Chemical Composition and Product Quality Control of Turmeric (Curcuma Longa L.)

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Composition and Product Quality Control of Turmeric (Curcuma Longa L.) Stephen F. Austin State University SFA ScholarWorks Faculty Publications Agriculture 2011 Chemical composition and product quality control of turmeric (Curcuma longa L.) Shiyou Li Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Wei Yuan Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Guangrui Deng Ping Wang Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Peiying Yang See next page for additional authors Follow this and additional works at: https://scholarworks.sfasu.edu/agriculture_facultypubs Part of the Natural Products Chemistry and Pharmacognosy Commons, and the Pharmaceutical Preparations Commons Tell us how this article helped you. Repository Citation Li, Shiyou; Yuan, Wei; Deng, Guangrui; Wang, Ping; Yang, Peiying; and Aggarwal, Bharat, "Chemical composition and product quality control of turmeric (Curcuma longa L.)" (2011). Faculty Publications. 1. https://scholarworks.sfasu.edu/agriculture_facultypubs/1 This Article is brought to you for free and open access by the Agriculture at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Authors Shiyou Li, Wei Yuan, Guangrui Deng, Ping Wang, Peiying Yang, and Bharat Aggarwal This article is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/agriculture_facultypubs/1 28 Pharmaceutical Crops, 2011, 2, 28-54 Open Access Chemical Composition and Product Quality Control of Turmeric (Curcuma longa L.) ,1 1 1 1 2 3 Shiyou Li* , Wei Yuan , Guangrui Deng , Ping Wang , Peiying Yang and Bharat B. Aggarwal 1National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75972, USA 2Department of General Oncology, Integrative Medicine Program, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA 3Cytokine Research Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA Abstract: Chemical constituents of various tissues of turmeric (Curcuma longa L.) have been extensively investigated. To date, at least 235 compounds, primarily phenolic compounds and terpenoids have been identified from the species, in- cluding 22 diarylheptanoids and diarylpentanoids, eight phenylpropene and other phenolic compounds, 68 monoterpenes, 109 sesquiterpenes, five diterpenes, three triterpenoids, four sterols, two alkaloids, and 14 other compounds. Curcumi- noids (diarylheptanoids) and essential oils are major bioactive ingredients showing various bioactivities in in vitro and in vivo bioassays. Curcuminoids in turmeric are primarily accumulated in rhizomes. The essential oils from leaves and flowers are usually dominated by monoterpenes while those from roots and rhizomes primarily contained sesquiterpenes. The contents of curcuminoids in turmeric rhizomes vary often with varieties, locations, sources, and cultivation condi- tions, while there are significant variations in composition of essential oils of turmeric rhizomes with varieties and geo- graphical locations. Further, both curcuminoids and essential oils vary in contents with different extraction methods and are unstable with extraction and storage processes. As a result, the quality of commercial turmeric products can be mark- edly varied. While curcumin (1), demethoxycurcumin (2), and bisdemethoxycurcumin (5) have been used as marker com- pounds for the quality control of rhizomes, powders, and extract (“curcumin”) products, Ar-turmerone (99), -turmerone (100), and -turmerone (101) may be used to control the product quality of turmeric oil and oleoresin products. Authentication of turmeric products can be achieved by chromatographic and NMR techniques, DNA markers, with morphological and anatomic data as well as GAP and other information available. Keywords: Turmeric, Curcuma longa L., rhizomes, ground turmeric, turmeric oils, turmeric oleoresin, curcuminoids, curcu- min, sesquiterpenes, marker compounds, adulteration, standardization. INTRODUCTION Longae but recently it has been separated as Rhizoma Wenyujin Concisum in the 2005 version of the Pharmaco- Turmeric (Curcuma longa L.) is a rhizomatous poeia of People’s Republic of China [5]. In Thailand and herbaceous perennial plant of the ginger family, some other countries, C. domestica Val. is also used as the Zingiberaceae. It is native to tropical South Asia but is now scientific name