Laboratory Informatics and the Laboratory Information System

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory Informatics and the Laboratory Information System 1 Laboratory Informatics and the Laboratory Information System DANIEL F. COWAN The primary objective of clinical laboratorians is to provide the highest possible quality of service to patients and those who care for patients. High-quality ser- vice encompasses accurate and precise analysis, timely, clear, and concise report- ing, and delivery of the service to a location in a format most valuable to the user of the service. Quality has also come to include elements of efficiency, effective- ness, analysis of diagnostic utility, and decision support.1,2 Delivery of the ser- vice has come to mean that integration into a comprehensive electronic medical record (EMR) is to be expected.3,4 Although it is widely accepted that about 70% of the information used in the management of patients comes from the clinical and anatomical pathology laboratories,5 in one large medical center in which information flow is tracked, about 94% of requests to the EMR are for laboratory results.4 In addition, a critical quality feature is the transformation of laboratory data into information.2,5,6–8 Drives for improved quality, integration, and efficiency have resulted in the incorporation of information technology and the personnel, policy, and proce- dural changes needed to exploit the technology into the clinical service labora- tory.9–11 This applies equally well to anatomic and clinical pathology. It seems clear enough that the managers of laboratory operations must understand infor- mation, the purpose of information, and the proper management of information in order to survive and prosper in an environment that demands an orientation to service and a full appreciation for the inter-relationship between processes and events. This is especially so when more information is being produced than can be assimilated, far beyond the limitations of memory-based learning, and the future is uncertain. The ability to respond and adapt to change requires recogni- tion of changes in an early stage and understanding of the changes in qualitative and quantitative terms. This means that decision makers must have full and ready access to high-quality, accurate information. The flow and management of information is made possible by the technol- ogy of computers and other information devices. Although the technology is fascinating, the important issues for the laboratorian are the purpose and 2 D.F. Cowan management of information. The laboratorian must understand that the labo- ratory is a knowledge- and service-based enterprise. Information manage- ment is an essential task of leadership, and like other aspects of management, if it is not done well in the laboratory, either it will be taken away by a higher level of administration or by an institutional information services organiza- tion or it will be outsourced. The pathology laboratory must be run as a business, and usually it is a compo- nent of a larger business: a hospital, medical center, or some other enterprise.12 This perception should not be much of a surprise, but for the laboratorian whose orientation is technical, academic, or altruistic, it requires a drastic reorientation of thinking. Laboratory leadership is responsible not only for technical and sci- entific matters but also for the jobs of people employed by the laboratory. Skill in business matters may be the critical factor in the viability of the laboratory and hence in the livelihood of those who work in it. Business tends to be a very competitive affair. Some businesses succeed and some fail. The struggle of busi- ness is and will always be a struggle for advantage. Those who build and sustain competitive advantage will win; those who do not will lose. Competition is all about advantage.13 Advantages over business competitors seldom are quantum jumps. They are much more likely to be the accumulation of small incremental gains realized over time resulting from careful management. Every human enter- prise, even if not competitive in a direct way, must be run in a businesslike fashion; otherwise its resources, always limited, will not be used in a way that enhances the purposes of the organization. This principle applies as much to churches as to commercial establishments. The purpose of information technology, or as it is sometimes called, infor- mation movement and management, is competitiveness. It allows an organi- zation to build and sustain a competitive advantage. All other activities, such as increasing efficiency, developing a better product, and decision support, are contributors to that objective, not the objective itself.13 After all, if the business fails, the laboratory closes or is sold and whatever high-minded or altruistic motives that might have driven it cannot be realized. The successful leader balances his or her attention between the present and the future; under- stands that today’s success is temporary; while enjoying today’s success is preparing for tomorrow’s greater success; and cultivates the ability to see the world as it is, not as it ought to be. The effective use of information services in any enterprise requires an understanding of the environment, structure, function, and politics of the organization, as well as the role of management and management decision making in it. Six types of information systems or subsystems are used in various organizational levels. Executive support systems (ESSs) are used at the strategic decision level of an organization; they are designed to address unstructured decision making us- ing advanced graphics and communication representing vast amounts of struc- tured and processed information. 