谷歌(Googl.Us) 2017 年 01 月 04 日
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Scrambling in Computationally Complex Quantum Circuits
Information Scrambling in Computationally Complex Quantum Circuits Xiao Mi,1, ∗ Pedram Roushan,1, ∗ Chris Quintana,1, ∗ Salvatore Mandr`a,2, 3 Jeffrey Marshall,2, 4 Charles Neill,1 Frank Arute,1 Kunal Arya,1 Juan Atalaya,1 Ryan Babbush,1 Joseph C. Bardin,1, 5 Rami Barends,1 Andreas Bengtsson,1 Sergio Boixo,1 Alexandre Bourassa,1, 6 Michael Broughton,1 Bob B. Buckley,1 David A. Buell,1 Brian Burkett,1 Nicholas Bushnell,1 Zijun Chen,1 Benjamin Chiaro,1 Roberto Collins,1 William Courtney,1 Sean Demura,1 Alan R. Derk,1 Andrew Dunsworth,1 Daniel Eppens,1 Catherine Erickson,1 Edward Farhi,1 Austin G. Fowler,1 Brooks Foxen,1 Craig Gidney,1 Marissa Giustina,1 Jonathan A. Gross,1 Matthew P. Harrigan,1 Sean D. Harrington,1 Jeremy Hilton,1 Alan Ho,1 Sabrina Hong,1 Trent Huang,1 William J. Huggins,1 L. B. Ioffe,1 Sergei V. Isakov,1 Evan Jeffrey,1 Zhang Jiang,1 Cody Jones,1 Dvir Kafri,1 Julian Kelly,1 Seon Kim,1 Alexei Kitaev,1, 7 Paul V. Klimov,1 Alexander N. Korotkov,1, 8 Fedor Kostritsa,1 David Landhuis,1 Pavel Laptev,1 Erik Lucero,1 Orion Martin,1 Jarrod R. McClean,1 Trevor McCourt,1 Matt McEwen,1, 9 Anthony Megrant,1 Kevin C. Miao,1 Masoud Mohseni,1 Wojciech Mruczkiewicz,1 Josh Mutus,1 Ofer Naaman,1 Matthew Neeley,1 Michael Newman,1 Murphy Yuezhen Niu,1 Thomas E. O'Brien,1 Alex Opremcak,1 Eric Ostby,1 Balint Pato,1 Andre Petukhov,1 Nicholas Redd,1 Nicholas C. -
Quantum Permutation Synchronization
(I) QUBO Preparation (II) Quantum Annealing (III) Global Synchronization Quantum Permutation Synchronization 1;? 2;? 2 1 Tolga Birdal Vladislav Golyanik Christian Theobalt Leonidas Guibas Unembedding 1Stanford University 2Max Planck Institute for Informatics, SIC QUBO Problem Logical Abstract Formulation We present QuantumSync, the first quantum algorithm for solving a synchronization problem in the context of com- puter vision. In particular, we focus on permutation syn- Embedding chronization which involves solving a non-convex optimiza- Quantum Annealing tion problem in discrete variables. We start by formulating Solution synchronization into a quadratic unconstrained binary opti- mization problem (QUBO). While such formulation respects Unembedding the binary nature of the problem, ensuring that the result is a set of permutations requires extra care. Hence, we: (i) Figure 1. Overview of QuantumSync. QuantumSync formulates show how to insert permutation constraints into a QUBO permutation synchronization as a QUBO and embeds its logical instance on a quantum computer. After running multiple anneals, problem and (ii) solve the constrained QUBO problem on it selects the lowest energy solution as the global optimum. the current generation of the adiabatic quantum computers D-Wave. Thanks to the quantum annealing, we guarantee reconstruction and multi-shape analysis pipelines [86, 23, global optimality with high probability while sampling the 25] because it heavy-lifts the global constraint satisfaction energy landscape to yield confidence estimates. Our proof- while respecting the geometry of the parameters. In fact, of-concepts realization on the adiabatic D-Wave computer most of the multiview-consistent inference problems can be demonstrates that quantum machines offer a promising way expressed as some form of a synchronization [108, 15]. -
Arxiv:1908.04480V2 [Quant-Ph] 23 Oct 2020
Quantum adiabatic machine learning with zooming Alexander Zlokapa,1 Alex Mott,2 Joshua Job,3 Jean-Roch Vlimant,1 Daniel Lidar,4 and Maria Spiropulu1 1Division of Physics, Mathematics & Astronomy, Alliance for Quantum Technologies, California Institute of Technology, Pasadena, CA 91125, USA 2DeepMind Technologies, London, UK 3Lockheed Martin Advanced Technology Center, Sunnyvale, CA 94089, USA 4Departments of Electrical and Computer Engineering, Chemistry, and Physics & Astronomy, and Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, CA 90089, USA Recent work has shown that quantum annealing for machine learning, referred to as QAML, can perform comparably to state-of-the-art machine learning methods with a specific application to Higgs boson classification. We propose QAML-Z, a novel algorithm that iteratively zooms in on a region of the energy surface by mapping the problem to a continuous space and sequentially applying quantum annealing to an augmented set of weak classifiers. Results on a programmable quantum annealer show that QAML-Z matches classical deep neural network performance at small training set sizes and reduces the performance margin between QAML and classical deep neural networks by almost 50% at large training set sizes, as measured by area under the ROC curve. The significant improvement of quantum annealing algorithms for machine learning and the use of a discrete quantum algorithm on a continuous optimization problem both opens a new class of problems that can be solved by quantum annealers and suggests the approach in performance of near-term quantum machine learning towards classical benchmarks. I. INTRODUCTION lem Hamiltonian, ensuring that the system remains in the ground state if the system is perturbed slowly enough, as given by the energy gap between the ground state and Machine learning has gained an increasingly impor- the first excited state [36{38]. -
