Concepts and Approaches for Mars Exploration 6125.pdf DETECTION AND CHARACTERIZATION OF MARTIAN VOLATILE-RICH RESERVOIRS: THE NETLANDER APPROACH. F. Costard1, J.J. Berthelier2, and the GPR team, G. Musmann3, M. Menvielle2, and the MAGNET team, P. Lognonné4, D. Giardini5, B. Banerdt6, and the NL-SEIS team, A-M Harri7, F. Forget8, and the ATMIS team. 1UMR 8616, CNRS, Orsay, France,
[email protected], 2C.E.T.P., UMR 8639, Saint-Maur, France, 3TUBS-IMG, Braunschweig, Germany, 4IPGP, Saint Maur, France, 5ETH, Zurich, Switzerland, 6JPL, Pasadena, USA, 7FMI, Helsinki, Finland, 8 LMD, Paris 6, Jussieu, France, Introduction: Geological and theoretical modeling do them has its own advantages and limitations and the choice indicate that, most probably, a significant part of the vola- is mostly guided by the range of depths to be explored, the tiles present in the past is presently stocked within the needed spatial resolution and the horizontal extent to be Martian subsurface as ground ice, and as clay minerals covered. We therefore propose to fly on each of the 4 (water constitution). The detection of liquid water is of landers of the NETLANDER mission a set of geophysical in- prime interest and should have deep implications in the struments to explore the first few kilometers of the subsur- understanding of the Martian hydrological cycle and also in face with, as major objectives, the detection of possible exobiology. In the frame of the 2005 joint CNES-NASA water rich layers and the characterization of the main fea- mission to Mars, a set of 4 NETLANDERs developed by an tures of the geological structures of the superficial planetary European consortium is expected to be launched between crust.