23. Arthropods Inhabiting Rodent Burrows In. the Karakum Desert
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Catalogue of Coleoptera Specimens with Potential Forensic Interest in the Goulandris Natural History Museum Collection
ENTOMOLOGIA HELLENICA Vol. 25, 2016 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection Dimaki Maria Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece Anagnou-Veroniki Maria Makariou 13, 15343 Aghia Paraskevi (Athens), Greece Tylianakis Jason Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand http://dx.doi.org/10.12681/eh.11549 Copyright © 2017 Maria Dimaki, Maria Anagnou- Veroniki, Jason Tylianakis To cite this article: Dimaki, M., Anagnou-Veroniki, M., & Tylianakis, J. (2016). A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection. ENTOMOLOGIA HELLENICA, 25(2), 31-38. doi:http://dx.doi.org/10.12681/eh.11549 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/12/2018 06:22:38 | ENTOMOLOGIA HELLENICA 25 (2016): 31-38 Received 15 March 2016 Accepted 12 December 2016 Available online 3 February 2017 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection MARIA DIMAKI1’*, MARIA ANAGNOU-VERONIKI2 AND JASON TYLIANAKIS3 1Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece 2Makariou 13, 15343 Aghia Paraskevi (Athens), Greece 3Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ABSTRACT This paper presents a catalogue of the Coleoptera specimens in the Goulandris Natural History Museum collection that have potential forensic interest. Forensic entomology can help to estimate the time elapsed since death by studying the necrophagous insects collected on a cadaver and its surroundings. In this paper forty eight species (369 specimens) are listed that belong to seven families: Silphidae (3 species), Staphylinidae (6 species), Histeridae (11 species), Anobiidae (4 species), Cleridae (6 species), Dermestidae (14 species), and Nitidulidae (4 species). -
Coleoptera: Dermestidae) from the Republic of Namibia
Studies and Reports Taxonomical Series 15 (2): 329-332, 2019 A new dermestid species (Coleoptera: Dermestidae) from the Republic of Namibia Andreas HERRMANN1 & Jiří HÁVA2,3 1Bremervörder Strasse 123, D - 21682 Stade, Germany e-mail: [email protected] 2Daugavpils University, Institute of Life Sciences and Technology, Department of Biosystematics, Vienības Str. 13, Daugavpils, LV - 5401, Latvia 3Private Entomological Laboratory and Collection, Rýznerova 37, CZ - 252 62 Únětice u Prahy, Praha-západ, Czech Republic e-mail: [email protected] Taxonomy, description, new species, Coleoptera, Dermestidae, Attagenus, Namibia Abstract. A new species Attagenus (s. str.) namibicus sp. nov. from Namibia is described, illustrated and compared with similar looking species. A list of all species from Namibia which belong to the genus Attagenus is furthermore provided. INTRODUCTION The genus Attagenus Latreille, 1802 is one of about 60 genera established within the beetle family Dermestidae. This genus includes of about 250 different species respectively subspecies worldwide (Háva 2015), 11 of them have still been recorded from the Republic of Namibia (Háva 2005, Herrmann & Háva 2007, Háva & Kadej 2008, Herrmann & Háva 2014, Háva, Herrmann & Kadej 2015, Herrmann & Háva 2016). In the present paper we describe a new species of this genus which was detected during an examination of some unidentified dermestids deposited in the collection of the Royal Belgian Institute of Natural Sciences (ISNB). MATERIAL AND METHODS The dried specimens were weakened for 5 days in a solution of 1% pepsin in diluted hydrochloric acid to free them roughly from protein tissues and to make the extremities of the body moveable, again. The abdomen was disconnected from the body and glued upside- down onto the same cardboard plate, just behind the beetle. -
Last Issue Name This Pest