of turmeric [6-8] although it is recognized as widely cultivated in the tropical and subtropical regions of a synonym of C. longa [9]. the world. The deep orange-yellow powder known as turmeric is prepared from boiled and dried rhizomes of the There are extensive in vitro and in vivo investigations on plant. It has been commonly used as spice and medicine turmeric extracts (ethanol, methanol, water, and ethyl acetate (Rhizome Curcumae Longae), particularly in Asia. In extracts) or “pure” active “curcumin” (actually it was a mix- Ayurveda medicine, turmeric is primarily used as a treatment ture of three major curcumnnioids in many cases) powder for inflammatory conditions and in traditional Chinese over the last half century. The role of curcumin (1), one of medicine, it is used as stimulant, aspirant, carminative, cor- the most studied chemopreventive agents, on anti- deal, emenagogue, astringent, detergent, diuretic and martir- inflammatory and cancer activity has been well appreciated net [1-3]. In India and China, wild turmeric (C. aromatica [3, 10-19]. Data from cell culture, animal research, and clini- Salisb., commonly called as Kasthuri manjal or yujin) is cal trials indicate that curcumin may have potential as a sometimes used as turmeric production [4]. This species is therapeutic agent in diseases such as inflammatory bowel known as C. wenyujin Y.H. Chen et C. Ling in China. It was disease, pancreatitis, arthritis, and chronic anterior uveitis [3, also occasionally used to substitute Rhizome Curcumae 20]. The anti-cancer effect has been reported in a few clinical trials, mainly as a chemoprevention agent in colon and *Address correspondence to this author at the National Center for Pharma- pancreatic cancer, cervical neoplasia and Barrets metaplasia ceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen [16]. The compound modulates several molecular targets and F. Austin State University, Nacogdoches, TX 75972, USA; inhibits transcription factors (NF-kB, AP-1), enzymes Tel: 936-468-2071, 936-468-5600; Fax: 936-468-7058; (COX-1, COX-2, LOX), cytokines (TNF, IL-1, IL-6) and E-mail: [email protected] 2210-2906/11 2011 Bentham Open Chemical Composition and Product Quality Control of Turmeric (Curcuma longa L.) Pharmaceutical Crops, 2011, Volume 2 29 antiapoptotic genes (BCL2, BCL2L1) [21-24]. As a result, curcumin (1) is able to induce apoptosis and has antiangio- genic activity [25, 26]. Turmeric extracts or the active curcuminoids have also shown hepato- and cardioprotective [27, 28], hypoglycemic [29, 30], anti-amyloidogenic [31], antifungal [32], parasiti- cidal [33, 34], antioxidant [35, 36], and chemo-resistance and radio-resistance activities [16]. Recent in vitro and in vivo studies and clinical trials in China and USA suggest that curcumin might be one of the most promising compounds for the development of Alzheimer's disease therapies [37]. Accumulating evidences suggest that curcumin (1) may regulate lipid metabolism, which plays a central role in the development of obesity and its complications [38]. Recently, it was found that curcumin (1) and demethoxycurcumin (2) can reduce lead-induced memory deficits in rates [39]. Turmeric oils/oleoresin or a major compound ar-turmerone (99) have shown antimicrobial [40-43], larvicidal [44], and antioxidant activities [45]. Essential oils of Curcuma also exerts triglyceride-lowering activity on serum as well as liver triglycerides [46]. Curcuma longa is often cultivated to harvest rhizomes (Fig. 1) for ground turmeric powder as a spice and food col- oring agent (used alone or in mustard paste or curry powder). The plant has also been recognized as a pharmaceutical crop for production of standardized therapeutic extracts (STEs) or small therapeutic molecules (STMs) [47]. India is the largest producer of turmeric supplying over 90% of the world’s de- mand [48]. The country produced about 716,900 Mt of tur- Fig. (1). Curcuma longa is primarily cultivated for turmeric rhi- meric from approximately 161,300 hectares of crops during zomes and their products (The upper picture shows the plants culti- 2004-2005 [49]. China also has cultivated turmeric for both vated at the SFA Mast Arboretum, Stephen F. Austin State Univer- domestic use and export. There are about 70 cultivars or va- sity in Nacogdoches, Texas, USA and the lower picture shows rhi- rieties of C. longa cultivated in India, some important re- zomes and ground turmeric as well as curry powder. Photos by S.Y. gional trade varieties of turmeric are ‘Rajapuri’, ‘Duggirala’, Li). ‘Cuddappah’, ‘Berhampur’, ‘Erode’, ‘Nizamabad’, ‘Ko- raput’, ‘Kasturi’, ‘Chaya’, ‘Kodur’, ‘Salem’, ‘Waigon’, ‘Alleppey’, ‘Karur’, ‘Tekurpeta’ [2]. Turmeric is valued Phenolic Compounds primarily for curcumin (1). Thus, curcumin (1) content has Diarylheptanoids and Diarylpentanoids been an important factor in developing and selecting cultivar