1. Laboratory Informatics 3 Management information systems (MISs) provide current and historical per- formance data to middle managers who use it in planning, controlling, and decision making. Decision support systems (DSSs) are similar to MISs but tend to be more analytical; they deal with semistructured problems using data from both internal and external sources. Knowledge work systems (KWSs) are used by knowledge workers (scien- tists, engineers, and so on) to help create and distribute new knowledge. Office automation systems (OASs) are used to increase the productivity of data workers (secretaries, bookkeepers, and so on) but may also be used by knowledge workers. Transaction processing systems (TPSs) are basic business systems used at the operations level of an organization to keep track of daily transactions in the course of business. TPS might include databases and spread sheets. Business of Pathology Because it primarily involves the acquisition, creation, evaluation, and dissemi- nation of information, the practice of pathology can be characterized as a com- plex information system designed to produce useful information for individual or groups of patients. An information system can be formally defined as interre- lated components working together to collect, process, store, and disseminate information to support decision making, coordination, control analysis, and vi- sualization within an organization.14 This information function of the service department complements pathology’s traditional role as a method for systematic study of disease as seen in a patient, living or dead. In addition to its basis in laboratory testing, pathology also includes collection, processing, and dispens- ing of blood and blood products and consultation in their appropriate use. Each step in these processes requires the accumulation, organization, validation, stor- age, and transmission of information. Therefore, it is apparent that the laborato- rian is continually involved in information processing and communication tasks. Indeed, as actual analytical processes are done more and more by automated machines, the laboratorian is becoming primarily an information manager.10 The choice is not whether to be an information manager; it is to be a competent or an incompetent one. Information Product of the Laboratory The business product of the laboratory, aside from the exception of blood and blood products, is information.2,9,15–17 As with any business enterprise, the product offered by the laboratory, information, must be delivered to the user in a timely manner, in a comprehensible precise form and format, and at a location satisfactory to the user. One hopes to make a profit by so doing, or if 4 D.F. Cowan in a capitated or other cost-limiting system, do it in the way that uses the smallest possible amount of money. As a practical matter, information generated in the laboratory can be clas- sified as product information, information intended to be used outside the laboratory, such as patient results, and process information, information pro- duced in the course of receiving, processing, and testing specimens, organiz- ing of reports, and all the financial, scheduling and other operational matters necessary to run the laboratory. Thus, in the generation of information, the laboratory has both product goals and process goals. The product goals of the laboratory are service related, including promptness, clarity in communica- tion, accuracy, and error reduction. The process goals of the laboratory are efficiency in the use of resources and documentation for management and for accreditation. The overall goal of laboratory information management is to obtain, create, manage, and use information to improve patient services and individual and laboratory performance in contributing to patient care, busi- ness management, and support processes. Pathologist as Information Manager This approach to the specialty
Recommended publications
  • Information Management Technology
    Information Management Technology 12 May 2006 | News Image not found or type unknown Information Management Technology Laboratory informatics has a much broader application area-scientific research from drug discovery to production. Information science or "informatics" is the science of information. It is often studied as a branch of computer science and information technology and is related to database, ontology and software engineering. Informatics is primarily concerned with: Creating and structuring data Management, storage and retrieval of data Distribution and transfer of information Informatics is about the transformation of information by computation or communication; by machines or people. It is the intersection of artificial intelligence, cognitive science, computing science and related fields. Informatics focuses on understanding business or scientific research challenges and applying information technology as the solution-tackling the problem first rather than technology first. It combines software applications, search technology, database storage and tools for digitally-enabled collaboration. Laboratory informatics Laboratory informatics is the specialized application of information technology to maximize laboratory operations, particularly in analytical, production and research and development. Laboratory informatics encompasses data acquisition, data processing, data analysis and long-term archiving, electronic laboratory notebooks, laboratory information management, laboratory automation, scientific data management, document
    [Show full text]
  • Laboratory Informatics Guide 2014
    LABORATORY INFORMATICS GUIDE 2014 www.scientific-computing.com/lig2014 FROM THE PUBLISHERS OF subsidiaries. BREAKTHROUGH MOMENT #46 QUERYING YOUR DATA AND INSTANTLY VISUALIZING THE ANSWER © 2011 PerkinElmer, Inc. 400280_06. All trademarks or registered are the property of and/or its Scientifi c breakthroughs don’t happen every day. But with the TIBCO Spotfi re® platform, they just might happen more often. TIBCO Spotfi re® software visualizes your data in stunning, impactful analyses—giving you immediate insights and even answering questions you haven’t posed yet. With such a powerful tool, you can take complete control of your data: • Combine data from multiple sources—chemical structures, text, numbers, images, chemical properties, biological assays, and more. • Identify new relationships, isolate signifi cant outliers, and easily spot trends and patterns. TIBCO Spotfi re® software connects to data sources with just a few clicks—and runs visualizations instantly. It’s that easy. Download your free trial and get started on your next breakthrough today. www.perkinelmer.com/spotfi re-scientifi ccomputingworld Created By: WHM Creative Production: Sarah Pruett / 206.313.1252 Stock: TBD Job: CID3639 PerkinElmer TIBCO Spotfi re Breakthrough Print Ad Inks: CMYK - Match to PMS swatches for PMS299C, PMS 369C, Date: 12/02/13 PMS 423C, PMS 286C, PMS 144C Finish Size: 213mm x 282mm contents | LABORATORY INFORMATICS GUIDE 2014 WELCOME There is a paradox at the heart of this year’s Laboratory Informatics Guide. On the one hand, we have an article showing how technology developed for the consumer market can help drive down costs and improve efficiencies in the work of the analytical laboratory.