P E S T Name This Pest! Worked out what this is from the last issue? Find out on the next page! t Stephen L. Doggett Hint: this spiky little fellow can produce nasty skin irritations with those spines. You may think you know what this is, but guess again as it is not the most commonly seen species in this group. Length around 10mm. 74 || FAOPMA Newsletter - October 2019 P E S T Black Carpet Beetle Also known as the ‘Fur beetle’ Text by David Lilly lack carpet beetles are Dermestid has experience of occasionally finding beetles (Family: Dermistidae) these beetles in the fines collection of Bfrom the genus Attagenus. They grain processing mills. Evidence of their are typically small (5 mm or less as adults), activity usually becomes apparent through round beetles that are covered in fine hairs. holes eaten by the larvae, although large The larvae are typically much longer, up infestations may be discovered through the to 10mm in the late instars. As their name presence of cast skins. suggests, several species are uniformly black in appearance and may be difficult to Immature Stages identify without the appropriate visual aids Eggs of Attagenus beetles are laid in cracks and references guides. Attagenus fasciatus and crevices nearby or within the infested is the most distinctive and readily identified product. Once the larvae have hatched, of the commonly encountered species, they burrow into the commodity and begin as it possesses a distinctive tan-coloured their slow development. A full life-cycle can band across its elytra. The image on the take between 6 months to 3 years. -
Spiders of the Hawaiian Islands: Catalog and Bibliography1
Pacific Insects 6 (4) : 665-687 December 30, 1964 SPIDERS OF THE HAWAIIAN ISLANDS: CATALOG AND BIBLIOGRAPHY1 By Theodore W. Suman BISHOP MUSEUM, HONOLULU, HAWAII Abstract: This paper contains a systematic list of species, and the literature references, of the spiders occurring in the Hawaiian Islands. The species total 149 of which 17 are record ed here for the first time. This paper lists the records and literature of the spiders in the Hawaiian Islands. The islands included are Kure, Midway, Laysan, French Frigate Shoal, Kauai, Oahu, Molokai, Lanai, Maui and Hawaii. The only major work dealing with the spiders in the Hawaiian Is. was published 60 years ago in " Fauna Hawaiiensis " by Simon (1900 & 1904). All of the endemic spiders known today, except Pseudanapis aloha Forster, are described in that work which also in cludes a listing of several introduced species. The spider collection available to Simon re presented only a small part of the entire Hawaiian fauna. In all probability, the endemic species are only partly known. Since the appearance of Simon's work, there have been many new records and lists of introduced spiders. The known Hawaiian spider fauna now totals 149 species and 4 subspecies belonging to 21 families and 66 genera. Of this total, 82 species (5596) are believed to be endemic and belong to 10 families and 27 genera including 7 endemic genera. The introduced spe cies total 65 (44^). Two unidentified species placed in indigenous genera comprise the remaining \%. Seventeen species are recorded here for the first time. In the catalog section of this paper, families, genera and species are listed alphabetical ly for convenience. -
The Influence of the Type of Storage on Pest Infestation of Stored Grain in the Czech Republic
The influence of the type of storage on pest infestation of stored grain in the Czech Republic V. Stejskal1, J. Hubert1, Z. Kučerová1, Z. Munzbergová2, 3, J. Lukáš1, E. Žďárková1 1Research Institute of Crop Production, Prague-Ruzyně, Czech Republic 2Faculty of Science, Charles University in Prague, Czech Republic 3Botanical Institute, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic ABSTRACT Stored-product pests cause high economic losses by feeding on stored grain and endanger the public health by contamina- tion of food by allergens. Therefore, the aim of this work was to explore whether the risk of infestation of stored grain by pests is different in various types of storage premises. We compared the level of infestation and the pest species compo- sition in the two main types of grain stores in Central Europe that includes horizontal flat-stores (HFS) and vertical silo- stores (elevators) (VSS). A total of 147 grain stores located in Bohemia, Czech Republic was inspected. We found that both types of stores were infested with arthropods of three main taxonomic groups: mites (25 species, 120 000 individu- als), psocids (8 species, 5 600 individuals) and beetles (23 species, 4 500 individuals). We found that VSS and HFS differ in species composition of mites, psocids and beetles. However, the primary grain pests (i.e. Lepidoglyphus destructor, Acarus siro, Tyrophagus putrescentiae, Lachesilla pedicularia, Sitophilus oryzae, Rhyzopertha dominica, Oryzaephilus surinamensis and Cryptolestes ferrugineus) occurred in both types of stores. The only exception was higher frequency and abundance of two serious beetle-pests (Tribolium castaneum, Sitophilus granarius) in HFS than in VSS. -
