Road Lane Detection for Android

Total Page:16

File Type:pdf, Size:1020Kb

Road Lane Detection for Android MASARYK UNIVERSITY FACULTY}w¡¢£¤¥¦§¨ OF I !"#$%&'()+,-./012345<yA|NFORMATICS Road lane detection for Android BACHELOR THESIS Jakub Medvecký-Heretik Brno, spring 2014 Declaration I do hereby declare, that this paper is my original authorial work, which I have worked on by my own. All sources, references and liter- ature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Jakub Medvecký-Heretik Advisor: Mgr. Dušan Klinec Acknowledgement I would like to thank my supervisor, Mgr. Dušan Klinec for his con- tinual support and advice throughout this work. I would also like to thank my family and friends for their support. Abstract The aim of this bachelor thesis was to analyze the possibilities of im- age processing techniques on the Android mobile platform for the purposes of a computer vision application focusing on the problem of road lane detection. Utilizing the results of the analysis an appli- cation was created, which detects lines and circles in an image in real time using various approaches to segmentation and different imple- mentations of the Hough transform. The application makes use of the OpenCV library and the results achieved with its help are com- pared to the results achieved with my own implementation. Keywords computer vision, road lane detection, circle detection, image process- ing, segmentation, Android, OpenCV, Hough transform Contents 1 Introduction ............................ 3 2 Computer vision ......................... 5 2.1 Image processing ...................... 5 2.2 Techniques .......................... 6 2.3 Existing libraries ...................... 6 2.3.1 OpenCV . 6 2.3.2 VXL . 7 2.3.3 ImageJ . 7 2.3.4 libCVD . 7 2.4 Android ........................... 8 3 Region of interest ......................... 9 4 Segmentation ........................... 10 4.1 Thresholding ......................... 11 4.1.1 Global (static) thresholding . 11 4.1.2 Local (adaptive) thresholding . 12 Noise removal . 13 4.2 Canny edge detector .................... 14 4.3 Overview ........................... 16 5 Hough transform ......................... 17 5.1 Hough space ......................... 17 5.2 Straight line detection ................... 19 5.2.1 Algorithm . 20 5.3 Circle detection ....................... 21 5.3.1 Circles with known radii . 22 5.3.2 Circles with unknown radii . 23 5.4 Detecting non-analytical shapes . 24 6 Android application - Hough . 25 6.1 Target platform ....................... 25 6.2 Implementation ....................... 26 6.2.1 Segmentation . 26 6.2.2 Line detection . 26 Overview . 28 6.2.3 Vanishing point . 28 6.2.4 Circle detection . 29 7 Conclusion ............................. 31 1 7.1 Future development .................... 31 Bibliography ............................. 33 A FpsMeter logs ........................... 36 B Screenshot gallery ........................ 40 C Electronic attachments ...................... 42 2 1 Introduction Car manufacturers are constantly developing new innovative tech- nologies, which help drivers avoid collisions and improve safety on the road. With the arrival of cameras and various sensors the re- search in this area has greatly accelerated. Today’s modern smart- phones are compact, portable and equipped with powerful hardware sensors and high resolution cameras. If accompanied by proper soft- ware, these smartphones can be easily turned into driver assistants and help in driving safely. In order to evaluate possibly dangerous situations, such software must be able to detect and analyze the key elements in an image captured from a camera: the road, the road’s boundaries, traffic signs, potential obstacles, etc. This thesis describes the computer vision problem of road lane detection and the real-time processing of an image acquired from the smartphone’s camera on the Android mobile platform. The phases of this processing happen in the following order: 1. a color image is retrieved from the device’s camera 2. the color image is converted to grayscale 3. a binary image with visible road lanes is produced by segmen- tation of the grayscale image 4. lines are detected in the binary image using the Hough trans- form 5. the detected lines are overlaid in the color image 6. the resulting color image with detected lines is displayed on the screen of the device The second chapter of this work is an introduction to computer vision and the image processing. At the end of this chapter I compare the existing image processing libraries and I choose the most suitable one for my application. In the next chapter I identify the region of interest for the segmen- tation phase. The fourth chapter specifies the different approaches which can be used for extracting the region of interest from an image and deter- mines which technique is the most suitable one for my application. 