    [Show full text]
  • Informatics Self-Assessment Tool for Public Health Laboratories 2013 Suggested Citation
    Informatics Self-Assessment Tool for Public Health Laboratories 2013 Suggested Citation Association of Public Health Laboratories (APHL); Centers for Disease Control and Prevention. Laboratory Efficiencies Initiative: Informatics Self-Assessment Tool for Public Health Laboratories. Silver Spring, MD; APHL; 2013. http://www.aphl.org/aphlprograms/lss/Laboratory-Efficiencies-Initiative/Pages/Informatics.aspx This publication was supported by Cooperative Agreement # U60HM000803 from CDC and/or Assistant Secretary for Preparedness and Response. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC and/or Assistant Secretary for Preparedness and Response. Funding for the program was funded 100% from federal funds. Table of Contents Abbreviations ................................................................................................ 1 CA 5: Prescheduled Testing ....................................................................... 29 Description ...................................................................................... 29 Introduction .................................................................................................. 2 Guidance Statement ........................................................................ 29 The Laboratory Efficiencies Initiative (LEI) ........................................... 2 Capability Area 5 ............................................................................. 30 Tool Development Process ...............................................................
    [Show full text]
  • 2017 Informatics Resource Guide
    The Lab Manager INFORMATICS RESOURCE GUIDE Things to Think About Before Buying a Lab Informatics System BY RYAN ACKERMAN Considering the Cloud BY JOHN JOYCE, PhD LIMS: Flexible Data Management BY MIKE MAY, PhD 20 To LIMS or Not to LIMS? 17 BY ANGELO DEPALMA, PhD Product Focus: Electronic Laboratory Notebooks BY ANGELO DEPALMA, PhD Informatics Resource Guide 2017 Things to Think About Before Buying a Lab Informatics System Modern informatics systems come in a variety of different types and configurations to suit any researcher’s needs By Ryan Ackerman A LABORATORY INFORMATICS INTEGRATION TIP When integrating a new informatics solution into your lab, one thing you’ll want to make sure of is that the variety of instruments in your lab will be compatible with the new software. Make a list of your lab’s equipment and do your research to make sure it will work with the new informatics platform before you start. How does the scale (size, people, and processes) How will increases in scope or scale determine affect the ideal informatics set-up? which informatics system should be used? Modern informatics systems come in a variety of different types and Increases in scope or scale can bring up many fears for most configurations to suit any researcher’s needs. If you are part of a small laboratories. Failing to meet compliance, having a system which is research lab that works out of a single location with only a few tests, no longer fit for the purpose, or having an informatics system which using a hardware-based solution may be best.