Prey Recognition in Larvae of the Antlion Euroleon Nostras (Neuroptera, Myrrneleontidae)
Acta Zool. Fennica 209: 157-161 ISBN 95 1-9481-54-0 ISSN 0001-7299 Helsinki 6 May 1998 O Finnish Zoological and Botanical Publishing Board 1998 Prey recognition in larvae of the antlion Euroleon nostras (Neuroptera, Myrrneleontidae) Bojana Mencinger Mencinger, B., Department of Biology, University ofMaribor, Koro&a 160, SLO-2000 Maribor, Slovenia Received 14 July 1997 The behavioural responses of the antlion larva Euroleon nostras to substrate vibrational stimuli from three species of prey (Tenebrio molitor, Trachelipus sp., Pyrrhocoris apterus) were studied. The larva reacted to the prey with several behavioural patterns. The larva recognized its prey at a distance of 3 to 15 cm from the rim of the pit without seeing it, and was able to determine the target angle. The greatest distance of sand tossing was 6 cm. Responsiveness to the substrate vibration caused by the bug Pyrrhocoris apterus was very low. 1. Introduction efficient motion for antlion is to toss sand over its back (Lucas 1989). When the angle between the The larvae of the European antlion Euroleon head in resting position and the head during sand nostras are predators as well as the adults. In loose tossing is 4S0, the section of the sand tossing is substrate, such as dry sand, they construct coni- 30" (Koch 1981, Koch & Bongers 1981). cal pits. At the bottom of the pit they wait for the Sensitivity to vibration in sand has been stud- prey, which slides into the trap. Only the head ied in a few arthropods, e.g. in the nocturnal scor- and sometimes the pronotum of the larva are vis- pion Paruroctonus mesaensis and the fiddler crab ible; the other parts of the body are covered with Uca pugilator. -
Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris Iracundus
biomedicines Article Hexapod Assassins’ Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus Nicolai Rügen 1, Timothy P. Jenkins 2, Natalie Wielsch 3, Heiko Vogel 4 , Benjamin-Florian Hempel 5,6 , Roderich D. Süssmuth 5 , Stuart Ainsworth 7, Alejandro Cabezas-Cruz 8 , Andreas Vilcinskas 1,9,10 and Miray Tonk 9,10,* 1 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; [email protected] (N.R.); [email protected] (A.V.) 2 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] 3 Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany; [email protected] 4 Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; [email protected] 5 Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; [email protected] (B.-F.H.); [email protected] (R.D.S.) 6 BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany 7 Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; [email protected] 8 Citation: Rügen, N.; Jenkins, T.P.; UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Wielsch, N.; Vogel, H.; Hempel, B.-F.; F-94700 Maisons-Alfort, France; [email protected] 9 Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Süssmuth, R.D.; Ainsworth, S.; 35392 Giessen, Germany Cabezas-Cruz, A.; Vilcinskas, A.; 10 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, Tonk, M. -
Development of Synanthropic Beetle Faunas Over the Last 9000 Years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid
University of Birmingham Development of synanthropic beetle faunas over the last 9000 years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid DOI: 10.1016/j.jas.2020.105075 License: Other (please provide link to licence statement Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Smith, D, Hill, G, Kenward, H & Allison, E 2020, 'Development of synanthropic beetle faunas over the last 9000 years in the British Isles', Journal of Archaeological Science, vol. 115, 105075. https://doi.org/10.1016/j.jas.2020.105075 Link to publication on Research at Birmingham portal Publisher Rights Statement: Contains public sector information licensed under the Open Government Licence v3.0. http://www.nationalarchives.gov.uk/doc/open- government-licence/version/3/ General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. -
From Chewing to Sucking Via Phylogeny—From Sucking to Chewing Via Ontogeny: Mouthparts of Neuroptera