3 1. INTRODUCTION The fifth chapter explains how the Hough transform for detecting different shapes in an image works. Different implementations of the Hough transform, their compar- ison and their integration to the resulting application are described in the sixth chapter. The last chapter provides a functionality summary of the result- ing application and outlines the possibilites of further improvement and extension of this application in the future. 4 2 Computer vision Computer vision (CV) is a field in computer science where comput- ers are used to collect visual information from real world, process, analyze and understand it, then deduce a profitable result from this information. CV is used to help humans perform their daily tasks and enhance performance in situations where CV is able to obtain far better results and can be more perceptive than human vision. Applications of CV range from tasks such as industrial machine vision systems to research into artificial intelligence and computers or robots that can comprehend the world around them [1]. One of many areas computer vision investigates is the road lane detection. 2.1 Image processing Digital image processing and analysis are the fields most closely re- lated to CV and are critically important in solving CV problems. CV’s main goal is to emulate human vision in computers and achieve results such as object recognition, feature detection, autonomous driving etc. In order to achieve that, the acquired input image must firstly be processed so that only information relevant for computa- tion of the required goal is present in the output image. This is called digital image processing (DIP). DIP is the application of transformations and filters to digital im- ages (most often 2D) which yields a processed output image. Most common uses of DIP are: reconstructing damaged or miss- ing information in an image, preparing or enhancing images for fur- ther use, registering, segmenting, identificating and measuring ob- jects in images, etc. For further introductory information into the field of Image pro- cessing I recommend a book Digital image processing [2]. 5 2. COMPUTER VISION 2.2 Techniques There is a lot of different techniques and methods in DIP which we can use to transform input images. The selection of the appropriate technique strongly depends on what result we want to achieve. Some of the DIP techniques can even be combined. If we experiment in the order in which we apply them to an image, we get different results. Specific techniques that we need to apply to an image if we want to get the output image ready for road lane detection are covered more in-depth in the next chapters. 2.3 Existing libraries There already are many existing libraries which implement most of the DIP techniques and are also highly optimized. In this chapter I mention just the most suitable ones for application on the Android mobile platform. 2.3.1 OpenCV Open Source Computer Vision Library1 (OpenCV) is an open source computer vision and machine learning software library. It was built to provide a common infrastructure for computer vision applications and to accelerate the widespread use of machine perception. The library has more than 2500 optimized algorithms. It is the most popular CV library having a user community of more than 47 thousand people and an estimated number of downloads exceeding 7 million. The library is used extensively in research groups and com- panies such as Google, Yahoo, Microsoft, Intel, IBM and others. OpenCV is written natively in C++, has interfaces in C, Python, Java and MATLAB as well and supports Windows, Linux, Android and Mac OS. The latest version is 2.4.8 which was released on 31th December 2013 [3]. 1. http://opencv.org 6 2. COMPUTER VISION 2.3.2 VXL VXL2 (the Vision-something-Libraries) is a collection of libraries de- signed for computer vision research and implementation. It is writ- ten in C++ and is designed to be portable over many platforms. The idea is to replace X with one of many letters, e.g., G (VGL) is a geometry library, N (VNL) is a numerics library, I (VIL) is an image processing library, etc. For a more detailed description of the libraries see the VXL book [4]. 2.3.3 ImageJ ImageJ3 is a public domain, Java-based image processing program developed at the National Institutes of Health. It was designed with an open architecture that provides extensibility via Java plugins and recordable macros. Custom acquisition, analysis and processing plugins can be de- veloped using ImageJ’s built-in editor and a Java compiler. User- written plugins make it possible to solve many image processing and analysis problems. ImageJ’s plugin architecture and built-in development environ- ment has made it a popular platform for teaching image processing. 2.3.4 libCVD libCVD4 is a very portable and high performance C++ library for computer vision, image, and video processing. The library is designed in a loosely-coupled manner, so that parts can be used easily in iso- lation if the whole library is not required. The emphasis is on providing simple and efficient image and video handling and high quality implementations of common low- level image processing function.
