PSS Mars Oct 08

Total Page:16

File Type:pdf, Size:1020Kb

PSS Mars Oct 08 Planetary Sciences Subcommittee October 2-3, 2008 Doug McCuistion Director, Mars Exploration Program 2 Memorable Scenes Phoenix Meteorology is Changing from Phoenix Spacecraft thruster expose water-ice in permafrost SSI camera images water- ice particles clouds and Top: Robotic Arm delivers their movement soil+ice dug from trench to the Thermal Evolved Gas Analyzer (TEGA) Bottom: TEGA CELL #0 after receiving ice-bearing sample Phoenix images early morning water- Dust Devil frost. Lasts longer every morning as winter approaches Robotic Arm digs trench and discovers water ice. SSI camera documents H2O SSI camera images multiple sublimation. dust devils TEGA’s mass spectrometer confirms presence of water- ice on Mars. 3 4 Phoenix Meteorology is Changing A White Christmas on Mars? Atmospheric pressure and temperature data have been recorded at the Phoenix landing site every Virga, in the 2 seconds since landing. from of water- snow, has been detected in the atmosphere, getting nearer Dust cloud to the ground approaching daily. Morning wind is up to about 9 mph; enough to rattle the solar arrays but not to damage the spacecraft. 5 6 The End is in Sight Available power (measurement based) WCL Cells Utilized power (modeled) Command Moratorium Command a Conjunction MECA’s Wet Chemistry Lab (WCL) MECA’s Optical Microscope: highest resolution (4 microns/pixel) b discovers perchlorates in soil! optical images delivered from any planetary surface other than earth c AFM Tip Perchlorates: Powerful, but d stable oxidant. Very hydroscopic. Survival heater power (measurement based) Q: What do perchlorates mean for the potential of life on Mars, past and present? Q: Could perchlorates - if globally present - Attempted delivery of organic blank to TEGA help control atmospheric H2O content? Survival Heater Curves: a = All heaters on; b, c, d = heaters progressively disabled 8 7 8 Priorities Through End of Mission NASA Selects Scout-13—MAVEN • Only a few weeks of power remaining to execute anything other than • Fulfillment of a high-priority National Academy of Science Objective—Aeronomy meteorology, occasional image, communications and heaters • Importance to Mars Exploration Program: – Addresses key science objectives for upper • Senior Review and NASA priorities atmosphere, solar wind interaction, and escape to – Collect D/H ratio of the ice space, as defined by MEPAG (2006) and the NRC (2003) – Daily meteorological observations and SSI imaging to document winter’s approach – Provide telecommunications infrastructure “refreshment” • Near-Term project priorities – Fill and analyze all TEGA cells • Icy soil highest priority - D/H ratio • Organic Free Blank – Complete Optical Microscope substrates/AFM activities – Excavate surface to reveal more of underlying ice table – Coordinated science with MRO – Nighttime science • The Mission Team: – Thermal & Electrical Conductivity Probe in soil – CU/LASP PI: Bruce Jakosky • GSFC Project Management • An attempt is being made to turn on MARDI’s microphone • Lockheed Martin spacecraft and Ops 9 • Instruments from UCB, LASP, GSFC, and CESR/France 10 Mars Exploration Program Status TECH COST SCHD PROG COMMENTS Nominal spacecraft/instrument extended Odyssey G G G G mission operations. Started drift to 3PM orbit for science enhancement Rovers both in good health; Spirit survived the Mars Exploration G G G G winter, Opportunity is roving