Explorations in Quantum Neural Networks with Intermediate Measurements
ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. Available from http://www.i6doc.com/en/. Explorations in Quantum Neural Networks with Intermediate Measurements Lukas Franken and Bogdan Georgiev ∗Fraunhofer IAIS - Research Center for ML and ML2R Schloss Birlinghoven - 53757 Sankt Augustin Abstract. In this short note we explore a few quantum circuits with the particular goal of basic image recognition. The models we study are inspired by recent progress in Quantum Convolution Neural Networks (QCNN) [12]. We present a few experimental results, where we attempt to learn basic image patterns motivated by scaling down the MNIST dataset. 1 Introduction The recent demonstration of Quantum Supremacy [1] heralds the advent of the Noisy Intermediate-Scale Quantum (NISQ) [2] technology, where signs of supe- riority of quantum over classical machines in particular tasks may be expected. However, one should keep in mind the limitations of NISQ-devices when study- ing and developing quantum-algorithmic solutions - among other things, these include limits on the number of gates and qubits. At the same time the interaction of quantum computing and machine learn- ing is growing, with a vast amount of literature and new results. To name a few applications, the well-known HHL algorithm [3], quantum phase estimation [5] and inner products speed-up techniques lead to further advances in Support Vector Machines [4] and Principal Component Analysis [6, 7]. Intensive progress and ongoing research has also been made towards quantum analogues of Neural Networks (QNN) [8, 9, 10]. -
Quantum Supremacy Using a Programmable Superconducting Processor
Article https://doi.org/10.1038/s41586-019-1666-5 Supplementary information Quantum supremacy using a programmable superconducting processor In the format provided by the Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak authors and unedited Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven & John M. Martinis Nature | www.nature.com Supplementary information for \Quantum supremacy using a programmable superconducting processor" Google AI Quantum and collaboratorsy (Dated: October 8, 2019) CONTENTS 2. Universality for SU(2) 30 G. Circuit variants 30 I. Device design and architecture2 1. Gate elision 31 2. Wedge formation 31 II. Fabrication and layout2 VIII. Large scale XEB results 31 III. -
The Next Generation of Computing
March 2021 Investment Case for QTUM: the Next Generation of Computing Quantum Computing (QC) describes the next generation of computing innovation, which could in turn support transformative scope and capacity changes in Machine Learning (ML). 1 March 2021 Investment Case for QTUM QC harnesses the peculiar properties of subatomic particles at sub-Kelvin temperatures to perform certain kinds of calculations exponentially faster than any traditional computer is capable of. They are not just faster than binary digital electronic (traditional) computers, they process information in a radically different manner and therefore have the potential to explore big data in ways that have not been possible until now. Innovation in QC is directly linked to developments in ML, which relies upon machines gathering, absorbing and optimizing vast amounts of data. Companies leading the research, development and commercialization of QC include Google, Microsoft, IBM, Intel, Honeywell, IonQ, D-Wave and Regetti Computing. Governments, financial services companies, international retail firms and defense establishments have all joined tech giants IBM, Google and Microsoft in recognizing and investing in the potential of QC. While D-Wave offered the first commercially available QC in 2011, frontrunners have mainly concentrated on providing cloud access to their nascent QCs. IBM were the first to make available their 5 and then 20 and now 65 qubit QC in 2016 (a qubit is the basic unit of quantum information—the quantum version of the classical binary bit), in order to allow researchers to work collaboratively to advance a breakthrough in this cutting-edge field. IBM have since built a community of over 260,000 registered users, who run more than one billion actions every day on real hardware and simulators. -
Arxiv:2003.02989V2 [Quant-Ph] 26 Aug 2021