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • André Vilas Boas Da Costa Retscan: Efficient Fovea and Optic Disc Detection in Retinographies
    Universidade do Minho Escola de Engenharia André Vilas Boas da Costa RetScan: Efficient Fovea and Optic Disc Detection in Retinographies Outubro de 2011 Universidade do Minho Escola de Engenharia Departamento de Informática André Vilas Boas da Costa RetScan: Efficient Fovea and Optic Disc Detection in Retinographies Dissertação de Mestrado Mestrado de Informática Trabalho realizado sob orientação de Alberto José Proença Outubro de 2011 Abstract The Fovea and Optic Disc are relevant anatomical eye structures to diagnose var- ious diseases. Its automatic detection can provide both a cost reduction when analysing large populations and improve the effectiveness of ophthalmologists and optometrists. This dissertation describes a methodology to automatically detect these structures and analyses a, CPU only, MATLAB implementation of this methodology. RetScan is a port to a freeware environment of this methodology, its functionality and perfor- mance are evaluated and compared to the original. The results of both evaluations lead to a discussion on possible improvements in the metodology that influence the functionality and performance. The resulting improvements are implemented and integrated in RetScan. To further improve performance, a parallelization of RetScan to take advantage of a multi-core architecture or a CUDA-enabled accelerator was designed, coded and evaluated. This evaluation reveals that RetScan achieves its best throughput efficiency using a multi-core architecture only and analysing several images at once. For one image usage, using multi-core only is also the best solution, but with a small speed-up. The usage of CUDA-enabled accelerators is not recom- mended for this scope as the images are small and the cost of the data transfer to and from the accelerator has a severe impact on performance.
    [Show full text]
  • An Image-Based Data-Driven Analysis of Cellular Architecture in a Developing Tissue Jonas Hartmann1*, Mie Wong2, Elisa Gallo1,2,3, Darren Gilmour2*
    RESEARCH ARTICLE An image-based data-driven analysis of cellular architecture in a developing tissue Jonas Hartmann1*, Mie Wong2, Elisa Gallo1,2,3, Darren Gilmour2* 1Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; 2Institute of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland; 3Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany Abstract Quantitative microscopy is becoming increasingly crucial in efforts to disentangle the complexity of organogenesis, yet adoption of the potent new toolbox provided by modern data science has been slow, primarily because it is often not directly applicable to developmental imaging data. We tackle this issue with a newly developed algorithm that uses point cloud-based morphometry to unpack the rich information encoded in 3D image data into a straightforward numerical representation. This enabled us to employ data science tools, including machine learning, to analyze and integrate cell morphology, intracellular organization, gene expression and annotated contextual knowledge. We apply these techniques to construct and explore a quantitative atlas of cellular architecture for the zebrafish posterior lateral line primordium, an experimentally tractable model of complex self-organized organogenesis. In doing so, we are able to retrieve both previously established and novel biologically relevant patterns, demonstrating the potential of our data-driven approach. *For correspondence: Introduction jonas.m.hartmann@protonmail. Organogenesis proceeds as a complex multi-scale process. Cells utilize a wide range of molecular com (JH); [email protected] (DG) machinery in a coordinated fashion to give rise to tissue-scale collective behavior, which in turn feeds back on individual cells’ architectural and transcriptional dynamics (Chan et al., 2017).