the plains outside Rovers Victoria Crater ESA/Mars Express G G G G Nominal extended operations. Mars Science Laboratory Mars Operations nominal; prime mission complete in Reconnaissance G G G G Nov '08 Orbiter Landed in the Martian Arctic May 25! Extended Phoenix G G G G mission begun 10/1/08. Cost growth solutions being implemented for Mars Science G R Y-R R FY08/09; still capable of 2009 LRD; critical Laboratory meetings in October with NASA/A On-time selection in September '08; MAVEN Scout-13 G G G G selected Progress according to plan Area of concern; Problem can be resolved within Significant problem; Solution not identified 11 12 All commitments can be met reporting organization; Needs attention Needs action/help beyond reporting org. Headlines Family Tree • Major flight structural elements have been delivered to the assembly floor—Cruise Stage, Descent Stage, and Rover Chassis. – Flight cabling and avionics being installed and tested • Preparing to start launch/cruise environmental testing in November. • Instrument development is proceeding well. – Flight Mars Descent Imager (MARDI) has been delivered – Mars Hand Lens Imager (MAHLI) and Dynamic Albedo of Neutrons (DAN) instruments will deliver in October. – The rest of the instruments, particularly the Chemistry Camera (ChemCam), Sample Analysis at Mars (SAM), and Chemistry and Mineralogy (CheMin), are due in November and December. • The third community-based landing site workshop was completed in mid-September – 7 landing sites evaluated; 3 sites rated high for science value – All 7 sites are acceptable at this time for engineering/landing criteria. • Cache--status is TBD – Decision is moot in 1-2 weeks • Still on track for 2009 launch – SRB review of ATLO and V&V plans Sept 25-26; “reasonable” chance of meeting 2009 LRD with acceptable risk – NASA reviews in October will determine go-forward strategy 13 14 Flight Aeroshell Flight Heatshield with First Row of Tiles 15 16 Flight SkyCrane (Decent Stage) Flight Rover Chassis and MMRTG Propellant Tanks (x3) Pressurant Tank (x2) PCA MLE Service Valves TDS Truss (aka Proboscis) 17 18 Flight Rover Internal Assembly Payload Hardware CCMU FM : Crédit CNES - INSU - OMP - CESR APXS RAD X-band System SAM Mass Model Power Analog ChemCam Mast Unit Power Modules Assembly Compute Motor Control Instrument CheMin Element Mass Model Mass Model CheMinSample Wheel Batteries CE Mass Model MAHLI Instrument Mass Model HRS Pump UHF System SAM Chassis Assembly SAM SuperQMS 19 20 Flight System Delivery Status Area Component Rover Delivery Status ArAeraea CCoommppoonneennt t Launch/Cruiise Deliverry Sttattuss ROVER RCORVUERISE STAGE AVS RCE-A Rework req'd AAVVSS RCCPEA-AM-A Deelliivveerreedd AVS RCE-B 01/01/09 AAVVSS RCPPAAMM-A-B Deelliivveerreedd AVS RPAM-A Rework req'd AAVVSS RCPPAAM-B 1D0e/0liv4e orekd starting tvac AVS CSA 09/29 ok completing rework at AVS RPAM-B Rework req'd AVS RPA Delivered GNC DSE-A Delivered AVS RMCA 01/10/09 AVS RBAU - ATLO Delivered GNC DSH-A (x4) Delivered AVS RPA Rework req'd GGNNCC RDIMSUE-AB (LN200) Deelliivveerreedd AVS RPFA 10/31/09 GGNNCC RDIMSUH--B ((LxN4)200) Deelliivveerreedd AVS RBAU - ATLO Delivered Descent Stage MEGCNHC RSVSRA Chassis Deelliivveerreedd GNC NavCams-A [pair] Delivered MEPCroHp RCVSR SHtreuactt Eurxec wha/Pnrgoepr Deelliivveerreedd GNC NavCams-B [pair] Delivered Structure METCHHM PCyrIoP CA i(rCcuruitsise IPA) 0D9e/3liv0e orekd final weld/x-ray/retest GNC HazCams, front-A [pair] Delivered