TensorFlow Quantum: A Software Framework for Quantum Machine Learning Michael Broughton,1, 5, ∗ Guillaume Verdon,1, 2, 4, 6, y Trevor McCourt,1, 7 Antonio J. Martinez,1, 2, 4, 8 Jae Hyeon Yoo,2, 3 Sergei V. Isakov,1 Philip Massey,3 Ramin Halavati,3 Murphy Yuezhen Niu,1 Alexander Zlokapa,9, 1 Evan Peters,4, 6, 10 Owen Lockwood,11 Andrea Skolik,12, 13, 14, 15 Sofiene Jerbi,16 Vedran Dunjko,13 Martin Leib,12 Michael Streif,12, 14, 15, 17 David Von Dollen,18 Hongxiang Chen,19, 20 Shuxiang Cao,19, 21 Roeland Wiersema,22, 23 Hsin-Yuan Huang,1, 24, 25 Jarrod R. McClean,1 Ryan Babbush,1 Sergio Boixo,1 Dave Bacon,1 Alan K. Ho,1 Hartmut Neven,1 and Masoud Mohseni1, z 1Google Quantum AI, Mountain View, CA 2Sandbox@Alphabet, Mountain View, CA 3Google, Mountain View, CA 4Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada 5School of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada 6Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada 7Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada 8Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada 9Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 10Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL, 605010 11Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA 12Data:Lab, Volkswagen Group, Ungererstr. 69, 80805 München, Germany 13Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands 14Quantum Artificial Intelligence Laboratory, NASA Ames Research Center (QuAIL) 15USRA Research Institute for Advanced Computer Science (RIACS) 16Institute for Theoretical Physics, University of Innsbruck, Technikerstr. -
A Quantum Computational Approach to Correspondence Problems on Point Sets
A Quantum Computational Approach to Correspondence Problems on Point Sets Vladislav Golyanik Christian Theobalt Max Planck Institute for Informatics, Saarland Informatics Campus Abstract Modern adiabatic quantum computers (AQC) are al- ready used to solve difficult combinatorial optimisation problems in various domains of science. Currently, only a few applications of AQC in computer vision have been demonstrated. We review AQC and derive a new algorithm for correspondence problems on point sets suitable for ex- ecution on AQC. Our algorithm has a subquadratic com- putational complexity of the state preparation. Examples of successful transformation estimation and point set align- ment by simulated sampling are shown in the systematic ex- perimental evaluation. Finally, we analyse the differences Figure 1: Different 2D point sets — fish [47], qubit, kanji and composer — aligned with our QA approach. For every pair of point sets, the initial in the solutions and the corresponding energy values. misalignment is shown on the left, and the registration is shown on the right. QA is the first transformation estimation and point set alignment method which can be executed on adiabatic quantum computers. 1. Introduction Since their proposal in the early eighties [8, 43, 27], lems (QUBOP) defined as quantum computers have attracted much attention of physi- arg min qTPq; (1) cists and computer scientists. Impressive advances both q2Bn in quantum computing hardware and algorithms have been where q is a set of n binary variables, and P is a symmetric demonstrated over the last thirty years [40, 30, 61, 58, 42, matrix of weights between the variables. The operational 19, 25, 49, 65, 48]. -
Outline of Machine Learning
Outline of machine learning The following outline is provided as an overview of and topical guide to machine learning: Machine learning – subfield of computer science[1] (more particularly soft computing) that evolved from the study of pattern recognition and computational learning theory in artificial intelligence.[1] In 1959, Arthur Samuel defined machine learning as a "Field of study that gives computers the ability to learn without being explicitly programmed".[2] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data.[3] Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions. Contents What type of thing is machine learning? Branches of machine learning Subfields of machine learning Cross-disciplinary fields involving machine learning Applications of machine learning Machine learning hardware Machine learning tools Machine learning frameworks Machine learning libraries Machine learning algorithms Machine learning methods Dimensionality reduction Ensemble learning Meta learning Reinforcement learning Supervised learning Unsupervised learning Semi-supervised learning Deep learning Other machine learning methods and problems Machine learning research History of machine learning Machine learning projects Machine learning organizations Machine learning conferences and workshops Machine learning publications -
PDF, 4MB Herunterladen