    [Show full text]
  • Metadefender Core V4.10.1
    MetaDefender Core v4.10.1 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of Metadefender Core 14 1. Quick Start with Metadefender Core 15 1.1. Installation 15 Installing Metadefender Core on Ubuntu or Debian computers 15 Installing Metadefender Core on Red Hat Enterprise Linux or CentOS computers 15 Installing Metadefender Core on Windows computers 16 1.2. License Activation 16 1.3. Scan Files with Metadefender Core 17 2. Installing or Upgrading Metadefender Core 18 2.1. Recommended System Requirements 18 System Requirements For Server 18 Browser Requirements for the Metadefender Core Management Console 20 2.2. Installing Metadefender Core 20 Installation 20 Installation notes 21 2.2.1. Installing Metadefender Core using command line 21 2.2.2. Installing Metadefender Core using the Install Wizard 23 2.3. Upgrading MetaDefender Core 23 Upgrading from MetaDefender Core 3.x 23 Upgrading from MetaDefender Core 4.x 23 2.4. Metadefender Core Licensing 24 2.4.1. Activating Metadefender Core Licenses 24 2.4.2. Checking Your Metadefender Core License 30 2.5. Performance and Load Estimation 31 What to know before reading the results: Some factors that affect performance 31 How test results are calculated 32 Test Reports 32 Performance Report - Multi-Scanning On Linux 32 Performance Report - Multi-Scanning On Windows 36 2.6. Special installation options 41 Use RAMDISK for the tempdirectory 41 3.
    [Show full text]
  • A Study on the Core Area Image Processing: Current Research
    The International journal of analytical and experimental modal analysis ISSN NO: 0886-9367 A Study on the Core Area Image Processing: Current Research, Softwares and Applications K.Kanimozhi1, Dr.K.Thangadurai2 1Research Scholar, PG and Research Department of Computer Science, Government Arts College, Karur-639005 2Assistant professor and Head, PG and Research Department of Computer Science, Government Arts College, Karur-639005 [email protected] [email protected] Abstract —Among various core subjects such as, networking, data mining, data warehousing, cloud computing, artificial intelligence, image processing, place a vital role on new emerging ideas. Image processing is a technique to perform some operations with an image to get its in enhanced version or to retrieve some information from it. The image can be of signal dispension, video for frame or a photograph while the system treats that as a 2D- signal. This image processing area has its applications in various wide range such as business, engineering, transport systems, remote sensing, tracking applications, surveillance systems, bio medical fields, visual inspection systems etc.., Its purpose can be of: to create best version of images(image sharpening and restoring), retrieving of images, pattern measuring and recognizing images. Keywords — Types, Flow, Projects, MATLAB, Python. I. INTRODUCTION In computer concepts, digital image processing technically means that of using computer algorithms to process digital images. Initially in1960’s the image processing had been applied for those highly technical applications such as satellite imagery, medical imaging, character recognition, wire-photo conversion standards, video phone and photograph enhancement. Since the cost of processing those images was very high however with the equipment used too.
