 1800 (Homalopsidae), in Florida Joshua D
    52 IRCF ReptIles & AmphIbians • Vol 18, No 1 • MAR 2011 IntRoduced species I n tr o D u c e D s P e c I e s The Tentacled snake, Erpeton tentaculatum lacépède 1800 (Homalopsidae), in florida Joshua D. Holbrook1 and Kenneth L. Krysko2 1palm Beach Atlantic University, West Palm Beach, Florida 33401, UsA ([email protected]) 2Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, UsA ([email protected]) he tentacled snake, Erpeton tentaculatum lacépède 1800, is a strictly taquatic species of Asian origin (Winokur 1977), which typically occurs in slow or stagnant bodies of fresh and brackish water (hahn 1973), often in very turbid lakes, streams, and rice fields (lovic 2010). This species feeds mostly on fishes, although small amounts of vegetation have also been doc- umented in the diet (hahn 1973). Erpeton tentaculatum possesses a pair of fleshy tentacles on the rostrum, which are likely used as both sensory struc- tures (Winokur 1977) as well as an aid in camouflage (smith et al. 2002). this species attains an adult length of 50–90 cm total length (lovic 2010). on 9 December 2010 at 2023 h, a juvenile (280 mm SVl, 305 mm total length) Erpeton tentaculatum was found just outside the property of an animal importer’s facility at 6450 Stirling Road, Hollywood, Broward County, o o Florida (26.04591 n, 80.21976 W, WGs84 datum). This snake was found rook lb o under a piece of artificial human debris directly adjacent to a source of water. h . the individual appeared dead, likely because of the cold (13 oC) evening, but d revived after being warmed.
    [Show full text]
  • Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia
    CONSERVATION OF HERPETOFAUNA IN BANTIMURUNG BULUSARAUNG NATIONAL PARK, SOUTH SULAWESI, INDONESIA Final Report 2008 By: M. Irfansyah Lubis, Wempy Endarwin, Septiantina D. Riendriasari, Suwardiansah, Adininggar U. Ul-Hasanah, Feri Irawan, Hadijah Aziz K., and Akmal Malawi Departemen Konservasi Sumberdaya Hutan Fakultas Kehutanan Institut Pertanian Bogor Bogor Indonesia 16000 Tel : +62 – 251 – 621 947 Fax: +62 – 251 – 621 947 Email: [email protected] (team leader) Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia Executive Summary Sulawesi is an island with complex geological and geographical history, thus resulting in a complex array in biodiversity. Bantimurung Bulusaraung National Park (BabulNP) was gazetted in 2004 to protect the region’s biodiversity and karst ecosystem. However, the park’s herpetofauna is almost unknown. This project consists of three programs: herpetofauna survey in BabulNP, herpetofauna conservation education to local schools, and herpetofauna training for locals and was conducted from July to September 2007. Based on the survey conducted in six sites in the park, we recorded 12 amphibian and 25 reptile species. Five of those species (Bufo celebensis, Rana celebensis, Rhacophorus monticola, Sphenomorphus tropidonotus, and Calamaria muelleri) are endemic to Sulawesi. Two species of the genus Oreophryne are still unidentified. We visited six schools around the park for our herpetofauna conservation education program. The Herpetofauna Observation Training was held over four days with 17 participants from BabulNP staff, local NGOs, school teachers, and Hasanuddin University students. i Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia Acknowledgements This project would not have been possible without the contribution of many persons. We would like to express our gratitude to BP Conservation Leadership Programme for providing funding.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • THE ORIGIN and EVOLUTION of SNAKE EYES Dissertation
    CONQUERING THE COLD SHUDDER: THE ORIGIN AND EVOLUTION OF SNAKE EYES Dissertation Presented in Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher L. Caprette, B.S., M.S. **** The Ohio State University 2005 Dissertation Committee: Thomas E. Hetherington, Advisor Approved by Jerry F. Downhower David L. Stetson Advisor The graduate program in Evolution, John W. Wenzel Ecology, and Organismal Biology ABSTRACT I investigated the ecological origin and diversity of snakes by examining one complex structure, the eye. First, using light and transmission electron microscopy, I contrasted the anatomy of the eyes of diurnal northern pine snakes and nocturnal brown treesnakes. While brown treesnakes have eyes of similar size for their snout-vent length as northern pine snakes, their lenses are an average of 27% larger (Mann-Whitney U test, p = 0.042). Based upon the differences in the size and position of the lens relative to the retina in these two species, I estimate that the image projected will be smaller and brighter for brown treesnakes. Northern pine snakes have a simplex, all-cone retina, in keeping with a primarily diurnal animal, while brown treesnake retinas have mostly rods with a few, scattered cones. I found microdroplets in the cone ellipsoids of northern pine snakes. In pine snakes, these droplets act as light guides. I also found microdroplets in brown treesnake rods, although these were less densely distributed and their function is unknown. Based upon the density of photoreceptors and neural layers in their retinas, and the predicted image size, brown treesnakes probably have the same visual acuity under nocturnal conditions that northern pine snakes experience under diurnal conditions.
    [Show full text]
  • Borneo) in Two Different Ways
    Contributions to Zoology, 78 (4) 141-147 (2009) Estimating the snake species richness of the Santubong Peninsula (Borneo) in two different ways Johan van Rooijen1, 2, 3 1 Zoological Museum Amsterdam, Mauritskade 61, 1092 AD Amsterdam, The Netherlands 2 Tulpentuin 313, 2272 EH Voorburg, The Netherlands 3 E-mail: [email protected] Key words: Chao I estimator, negative exponential function, rarefaction curve, Santubong Peninsula Borneo, snakes, species richness, Weibull function Abstract stantial investments in terms of search effort. This is particularly true for snakes which are hard to find (e.g. The distribution of Borneo’s species across the island is far Lloyd et al., 1968; Inger and Colwell, 1977; Hofer and from well-known. This is particularly true for snakes which are hard to find. Given the current rate of habitat destruction and Bersier, 2001; Orlov et al., 2003). As a consequence, consequent need for conservation strategies, more information estimation techniques are of interest when the intend- is required as to the species composition and richness of spe- ed objective is to assess species richness, an elemen- cific areas of potential conservation priority. An example is the tary criterion conservationists may use when identify- Santubong Peninsula, Sarawak, Malaysia, part of which has re- ing priority areas. One such estimation technique con- cently been gazetted as a National Park. In this paper, the snake species richness of the Santubong Peninsula is estimated on the sists of extrapolating the species accumulation curve. basis of data obtained during 450 survey-hours. Thirty-two spe- Species accumulation curves are regularly applied in cies were recorded.
    [Show full text]