Chapter 11 From Chewing to Sucking via Phylogeny—From Sucking to Chewing via Ontogeny: Mouthparts of Neuroptera Dominique Zimmermann, Susanne Randolf, and Ulrike Aspöck Abstract The Neuroptera are highly heterogeneous endopterygote insects. While their relatives Megaloptera and Raphidioptera have biting mouthparts also in their larval stage, the larvae of Neuroptera are characterized by conspicuous sucking jaws that are used to imbibe fluids, mostly the haemolymph of prey. They comprise a mandibular and a maxillary part and can be curved or straight, long or short. In the pupal stages, a transformation from the larval sucking to adult biting and chewing mouthparts takes place. The development during metamorphosis indicates that the larval maxillary stylet contains the Anlagen of different parts of the adult maxilla and that the larval mandibular stylet is a lateral outgrowth of the mandible. The mouth- parts of extant adult Neuroptera are of the biting and chewing functional type, whereas from the Mesozoic era forms with siphonate mouthparts are also known. Various food sources are used in larvae and in particular in adult Neuroptera. Morphological adaptations of the mouthparts of adult Neuroptera to the feeding on honeydew, pollen and arthropods are described in several examples. New hypoth- eses on the diet of adult Nevrorthidae and Dilaridae are presented. 11.1 Introduction The order Neuroptera, comprising about 5820 species (Oswald and Machado 2018), constitutes together with its sister group, the order Megaloptera (about 370 species), and their joint sister group Raphidioptera (about 250 species) the superorder Neuropterida. Neuroptera, formerly called Planipennia, are distributed worldwide and comprise 16 families of extremely heterogeneous insects. -
The Biodiversity of Flying Coleoptera Associated With
THE BIODIVERSITY OF FLYING COLEOPTERA ASSOCIATED WITH INTEGRATED PEST MANAGEMENT OF THE DOUGLAS-FIR BEETLE (Dendroctonus pseudotsugae Hopkins) IN INTERIOR DOUGLAS-FIR (Pseudotsuga menziesii Franco). By Susanna Lynn Carson B. Sc., The University of Victoria, 1994 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming To t(p^-feguired standard THE UNIVERSITY OF BRITISH COLUMBIA 2002 © Susanna Lynn Carson, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract Increasing forest management resulting from bark beetle attack in British Columbia's forests has created a need to assess the impact of single species management on local insect biodiversity. In the Fort St James Forest District, in central British Columbia, Douglas-fir (Pseudotsuga menziesii Franco) (Fd) grows at the northern limit of its North American range. At the district level the species is rare (representing 1% of timber stands), and in the early 1990's growing populations of the Douglas-fir beetle (Dendroctonus pseudotsuage Hopkins) threatened the loss of all mature Douglas-fir habitat in the district. -
Systematics of the Hersiliidae (Araneae) of the Afrotropical Region
University of Pretoria etd – Foord, S H (2005) Systematics of the Hersiliidae (Araneae) of the Afrotropical Region by Stefan Hendrik Foord Submitted in partial fulfillment of the requirements for the degree of PhD (Zoology) In the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria January 2005 1 University of Pretoria etd – Foord, S H (2005) Table of Contents Content Page DISCLAIMER iii SUMMARY/OPSOMMING iv ACKNOWLEDGEMENTS v CHAPTER ONE A Cladistic Analysis of the Family Hersiliidae 6 (Arachnida, Araneae) of the Afrotropical Region CHAPTER TWO A Revision of the Afrotropical species of Hersilia 50 Audouin (Araneae: Hersiliidae) CHAPTER THREE A Revision of the Afrotropical Species of Hersiliola 168 Thorell and Tama Simon with Description of a New Genus Tyrotama (Araneae: Hersiliidae) CHAPTER FOUR The First Records of Murricia Simon from the 208 Afrotropical Region (Araneae: Hersiliidae) CHAPTER FIVE The First Records of Neotama Baehr & Baehr from the 220 Afrotropical Region and Description of a New Genus, Prima (Araneae: Hersiliidae) 2 University of Pretoria etd – Foord, S H (2005) Disclaimer This PhD thesis comprises a number of chapters prepared for submission to a range of journals. Consequently, chapter formats and contents contain some inconsistencies and overlap in order to secure publishable entities. 3 University of Pretoria etd – Foord, S H (2005) Acknowledgments I would like to thank Annette van den Berg, Charnie Craemer, Lindie Steynberg, and Elizabeth Kassimatis for providing technical as well as theoretical assistance. The various museum curators I borrowed material from are thanked, in particular, Peter Jäger and Rudi Jocqué, whom responded almost immediately to any request I made. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.