    [Show full text]
  • Campus João Pessoa - Novembro De 2016
    IFPB - CAMPUS JOÃO PESSOA - NOVEMBRO DE 2016 1 PRESIDENTE DA REPÚBLICA Michel Miguel Elias Temer Lulia MINISTRO DA EDUCAÇÃO José Mendonça Bezerra Filho SECRETÁRIO DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA Eline Neves Braga Nascimento REITOR DO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGICA DA PARAÍBA Os trabalhos publicados nestes Anais são de inteira responsabilidade dos Cícero Nicácio do Nascimento Lopes seus autores, não refletindo necessariamente a opinião da XI Semana de Ciência e Tecnologia. PRÓ-REITORA DE ENSINO Mary Roberta Meira Marinho PRÓ-REITORA DE PESQUISA, INOVAÇÃO E PÓS-GRADUAÇÃO Francilda Araújo Inácio Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca Nilo Peçanha – IFPB, campus João Pessoa PRÓ-REITOR DE DESENVOLVIMENTO INSTITUCIONAL E INTERIORIZAÇÃO Manoel Pereira de Macedo S471 Semana de Ciência e Tecnologia (11. : 2017 : João Pessoa, PB) PRÓ-REITORA DE EXTENSÃO Anais da XI Semana de Ciência e Tecnologia: ciência e Vânia Maria de Medeiros tecnologia alimentando a educação, João Pessoa: IFPB, 2017. 427 p. : il. PRÓ-REITOR DE ADMINISTRAÇÃO E PLANEJAMENTO Marcos Vicente dos Santos E-book (PDF) ISBN 978-85-63406-88-0 DIRETOR EXECUTIVO Evento realizado pelo Instituto Federal de Educação, Ciência Carlos Danilo Miranda Regis e Tecnologia da Paraíba (IFPB). 1. Educação. I. Título. Capa E DIAGRAMAÇÃO Breno Lopes CDU 37 2 DIRETOR GERAL - CAMPUS JOÃO PESSOA Neilor Cesar dos Santos DIRETOR DE ENSINO - CAMPUS JOÃO PESSOA Washington César de Almeida Costa DIRETORA ADMINISTRATIVA - CAMPUS JOÃO PESSOA Maria Cleidinédia
    [Show full text]
  • Development of Scientific Applications with the Mobile Robot
    Development of Scientific Applications with the Mobile Robot Programming Toolkit The MRPT reference book by Jose Luis Blanco Claraco Machine Perception and Intelligent Robotics Laboratory University of Malaga Version: October 25, 2010 ii Copyright c 2008-2010 Jose Luis Blanco Claraco and contributors. All rights reserved. Permission is granted to copy, distribute verbatim copies and print this docu- ment, but changing or publishing without a written permission from the authors is not allowed. Note: This book is uncompleted. The most up-to-date version will always be available online at: http://www.mrpt.org/The MRPT book Recent updates: • Oct 25, 2010: Written chapters §5 and §11. • Aug 10, 2009: Added description of resampling schemes (§23.3). • Apr 21, 2009: Updated to MRPT 0.7.0. Added sections on: fixed-size ma- trixes (§7.1.2), metric maps (§19), file formats (§4). iv Contents I First steps 1 1 Introduction 3 1.1 Whyanewlibrary? ....................... 3 1.2 WhatisMRPT? ......................... 3 1.3 Whatisthisbookabout? .................... 4 1.4 What is this book not about?.................. 4 1.5 Howmuchdoesitcost? ..................... 5 1.6 OSrestrictions .......................... 5 1.7 Roboticsoftwarearchitectures. 6 2 Compiling 7 2.1 Binarydistributions . 7 2.2 Prerequisites ........................... 8 2.2.1 GNU/Linux........................ 8 2.2.2 Windows ......................... 10 2.3 Compiling............................. 10 2.4 Buildingoptions ......................... 10 II User guide 11 3 Applications 13 3.1 pf-localization........................... 13 3.1.1 Description ........................ 13 3.1.2 Usage ........................... 13 3.1.3 Exampleconfigurationfile . 13 3.2 RawLogViewer .......................... 14 3.2.1 Description ........................ 14 3.2.2 Usage ........................... 14 v vi CONTENTS 3.3 rbpf-slam ............................