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Chemo-informatics Studies on Natural Occurring Naphthoquinone Coloring Agents. Vikas Gupta1 and Ajay Kumar2. 1GTBIT, Rajouri Garden, New Delhi-110065, India. 2Galgotias University, Plot No-2,Sector17A, Yamuna Expressaway, Distt Gautam Budh Nagar, UP, India. ABSTRACT Similarity studies of natural occurring naphthoquinone coloring agents, lapachol , chinone, chimaphilin, juglon, lawsonia, napthochinone yellow, Spinochrome D using Tanimoto coefficient and Euclidean Distance measurents are reported. C Algorithm and MATLAB Algorithm are developed for calculating the Tanimoto coefficient and Euclidean Distance values of coloring agents. The values of Tanimoto coefficient and Euclidean Distance obtained using both the algorithm are found to be same. Results shows that the compound Juglon and 5 Lawsonia have highest similarity with Tanimoto coefficient ,0.6 and Euclidean Distance , 1.414 and Chimaphilin has quite good similarity with Spinochrome D with Tanimoto coefficient .5714 and Euclidean Distance , 1.732. Lapachol and 2 Chinone also show good similarity with Tanimoto coefficient .5455 and Euclidean Distance , 2.236. Interestingly Napthochinone yellow and Chinone, have lowest similarity with Tanimoto coefficient 0.25 and Euclidean distance of 2.449. But both the compounds have good similarity Juglon and Lawsonia with Tanimoto coefficient 0.5 and Euclidean distance values of 1.41 and 2.0 respectively Keywords: Tanimoto coefficient, Euclidean Distance, Naphthoquinone coloring agents, C Algorithm , MATLAB Algorithm. *Corresponding author November - December 2014 RJPBCS 5(6) Page No. 110 ISSN: 0975-8585 INTRODUCTION The applications of information technology have given birth to different disciplines namely, Bioinformatics, Chemoinformatics, Geoinformatics, Health informatics, Laboratory informatics, Neuroinformatics, Social informatics.
    [Show full text]
  • Resource Guide
    2019 INFORMATICS RESOURCE GUIDE Questions to Ask When Buying Cloud Computing for the Laboratory Laboratory Informatics Using LIMS to Address Core LIMS Meets the Modern Laboratory Labs’ Workflows LIMS: Flexible Data Management Selecting a SaaS LIMS Informatics Resource Guide Questions to Should I invest in a cloud-based system? Many potential users have concerns about security when storing their valuable lab data in the cloud. However, vendors who offer Ask When cloud-based LIMS have many security measures in place and are continually monitoring and acting upon potential threats. Cloud-based solutions might end up being more secure than Buying storage on your lab’s in-house servers. In addition to security, cloud-based systems offer automated and flexible backups to ensure that you never lose your data. Storage capabilities of Laboratory cloud-based systems can also be expanded as the data needs of the lab grow. Will I need to purchase specific instruments Informatics to integrate them with my LIMS? aboratory information management systems (LIMS) are computer programs used to facilitate laboratory Many laboratory instrument manufacturers are teaming up with Loperations. They can be used for sample management, LIMS programmers to integrate their instrument monitoring instrument integration and monitoring, data collection, into LIMS platforms. However, other manufacturers continue to compliance, quality assurance, experiment documentation, develop proprietary instruments that require their own software and many other tasks. LIMS form a central database where solutions. In other cases, monitoring devices can be added to lab members can access all laboratory information, increasing instruments, allowing for integration of instrument monitoring transparency and efficiency within your lab.
    [Show full text]
  • Laboratory Informatics Guide 2021 Understanding the Needs of the Laboratory
    Laboratory Informatics Guide 2021 Understanding the needs of the laboratory From the publishers of SCIENTIFIC COMPUTING WORLD www.scientific-computing.com/lig21 Transform Digital Lab Consulting® provides independent strategic consulting to enable organisations of all sizes to transform their business through better use of informatics. We provide clear, actionable advice to help companies find the most effective solution for their environment. We have over 20 years of experience across the entire value chain, from early research to manufacturing. We are based in the UK and work globally with our clients and partners. Discover more at dlc.io +44 (0)1543 547607 [email protected] LABWARE LIMS and ELN in a single platform Automation software for all laboratories Offices worldwide supporting customers in more than 125 countries www.labware.com CDD BH EU 297x210mmV4.pdf 1 30/09/2020 11:54 CDD BH EU 297x210mmV4.pdf 1 30/09/2020 11:54 C M C Y M CM Y MY CM CY MY CMY CY K CMY K CDD BH EU 297x210mmV4.pdf 1 30/09/2020 11:54 Contents t is clear that Covid-19 has had a significant impact on laboratory operations. Even for laboratories that are not working directly on Covid-19 Itesting, drug and vaccine development, restrictions on laboratory space and access to equipment are putting a significant burden on scientists. Thankfully, laboratory informatics software tools can shoulder some of that burden by providing a platform for remote Software tools help combat Digitial transformation access, automation of laboratory operations 4 Covid-19 22 or by providing access to data and tools for collaboration to keep scientists working Robert Roe looks at how Covid-19 is driving Sophia Ktori looks at the role software plays in productively.