Recommended publications
  • Technical Developments in the Use of Spices Dr David Baines Baines Food Consultancy Ltd
    EUROPEAN SPICE ASSOCIATION GENERAL ASSEMBLY 2013 Technical Developments in the Use of Spices Dr David Baines Baines Food Consultancy Ltd Co-editor: Flavour Horizons TECHNICAL DEVELOPMENTS IN THE USE OF SPICES TOPICS: Recent health claims submitted to the EU for the use of spices Compounds in selected spices that have beneficial effects on health The use of spices to inhibit of carcinogen formation in cooked meats The growing use of spices in animal feeds Salt reduction using spices Interesting culinary herbs from Vietnam Recent Health Claims Submitted to the EU EU REGULATION OF HEALTH CLAIMS • The Nutrition and Health Claims Regulation, 1924/2006/EC is designed to ensure a high level of protection for consumers and legal clarity and fair competition for food business operators. • Claims must not mislead consumers; they must be, accurate, truthful, understandable and substantiated by science. • Implementation of this Regulation requires the adoption of a list of permitted health claims, based on an assessment by the European Food Safety Authority (EFSA) of the science substantiating the claimed effect and compliance with the other general and specific requirements of the Regulation. • This list of permitted health claims was adopted in May 2012 by the Commission and became binding on 14th December 2012. Food companies must comply from this date or face prosecution for misleading marketing. APPROVAL OF CLAIMS EU REGULATION OF HEALTH CLAIMS CLAIMS BY COMPONENT CLAIMS BY FUNCTION CLAIMS FOR SPICES – NOT APPROVED/ON HOLD SPICE CLAIM(S) Anise / Star Anise Respiratory Health, Digestive Health, Immune Health, Lactation Caraway Digestive Health, Immune Health, Lactation Cardamon Respiratory Health, Digestive Health, Immune Health, Kidney Health, Nervous System Health, Cardiovascular Health, Capsicum Thermogenesis, Increasing Energy Expenditure, Enhancing Loss of Calories, Body Weight Loss, Stomach Health, Reduction of Oxidative Stress, promotion of Hair Growth.
    [Show full text]
  • Optimization of Microwave Assisted Process for Extraction of Celery Seed Essential Oil Gopika Talwari1 and B.S
    Gopika Talwari and B.S. Ghuman JAE : 51 (2) Journal of Agricultural Engineering Vol. 51 (2): April-June, 2014 Optimization of Microwave Assisted Process for Extraction of Celery Seed Essential Oil Gopika Talwari1 and B.S. Ghuman2 Manuscript received: March, 2013 Revised manuscript accepted: April, 2014 ABSTRACT Microwave assisted extraction (MAE) method was developed for extraction of essential oil from celery seeds. A domestic microwave oven was modified and Clevenger apparatus attached to it to make it an extraction unit. Effect of various parameters such as soaking time, temperature and power density during MAE was studied. A multivariate study based on a Box-Behnken design was used to evaluate the influence of three major variables (soaking time, temperature and power density) affecting the performance of MAE on celery seed. Oil yield, time of extraction and energy consumption (MJ.kg-1 oil) by MAE were determined and compared with those obtained by the traditional hydro-distillation (HD). It was found that microwave assisted process gave approximately same oil yield (1.90%) in less time ( 93.5 min) and with low energy consumption (58191.78 MJ.kg-1 oil). Results revealed that the selected parameters had significant effect on the responses. Key words: Celery seed, essential oil, microwave assisted extraction, hydro distillation Essential oils are the volatile oils distilled from aromatic an average contains 2.5% volatile oil containing 60-70% plant material. Essential oils are contained in the glands, d-limonene and 1-20% beta selinene and 15%–17% fixed sacs and veins concentrated in different parts of the plant. oil.