    [Show full text]
  • List of Computational Software
    Appendix A List of Computational Software A.1 DICOM Viewers The listed DICOM viewers have similar functionality Acculite www.accuimage.com MicroDicom www.microdicom.com DICOM Works www.dicomworks.com Sante DICOM Viewer www.santesoft.com Mango ric.uthscsa.edu/mango OsiriX (MAC) www.osirix-viewer.com AMIDE amide.sourceforge.net Irfanview www.irfanview.com XNView www.xnview.com A.2 Open Source Medical Imaging and Segmentation CVIPTools A UNIX/Win32-based package and contains a collection of C and C++computer imaging tools that includes edge/line detec- tion, segmentation, and many other functions (www.ee.siue.edu/CVIPtools) Fiji/ImageJ A Java-based image processing package that uses additional plugins for a variety of functionalities including segmentation algorithms (pacific.mpi-cbg.de/wiki/index.php/Fiji) GemIdent An interactive program that is designed for colour segmentation in images with few colours, and the objects of interest look alike with small variation (www.gemident.com) ITK-SNAP An interactive software application that allows users to nav- igate three-dimensional medical images, manually delineate anatomical regions of interest, and perform automatic image segmentation (www.itksnap.org) J. Tu et al., Computational Fluid and Particle Dynamics in the Human Respiratory System, 339 Biological and Medical Physics, Biomedical Engineering DOI 10.1007/978-94-007-4488-2, © Springer Science+Business Media Dordrecht 2013 340 Appendix A List of Computational Software Megawave 2 Made up of C library modules, that contains original algorithms written by researchers and is run using Unix/Linux (megawave.cmla.ens-cachan.fr) MITK and 3Dmed Made up of C++ library for integrated medical image process- ing, segmentation, and registration algorithms (www.mitk.net/download.htm) Slicer Has a GUI that allows manual and automatic segmentation, reg- istration, and three-dimensional visualization.
    [Show full text]
  • The Vision Workbook: a User’S Guide to the NASA Vision Workbench V1.0
    The Vision Workbook: A User's Guide to the NASA Vision Workbench v1.0 Matthew D. Hancher Michael J. Broxton Laurence J. Edwards Intelligent Systems Division NASA Ames Research Center DRAFT January 15, 2008 2 Acknowledgements Many people have contributed to making this first Vision Workbench open-source release a reality. Thanks to Terry Fong, Kalmanje KrishnaKumar, and Dave Korsmeyer in the Intelligent Systems Division at NASA Ames for supporting us in this research and allowing us to pursue our crazy dreams. Thanks to Larry Barone, Martha Del Alto, Robin Orans, Diana Cox, Kim Chrestenson, and everyone else who helped us navigate the NASA open source release process. Thanks to Randy Sargent, Matt Deans, Liam Pedersen, and the rest of the Intelligent Robotics Group at Ames for lending their incredible expertise and being our guinea pigs time and again. Thanks to our interns| Kerri Cahoy, Ian Saxton, Patrick Mihelich, Joey Gannon, and Aaron Rolett|for bringing many exciting features of the Vision Workbench into being. Finally, thanks to all our users, past, present and future, for making software development enjoyable and worthwhile. Portions of this work were funded by the Mars Critical Data Products Initiative and the Explo- ration Technology Development Program. 3 4 Contents 1 Introduction 9 2 Getting Started 13 2.1 Obtaining the Vision Workbench . 13 2.2 Building the Vision Workbench . 14 2.3 A Trivial Example Program . 15 2.4 Configuring the Build System . 16 3 Working with Images 21 3.1 The ImageView Class . 21 3.1.1 The Basics . 21 3.1.2 The Standard Pixel Types .
    [Show full text]
  • Metadefender Core V4.14.2
    MetaDefender Core v4.14.2 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 11 Key Features of Metadefender Core 12 1. Quick Start with MetaDefender Core 13 1.1. Installation 13 Operating system invariant initial steps 13 Basic setup 14 1.1.1. Configuration wizard 14 1.2. License Activation 19 1.3. Process Files with MetaDefender Core 19 2. Installing or Upgrading Metadefender Core 20 2.1. Recommended System Requirements 20 System Requirements For Server 20 Browser Requirements for the Metadefender Core Management Console 22 2.2. Installing Metadefender 22 Installation 22 Installation notes 23 2.2.1. Installing Metadefender Core using command line 23 2.2.2. Installing Metadefender Core using the Install Wizard 25 2.3. Upgrading MetaDefender Core 25 Upgrading from MetaDefender Core 3.x 25 Upgrading from MetaDefender Core 4.x 26 2.4. Metadefender Core Licensing 26 2.4.1. Activating Metadefender Licenses 26 2.4.2. Checking Your Metadefender Core License 33 2.5. Performance and Load Estimation 34 What to know before reading the results: Some factors that affect performance 34 How test results are calculated 35 Test Reports 35 Performance Report - Multi-Scanning On Linux 35 Performance Report - Multi-Scanning On Windows 39 2.6. Special installation options 42 Use RAMDISK for the tempdirectory 42 3. Configuring MetaDefender Core 46 3.1. Management Console 46 3.2.