    [Show full text]
  • Chemical Informatics and Cyberinfrastructure Collaboratory a Project Funded by the National Institutes of Health Under The
    Chemical Informatics and Cyberinfrastructure Collaboratory A project funded by the National Institutes of Health under the NIH Roadmap Molecular Libraries Initiative for Exploratory Centers (P20) for Cheminformatics Research NIH Grant No. 1 P20 HG003894-01 (Fox) Geoffrey C. Fox, Principal Investigator October 1, 2005 – September 30, 2007 Page 0 Chemical Informatics and Cyberinfrastructure Collaboratory A. Executive Summary Chemical and life science research is capable of generating terabytes of data each day. Answers to health-related problems are buried in the data, and the computer techniques of informatics can help unearth sound medical solutions for the benefit of all. In conjunction with other units of Indiana University and external advisors, the School of Informatics and the Pervasive Technology Laboratories at Indiana University will use a grant from the National Institutes of Health to establish an exploratory center for cheminformatics research, the Chemical Informatics and Cyberinfrastructure Collaboratory (CICC). Over the next two years, the CICC will investigate novel approaches to assist in the discovery of new chemical compounds. Using powerful computer simulation and visualization environments, an integrated Chemical Informatics Cyberinfrastructure based on modern distributed service architectures will be constructed. The project will utilize the emerging high-capacity computer networks, powerful data repositories, and computers that comprise the Grid. This will ensure scalability, computational efficiency, and interoperability among heterogeneous components and will lead to the development of specific data-mining tools and applications for chemistry. The tools and infrastructure will be tested in real-life industry and academic science situations, so the approach can be assessed by practicing scientists, ultimately contributing to the design of a new kind of integrated discovery environment that will vastly speed up scientific research.
    [Show full text]
  • Laboratory Informatics Guide 2018
    LABORATORY INFORMATICS GUIDE 2018 www.scientific-computing.com/lig2018 FROM THE PUBLISHERS OF SCIENTIFIC COMPUTING WORLD AGILAB SCIENCE Powered by We don’t only provide LIMS, ELN or LES applications. We go beyond. Unified Laboratory Digital Platform Material Stability Formulations management Biology R&D studies Quality Equipment management management Chemistry R&D Interfaces & Security & Analytical data exchange Quality compliance testing control Resource management Embedded www.agilab.com analytics CONTENTS | LABORATORY INFORMATICS GUIDE 2018 WELCOME Over the few years that Europa Science has been producing the AGILAB SCIENCE Laboratory Informatics Guide, one constant has been the fact that the informatics industry does not stand still for long. On page 4 of this publication, we look at the effect that artificial RESHAPING THE FUTURE OF MEDICINE 4 intelligence (AI) technology is having on healthcare research, and the huge potential it has to shape the future. Combining traditional Robert Roe explores the use of artificial intelligence laboratory informatics processes with AI technology could open technology in healthcare and medicinal research up huge potential to advance research and provide faster and more specialised treatments to patients. The technology can be used to Powered by AGE OF DISRUPTION 8 approximate human cognition of complex medical data freeing A look back over the last 12 months, focussing on the researchers to work on other areas of the work and accelerating technology and processes driving trends in the laboratory research or helping a physician to get to an accurate diagnosis in We don’t only provide LIMS, less time. THE FUTURE OF LABORATORY INFORMATICS 12 It is clear that this is a time of real disruption in informatics, as we find on page 8.
    [Show full text]
  • Refined Solution How HPC Is Changing the Face of Oil and Gas
    www.scientific-computing.com April/May 2013 issue 129 Informatics in petrochemicals Geological applications Data retrieval Refined solution How HPC is changing the face of oil and gas COMPUTING SOLUTIONS FOR SCIENTISTS AND ENGINEERS Issue 129 April/May 2013 CONTENTS Laboratory Informatics News and products 4 Laboratory informatics systems are fuelling efficiency 6 Fuel the future Tom Wilkie reports on laboratory informatics in the petrochemicals industry As I write this, details of Pangea, Total’s new 2.3-petaflop supercomputer based at Statistical Science the company’s Jean Feger Scientific and Computing Centre (CSTJF) in southwest Retrieving data day queries 10 France, have been released. Felix Grant takes on the challenge of data retrieval and explores the issues Touted as the largest commercial HPC surrounding ballooning volumes system in the world, Pangea represents a valuable resource in the exploration of oil High-Performance Computing and gas reserves and will enable Total’s in- News and products 14 house engineers and geologists to develop more complete visualisations of seismic Digging for black gold 16 landscapes, while concurrently running HPC is a vital part of the oil and gas industry, simulations at 10 times the resolution as Warren Clark discovers of existing oil and gas reservoir models. From laboratory informatics and HPC Modelling and Engineering to modelling and simulation, computing technologies are playing fundamental Technology in Turin 23 roles within petrochemicals and oil and The 6th European Altair Technology Conference is coming gas industries. Our features on pages 6, 16 to Italy in April. We preview the event and 30 provide further perspectives.