    [Show full text]
  • Tips to Roast Vegetables Spice Guide
    Tips to Roast Vegetables • Roast at a high oven temp- 400 to 450 degrees F • Chop vegetables in uniform size so they cook evenly • Don’t over crowd the pan, otherwise they will become soft • Roasting veggies with some oil will help them become crispier • To get the most flavor/crispier roast them on the top rack • Seasoning before putting them in the oven will add flavor • Flip veggies halfway through to ensure even cooking • When roasting multiple types of veggies, ensure they have similar cooking times. Good pairs include: Cauliflower and Broccoli cc Carrots and Broccoli Baby potatoes and Butternut Squash Onions and Bell Peppers Zucchini and Yellow Squash Asparagus and Leeks Spice Guide Table of Contents Spices by Cuisine Herbs and Spices 1 Mexican Coriander, Cumin, oregano, garlic powder, cinnamon, chili powder Herbs and Spices that Pair well with Proteins 2 Caribbean Chicken Fajita Bowl Recipe 3 All spice, nutmeg, garlic powder, cloves, cinnamon, ginger Shelf life of Herbs and Spices 4 French Nutmeg, thyme, garlic powder, rosemary, oregano, Herbs de Provence Spices by Cuisine 5 North African Tips to Roast Vegetables BP Cardamum, cinnamon, cumin, paprika, turmeric, ginger Cajun Cayenne, oregano, paprika, thyme, rosemary, bay leaves, Cajun seasoning Thai Basil, cumin, garlic, ginger, turmeric, cardamum, curry powder Mediterranean Oregano, rosemary, thyme, bay leaves, cardamum, cinnamon, cloves, coriander, basil, ginger Indian Bay leaves, cardamum, cayenne, cinnamon, coriander, cumin, ginger, nutmeg, paprika, turmeric, garam masala, curry powder Middle Eastern Bay leaves, cardamum, cinnamon, cloves, cumin, ginger, coriander, oregano, za’atar, garlic powder 5 Shelf Life of Herbs and Herbs and Spices Spices Herbs Herbs are plants that’s leaves can be used to add flavor to foods.
    [Show full text]
  • Thesis Final Edition
    CHAPTER 1: INTRODUCTION 1.1. Curcuma zedoaria Curcuma zedoaria is a starchy rhizomatous/tuberous from the Zingiberaceae family (table 1.1), commonly known as ginger family. “Ginger” is a general term for members or species of the ginger families. “Curcuma” is the genus name of the rhizomatous herb, of Zingiberaceae. The name was first given by the Linnaeus species Plantarum from the Arabic term meaning yellow colour, probably referring to the colour of the rhizomes (Govindarajan, 1980). Taxonomic classification of Curcuma zedoaria Kingdom Plantae Subkingdom Viridaeplantae Phylum Tracheophyta Division Magnoliophyta Class Liliopsida Super order Zingiberanae Order Zingiberales Family Zingiberales Genus Curcuma Curcuma zedoaria Species Common Name Zedoary Table 1.1 Taxonomic classification of Curcuma zedoaria 1 Chapter 1 1.1.1. Description and distribution Curcuma zedoaria is locally known as “kunyit putih” or “temu putih”. It is able to grow up to one and half meters or even more. The leaves are around eighty centimetres long and they usually have a purple-brown flush along the midrib on both surfaces of the leaf. The rhizomes are frequently confused with those of Curcuma aeruginosa because both are of a similar colour (yellow). However, they can be distinguished easily by conducting a cross section on the rhizomes of the mature plants of Curcuma aeruginosa which are slightly dark purplish. In comparison, the colour of the rhizomes of Curcuma zedoaria is pale yellow or white. The rhizomes of Curcuma aeruginosa are highly aromatic due to the high amount of 1, 8-cineol as 25.20% (Ibrahim et al. 2003). Curcuma zedoaria grows mainly in the East-Asian countries including China (called Er- chu in Chinese), Vietnam, India, Bangladesh, Indonesia, Malaysia (can be found at Kuala Selangor, Teluk Intan; Perak, Labis; Johor, and Pahang) and Japan (Islam et al.