    [Show full text]
  • Şule Beste KAPÇI Danışman Dr. Öğr. Üyesi Turgay AYDOĞAN YÜKSEK
    T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MEDİKAL GÖRÜNTÜLER ÜZERİNDE ANALİZ VE SINIFLANDIRMA YAPMAK İÇİN BİR UYGULAMA TASARIMI Şule Beste KAPÇI Danışman Dr. Öğr. Üyesi Turgay AYDOĞAN YÜKSEK LİSANS TEZİ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI ISPARTA- 2020 © 2020 [Şule Beste KAPÇI] TEZ ONAYI Şule Beste KAPÇI tarafından hazırlanan "Medikal Görüntüler Üzerinde Analiz ve Sınıflandırma Yapmak için Bir Uygulama Tasarımı" adlı tez çalışması aşağıdaki jüri üyeleri önünde Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Anabilim Dalı’nda YÜKSEK LİSANS TEZİ olarak başarı ile savunulmuştur. Danışman Dr.Öğr.Üyesi Turgay AYDOĞAN .............................. Süleyman Demirel Üniversitesi Jüri Üyesi Prof.Dr.Ecir Uğur KÜÇÜKSİLLE .............................. Süleyman Demirel Üniversitesi Jüri Üyesi Dr.Öğr.Üyesi Tuna GÖKSU .............................. Isparta Uygulamalı Bilimler Üniversitesi Enstitü Müdürü Doç. Dr. Şule Sultan UĞUR .............................. İÇİNDEKİLER Sayfa İÇİNDEKİLER ......................................................................................................................... i ÖZET ......................................................................................................................................... iii ABSTRACT .............................................................................................................................. iv TEŞEKKÜR .............................................................................................................................
    [Show full text]
  • ITK on the Ios Release 1.00
    ITK on the iOS Release 1.00 Boris Shabash1, Ghassan Hamarneh1, Zhi Feng Huang1, and Luis Ibanez2 August 31, 2010 1School of Computing Science, Simon Fraser University, BC, Canada 2The Insight Group Abstract ITK is one of the most powerful image segmentation and registration libraries available as an open source toolkit. Motivated by the recent popularization of the iPhone, iPod touch, and iPad, in this work, we describe the set of required steps for integrating the ITK framework into Apple’s iOS mobile operating system. Our focus in this paper is on the process of importing the C++ based ITK to the Objective-C based iOS, and creating a simple application that demonstrates the ITK libraries are integrated. This paper brings to the reader a user-manual on how to integrate the ITK libraries into iOS applications and code. We present here the series of steps we performed in order to import the ITK libraries as well as report the results of importing them under different versions of the iOS and under different architectures (the Simulator and Device architecture). Latest version available at the Insight Journal[ http://hdl.handle.net/10380/3209] Distributed under Creative Commons Attribution License Contents 1 Introduction 1 2 Method 2 2.1 Compiling ITK on iOS.....................................3 2.2 HelloWorld ITK application on iPhone.............................5 3 Conclusions and Future Work8 1 Introduction Medical image analysis is an important field within health research. The processing and analysis of medical images to extract certain information from the images has been a motivation for the continuous development 2 of new algorithms and more powerful software and hardware.
    [Show full text]