    [Show full text]
  • BIT-2015-Agenda.Pdf
    Final Agenda Cover Cambridge Healthtech Institut e’s Fourteenth Annual Schedule-at-a-Glance APRIL 21 – 23, 2015 Plenary Sessions SEAPORT WORLD TRADE CENTER Awards CONFERENCE & EXPO ’15 BOSTON, MA Pre-Conference Workshops Enabling Technology. Leveraging Data. Transforming Medicine. IT Infrastructure – Hardware Software Development CONFERENCE TRACKS: PLENARY SESSION SPEAKERS: EVENT FEATURES: • Access All 12 Tracks for One Price Cloud Computing 1 IT Infrastructure – Hardware Philip E. Bourne, Ph.D. • Network with 3,000+ Global 2 Software Development Associate Director for Data Science Bioinformatics (ADDS), National Institutes of Health Attendees 3 Cloud Computing Next-Gen Sequencing Informatics • Hear 150+ Technology and Scientific Chris Sander, Ph.D. Presentations 4 Bioinformatics Computational and Systems Biology, Clinical & Translational Informatics Memorial Sloan Kettering • Attend Bio-IT World’s Best 5 Next-Gen Sequencing Informatics Practices Awards Data Visualization & Exploration Tools Cancer Center 6 Clinical & Translational Informatics • Connect with Attendees Using Pharmaceutical R&D Informatics Benjamin Heywood CHI’s Intro-Net 7 Data Visualization & Exploration Tools Co-Founder and President, • Participate in the Poster Clinical Genomics 8 Pharmaceutical R&D Informatics PatientsLikeMe, Inc. Competition Collaborations & Open Access Innovations 9 Clinical Genomics • Choose from 17 Pre-Conference Andreas Kogelnik, M.D., Ph.D. Workshops Cancer Informatics 10 Collaborations & Open Access Founder, Open Medicine Institute • See the
    [Show full text]
  • The Evolution of LIMS, ISO 1578 and the Future of Laboratory Informatics
    The Evolution of LIMS, ISO 1578 and the Future of Laboratory Informatics by Robert Benz Khemia Software, Inc. LIMS TNI Requirements 4.1.5, 4.13.3 and 5.4.7 Control of Data (ISO/IEC 17025:2005, Clause 5.4.7) 5.8.2, 5.8.5, and 5.8.7.3 ISO E1578 – 13 Laboratory Informatics 1. Scope 1.1 This guide helps describe the laboratory informatics landscape and covers issues commonly encountered at all stages in the life cycle of laboratory informatics from inception to retirement. It explains the evolution of laboratory informatics tools used in today’s laboratories such as laboratory information management systems (LIMS), laboratory execution systems (LES), laboratory information systems (LIS), electronic laboratory notebooks (ELN), scientific data management systems (SDMS), and chromatography data systems (CDS). It also covers the relationships (interactions) between these tools and the external systems in a given organization. The guide discusses supporting laboratory informatics tools and a wide variety of the issues commonly encountered at different stages in the life cycle. The sub‐sections that follow describe the scope of this document in specific areas. Specific to Environmental Increasing use of ELNs Importation of more field data/GIS Improved integration with other software platforms like SDMS Web portals becoming commonplace Instrument data/imports One‐offs & data points that do not fit – explanations or non‐conformance required IoT (Internet of Things)? Increase in automation ‐ QA/QC ‐ Artificial Intelligence What about machine learning? IoT by definition is: 3.2.14 Internet of things, IoT, n—a system of objects—computing devices, machines, objects, people, animals, etc.—that can connect to a network and communicate among themselves, often without human intervention.
    [Show full text]