    [Show full text]
  • Entomotoxicity of Xylopia Aethiopica and Aframomum Melegueta In
    Volume 8, Number 4, December .2015 ISSN 1995-6673 JJBS Pages 263 - 268 Jordan Journal of Biological Sciences EntomoToxicity of Xylopia aethiopica and Aframomum melegueta in Suppressing Oviposition and Adult Emergence of Callasobruchus maculatus (Fabricus) (Coleoptera: Chrysomelidae) Infesting Stored Cowpea Seeds Jacobs M. Adesina1,3,*, Adeolu R. Jose2, Yallapa Rajashaker3 and Lawrence A. 1 Afolabi 1Department of Crop, Soil and Pest Management Technology, Rufus Giwa Polytechnic, P. M. B. 1019, Owo, Ondo State. Nigeria; 2 Department of Science Laboratory Technology, Environmental Biology Unit, Rufus Giwa Polytechnic, P. M. B. 1019, Owo, Ondo State. Nigeria; 3 Insect Bioresource Laboratory, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal, 795001, Manipur, India. Received: June 13, 2015 Revised: July 3, 2015 Accepted: July 19, 2015 Abstract The cowpea beetle, Callosobruchus maculatus (Fabricus) (Coleoptera: Chrysomelidae), is a major pest of stored cowpea militating against food security in developing nations. The comparative study of Xylopia aethiopica and Aframomum melegueta powder in respect to their phytochemical and insecticidal properties against C. maculatus was carried out using a Complete Randomized Design (CRD) with five treatments (0, 1.0, 1.5, 2.0 and 2.5g/20g cowpea seeds corresponding to 0.0, 0.05, 0.075, 0.1 and 0.13% v/w) replicated thrice under ambient laboratory condition (28±2°C temperature and 75±5% relative humidity). The phytochemical screening showed the presence of flavonoids, saponins, tannins, cardiac glycoside in both plants, while alkaloids was present in A. melegueta and absent in X. aethiopica. The mortality of C. maculatus increased gradually with exposure time and dosage of the plant powders.
    [Show full text]
  • Chemical Composition and Product Quality Control of Turmeric
    Stephen F. Austin State University SFA ScholarWorks Faculty Publications Agriculture 2011 Chemical composition and product quality control of turmeric (Curcuma longa L.) Shiyou Li Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Wei Yuan Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Guangrui Deng Ping Wang Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Peiying Yang See next page for additional authors Follow this and additional works at: http://scholarworks.sfasu.edu/agriculture_facultypubs Part of the Natural Products Chemistry and Pharmacognosy Commons, and the Pharmaceutical Preparations Commons Tell us how this article helped you. Recommended Citation Li, Shiyou; Yuan, Wei; Deng, Guangrui; Wang, Ping; Yang, Peiying; and Aggarwal, Bharat, "Chemical composition and product quality control of turmeric (Curcuma longa L.)" (2011). Faculty Publications. Paper 1. http://scholarworks.sfasu.edu/agriculture_facultypubs/1 This Article is brought to you for free and open access by the Agriculture at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Authors Shiyou Li, Wei Yuan, Guangrui Deng, Ping Wang, Peiying Yang, and Bharat Aggarwal This article is available at SFA ScholarWorks: http://scholarworks.sfasu.edu/agriculture_facultypubs/1 28 Pharmaceutical Crops, 2011, 2, 28-54 Open Access Chemical Composition and Product Quality Control of Turmeric (Curcuma longa L.) ,1 1 1 1 2 3 Shiyou Li* , Wei Yuan , Guangrui Deng , Ping Wang , Peiying Yang and Bharat B. Aggarwal 1National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F.
    [Show full text]
  • Volatiles of Black Pepper Fruits (Piper Nigrum L.)
    molecules Article Volatiles of Black Pepper Fruits (Piper nigrum L.) Noura S. Dosoky 1 , Prabodh Satyal 1, Luccas M. Barata 2 , Joyce Kelly R. da Silva 2 and William N. Setzer 1,3,* 1 Aromatic Plant Research Center, Suite 100, Lehi, UT 84043, USA; [email protected] (N.S.D.); [email protected] (P.S.) 2 Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; [email protected] (L.M.B.); [email protected] (J.K.R.d.S.) 3 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA * Correspondence: [email protected]; Tel.: +1-256-824-6519 Academic Editor: Francesca Mancianti Received: 4 October 2019; Accepted: 5 November 2019; Published: 21 November 2019 Abstract: Black pepper (Piper nigrum) is historically one of the most important spices and herbal medicines, and is now cultivated in tropical regions worldwide. The essential oil of black pepper fruits has shown a myriad of biological activities and is a commercially important commodity. In this work, five black pepper essential oils from eastern coastal region of Madagascar and six black pepper essential oils from the Amazon region of Brazil were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The major components of the essential oils were α-pinene, sabinene, β-pinene, δ-3-carene, limonene, and β-caryophyllene. A comparison of the Madagascar and Brazilian essential oils with black pepper essential oils from various geographical regions reported in the literature was carried out. A hierarchical cluster analysis using the data obtained in this study and those reported in the literature revealed four clearly defined clusters based on the relative concentrations of the major components.