Status of quantum computer development Entwicklungsstand Quantencomputer Document history Version Date Editor Description 1.0 May 2018 Document status after main phase of project 1.1 July 2019 First update containing both new material and improved readability, details summarized in chapters 1.6 and 2.11 1.2 June 2020 Second update containing new algorithmic developments, details summarized in chapters 1.6.2 and 2.12 Federal Office for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: [email protected] Internet: https://www.bsi.bund.de © Federal Office for Information Security 2020 Introduction Introduction This study discusses the current (Fall 2017, update early 2019, second update early 2020 ) state of affairs in the physical implementation of quantum computing as well as algorithms to be run on them, focused on applications in cryptanalysis. It is supposed to be an orientation to scientists with a connection to one of the fields involved—mathematicians, computer scientists. These will find the treatment of their own field slightly superficial but benefit from the discussion in the other sections. The executive summary as well as the introduction and conclusions to each chapter provide actionable information to decision makers. The text is separated into multiple parts that are related (but not identical) to previous work packages of this project. Authors Frank K. Wilhelm, Saarland University Rainer Steinwandt, Florida Atlantic University, USA Brandon Langenberg, Florida Atlantic University, USA Per J. Liebermann, Saarland University Anette Messinger, Saarland University Peter K. Schuhmacher, Saarland University Aditi Misra-Spieldenner, Saarland University Copyright The study including all its parts are copyrighted by the BSI–Federal Office for Information Security. -
Quantum Computing Factsheet
TECH FACTSHEETS FOR POLICYMAKERS SPRING 2020 SERIES Quantum Computing ASH CARTER, TAPP FACULTY DIRECTOR LAURA MANLEY, TAPP EXECUTIVE DIRECTOR TECHNOLOGY AND PUBLIC PURPOSE PROJECT AUTHOR Akhil Iyer (Harvard) EDITOR AND CONTRIBUTORS Emma Rosenfeld (Harvard) Mikhail Lukin (Harvard) William Oliver (MIT) Amritha Jayanti (Harvard) The Technology Factsheet Series was designed to provide a brief overview of each technology and related policy considerations. These papers are not meant to be exhaustive. Technology and Public Purpose Project Belfer Center for Science and International Affairs Harvard Kennedy School 79 John F. Kennedy Street, Cambridge, MA 02138 www.belfercenter.org/TAPP Statements and views expressed in this publication are solely those of the authors and do not imply endorsement by Harvard University, Harvard Kennedy School, the Belfer Center for Science and International Affairs. Design and layout by Andrew Facini Copyright 2020, President and Fellows of Harvard College Printed in the United States of America Executive Summary Quantum computing refers to the use of quantum properties—the properties of nature on an atomic scale— to solve complex problems much faster than conventional, or classical, computers. Quantum computers are not simply faster versions of conventional computers, though they are a fundamentally different computing paradigm due to their ability to leverage quantum mechanics. Harnessing quantum properties, namely the ability for the quantum computer bits (called “qubits”) to exist in multiple and interconnected states at one time, opens the door for highly parallel information processing with unprecedented new opportunities. Quantum computing could potentially be applied to solve important problems in fields such as cryptogra- phy, chemistry, medicine, material science, and machine learning that are computationally hard for con- ventional computers. -
Comparisons of Performance Between Quantum and Classical Machine Learning Christopher Havenstein Southern Methodist University, [email protected]
SMU Data Science Review Volume 1 | Number 4 Article 11 2018 Comparisons of Performance between Quantum and Classical Machine Learning Christopher Havenstein Southern Methodist University, [email protected] Damarcus Thomas Southern Methodist University, [email protected] Swami Chandrasekaran [email protected] Follow this and additional works at: https://scholar.smu.edu/datasciencereview Part of the Categorical Data Analysis Commons, Other Computer Sciences Commons, and the Quantum Physics Commons Recommended Citation Havenstein, Christopher; Thomas, Damarcus; and Chandrasekaran, Swami (2018) "Comparisons of Performance between Quantum and Classical Machine Learning," SMU Data Science Review: Vol. 1 : No. 4 , Article 11. Available at: https://scholar.smu.edu/datasciencereview/vol1/iss4/11 This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons Comparisons of Performance between Quantum and Classical Machine Learning Christopher L. Havenstein1, Damarcus T. Thomas1, and Swami Chandrasekaran2 1 Master of Science in Data Science, Southern Methodist University, Dallas, TX 75275 USA 2 Managing Director, Innovation & Enterprise Solutions, KPMG fchavenstein, [email protected] [email protected] Abstract. In this paper, we present a performance comparison of ma- chine learning algorithms executed on traditional and quantum comput- ers. Quantum computing has potential of achieving incredible results for certain types of problems [1], and we explore if it can be applied to ma- chine learning. First, we identified quantum machine learning algorithms with reproducible code and had classical machine learning counterparts.