    [Show full text]
  • Method Nutrition.Pdf
    Cold Press Juice Pure Apple, Spinach, Kale, Cucumber, Celery, Ginger, Lemon Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 174 41 1 7 176 17 Vital Apple, Cucumber, Kale, Carrots, Beets, Ginger, Lemon Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 229 60 0 4 264 25 Revival Turmeric, Ginger, Filtered Water, Lemon Juice, Agave, Cayenne Extract Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 175 46 1 1 4 39 Charolade Lemon Juice, Coconut Water, Filtered Water, Ginger, Maple Syrup, Activated Charcoal, Cayenne Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 124 30 0 0 74 28 Drive Yams, Pears, Apples, Carrots, Cinnamon, Maca Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 572 140 1 8 161 40 Glow Cantelope, Rose Water Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 166 40 1 4 78 38 Seedless Watermelon Juice, Lime Juice, Mint Leaves Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 161 41 0 2 0 0 Acai Lemonade Acai, Filtered Water, Lemon Juice, Agave, Chia Seeds Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 246 54 5 2 11 45 Pitaya Lemonade Pitaya, Filtered Water, Lemon Juice, Agave, Chia Seeds Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 242 57 3 2 3 47 Turmerade Turmeric, Filtered Water, Lemon Juice, Agave, Chia Seeds Calories (g) Carbs (g) Fat (g) Protein (g) Sodium (mg) Sugar (g) 242 56 4 2 2 45 Green Matcha Almond Milk, Spirulina, Matcha Green Tea, Vanilla, Chlorophyll, Cinnamon, Maple
    [Show full text]
  • Inferring the Phylogeny and Divergence of Chinese Curcuma (Zingiberaceae) in the Hengduan Mountains of the Qinghai–Tibet Plateau by Reduced Representation Sequencing
    Article Inferring the Phylogeny and Divergence of Chinese Curcuma (Zingiberaceae) in the Hengduan Mountains of the Qinghai–Tibet Plateau by Reduced Representation Sequencing Heng Liang 1,†, Jiabin Deng 2,†, Gang Gao 3, Chunbang Ding 1, Li Zhang 4, Ke Xu 5, Hong Wang 6 and Ruiwu Yang 1,* 1 College of Life Science, Sichuan Agricultural University, Yaan 625014, China; [email protected] (H.L.); [email protected] (C.D.) 2 School of Geography and Resources, Guizhou Education University, Guiyang 550018, China; [email protected] 3 College of Life Sciences and Food Engineering, Yibin University, Yibin 644000, China; [email protected] 4 College of Science, Sichuan Agricultural University, Yaan 625014, China; [email protected] 5 Sichuan Horticultural Crop Technical Extension Station, Chengdu 610041, China; [email protected] 6 Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Clarifying the genetic relationship and divergence among Curcuma L. (Zingiberaceae) species around the world is intractable, especially among the species located in China. In this study, Citation: Liang, H.; Deng, J.; Gao, G.; Reduced Representation Sequencing (RRS), as one of the next generation sequences, has been applied Ding, C.; Zhang, L.; Xu, K.; Wang, H.; to infer large scale genotyping of major Chinese Curcuma species which present little differentiation Yang, R. Inferring the Phylogeny and of morphological characteristics and genetic traits. The 1295 high-quality SNPs (reduced-filtered Divergence of Chinese Curcuma SNPs) were chosen from 997,988 SNPs of which were detected from the cleaned 437,061 loci by (Zingiberaceae) in the Hengduan RRS to investigate the phylogeny and divergence among eight major Curcuma species locate in the Mountains of the Qinghai–Tibet Hengduan Mountains of the Qinghai–Tibet Plateau (QTP) in China.
    [Show full text]
  • Prioritization of Medicinal Plant for Their Development
    PRIORITIZATION OF MEDICINAL PLANT FOR THEIR DEVELOPMENT Criteria for prioritization The National Medicinal Plant Board initially prioritized 32 medicinal plants at national level for their conservation and development. Recently, the list has been revised and 82 species have been included in the list. For the overall development of the medicinal plant sector in the state, there is a need to prioritize various medicinal plant species. This prioritization has to be based on different criteria such as ,(i) criteria for economic development, (ii) Prioritization to address the primary health care of the local community, (iii) medicinal plants prioritized for home and institutional garden, and (iv) prioritization of medicinal plants with conservation value. In the following section we have tried to touch upon different priorities relevant to the state. Medicinal Plants prioritized for trade for high income. The most important criterion they needs to be considered while prioritizing the species for high income is that the plants should be suitable to grow in the prevalent agroclimatic conditions of the state. The species should have high trade value. It should have consistently high demand. The collection, harvest and post harvest technology should suit to the site conditions of Meghalaya.There should have easy access to planting material and it should be comparatively easy to grow. Preference will also be given to those species which are suitable to grow in multi-tier plantations. The selected species should not get easily deteriorated on storage and continued cultivation. They should have enhanced scope for value addition either through primary processing or through secondary processing. A list of top ten prioritized species for obtaining high income through cultivation and trade is given in Table 18.
    [Show full text]
  • Assessment of Turmeric (Curcuma Longa L.) Varieties for Yield and Curcumin Content
    Assessment of Turmeric (Curcuma longa L.) Varieties for Yield and Curcumin Content by Shanheng Shi A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirement for the Degree of Master of Science Auburn, Alabama August 8th, 2020 Keywords: turmeric, curcumin, yield, concentration Approved by Dennis A. Shannon, Chair, Professor Emeritus of Crop, Soil and Environmental Sciences, Auburn University Kathy Lawrence, Professor of Entomology and Plant Pathology, Auburn University Alvaro Sanz-Saez, Assistant Professor of Crop, Soil and Environmental Sciences, Auburn University Wheeler G. Foshee, Associate Professor of Horticulture, Auburn University Srinivasa Mentreddy, Professor of Biological and Environmental Sciences, Alabama A&M University Abstract Turmeric (Curcuma longa L.) is a rhizomatous herbaceous perennial plant belonging to the ginger family, Zingiberaceae. Currently, more than 80% of turmeric is produced by India and turmeric products are exported to numerous countries. Other Asian countries, including China, Vietnam, Pakistan and Japan also grow significant amounts of turmeric. With the development of medicinal related research, turmeric shows huge potential impacts on cure cancer, prevent Alzheimer’s disease and treat other diseases caused by inflammation. Turmeric is a new crop in Alabama. There is little available published information related to cultivation and planting varieties of turmeric in the United States, however turmeric has been successfully grown on the Auburn University Agronomy Farm since 2006. Researchers and farmers lack information on turmeric varieties that produce high yield and high content of curcumin, which determine the final benefits from this crop. Turmeric varieties were collected from various sources and tested in field trials during 2016 through 2018.
    [Show full text]
  • Physiological Responses of Ocimum Basilicum, Salvia Officinalis, And
    plants Article Physiological Responses of Ocimum basilicum, Salvia officinalis, and Mentha piperita to Leaf Wounding Konstantinos Vrakas, Efterpi Florou, Athanasios Koulopoulos and George Zervoudakis * Department of Agriculture, University of Patras, Terma Theodoropoulou, 27200 Amaliada, Greece; [email protected] (K.V.); evtefl[email protected] (E.F.); [email protected] (A.K.) * Correspondence: [email protected] Abstract: The investigation about the leaf wounding effect on plant physiological procedures and on leaf pigments content will contribute to the understanding of the plants’ responses against this abiotic stress. During the experiment, some physiological parameters such as photosynthesis, transpiration and stomatal conductance as well as the chlorophyll and anthocyanin leaf contents of Ocimum basilicum, Salvia officinalis, and Mentha piperita plants were measured for about 20–40 days. All the measurements were conducted on control and wounded plants while in the latter, they were conducted on both wounded and intact leaves. A wide range of responses was observed in the wounded leaves, that is: (a) immediate decrease of the gas exchange parameters and long-term decrease of almost all the measured variables from O. basilicum, (b) immediate but only short-term decrease of the gas exchange parameters and no effect on pigments from M. piperita, and (c) no effect on the gas exchange parameters and decrease of the pigments content from S. officinalis. Regarding the intact leaves, in general, they exhibited a similar profile with the control ones for all plants. These results imply that the plant response to wounding is a complex phenomenon depending on plant species and the severity of the injury. Citation: Vrakas, K.; Florou, E.; Koulopoulos, A.; Zervoudakis, G.
    [Show full text]