Rover Chassis PTLHDM MTAhRerDmI a&l DCiErcAuits Deelliivveerreedd GNC HazCams, rear-A [pair] Delivered TTEELL RCVSR AXn-bteannndas Deelliivveerreedd GNC HazCams, rear-B [pair] Delivered AEROSHELL TEL Rover Antennas (non-HGA) Delivered GNC RIMU-A (LN200) Delivered Mech Backshell 09/27 ok TEL UHF-A (Electra) Delivered (EM Qual) GNC RIMU-B (LN200) Delivered Mech Heatshield 10/14 ok THM RIPA (Rover IPA) Delivered MEDLI MEDLI 10/07 ok MECH RVR Chassis Delivered THM Thermal Circuits Delivered MECH RVR Heat Exchanger Delivered DESCENT STAGE MECH Mobility 12/15/08 AVS DPAM-A Delivered MECH Remote Sensing Mast 12/14/08 AVS DPAM-B Delivered MECH Cache Delivered AVS DPA Delivered MECH Robotic Arm Assembly 02/04/09 AVS DMCA 10/09 with abbreviated env testing MECH PADS Drill 02/21/09 AVS PWTB Delivered MECH CHIMRA 02/28/09 AVS PYTB Delivered MECH Inlet Cover Assemblies GNC DIMU-A Delivered MECH Pyro Circuits Delivered GNC TDS Delivered (Flight Sare Digital) PLD Other MECH BUD 09/26 ok prepping for delivery PLD MARDI & DEA Delivered MECH Pyro Circuits 10/01 ok TEL RVR X-band Delivered Prop DS Structure w/Prop Delivered TEL High Gain Antenna System 02/15/09 TEL DS X-Band Delivered TEL Rover Antennas (non-HGA) Delivered TEL UHF-A (Electra) 11/01/08 TEL DS Antennas (non-PUHF) Delivered UHF-B (Electra) 12/15/08 TEL PUHF / PCC 10/01 ok prepping for delivery TEL THM RIPA (Rover IPA) THM Thermal Circuits Delivered THM Rover Shunt Radiator (RSR) Delivered Cruise Stage THM Thermal Circuits Delivered 21 22 MSL Landing Sites MSL Landing Sites – Final 7 MSL LANDING SITES NAME LOCATION ELEVATION TARGET Noachian 3 Nili Fossae Trough 21.00ºN, 74.45ºE -608 m 1 Phyllosilicates Fluvial Layers, Holden Crater Fan 26.37ºS, 325.10ºE -1940 m Phyllosilicates 4 6 7 Mawrth Vallis 24.65ºN, 340.09ºE -3093 m 5 Site 1 24.01N, 341.03ºE -2246 m Noachian Layered 2 Site 2 23.19ºN, 342.41ºE -2187 m Phyllosilicates Site 3 24.86ºN, 339.42ºE -3359 m Site 4 Eberswalde Crater 23.86°S, 326.73°E -1450 m Delta Phyllosilicates, Miyamoto 3.34ºS, 352.26ºE -1807 m Sulfates? Sulfates, 1 Nili Fossae Trough S Meridiani 3.05ºS, 354.61ºE -1589 m Phyllosilicates 2 Holden Crater Layered Sulfates, 3 Mawrth Vallis Gale Crater 4.49ºS, 137.42ºE -4451 m Phyllosilicates, 4 Miyamoto Crater 5 Eberswalde Crater 6 South Meridiani v. 7; 07/08/08 7 Gale Crater http://marsoweb.nas.nasa.gov/landingsites/index.html 23 http://marsoweb.nas.nasa.gov/landingsites/index.html24 MSL Cost/Schedule Status MSL Cost/Schedule Status (con’t) • Cost Status – Expenditure to-date is $1.5B (incl. technology, MMRTG, and all Phases • MSL additional funding needs will impact Planetary and SMD to-date. – Mars Program has literally exhausted all sources of funds – MSL budget: $223M (FY09); $64M (FY10); $55M (FY11) – MSL descopes are no longer viable, short of outright cancellation • Important mission to the Agency and SMD; cancellation probably not a viable option • Overguide status – Additional funding will come from a JPL mission (slippage or – Exceeded 15% overguide threshold of NASA Authorization Act, in FY08 cancellation) depending on the severity of the final cost requirements – Approximately $200M total requested by JPL to-date (not including • Payback from Mars Next Decade funds—2016 mission, technology, pending request) etc.
Recommended publications
  • The Rock Abrasion Record at Gale Crater: Mars Science Laboratory
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE The rock abrasion record at Gale Crater: Mars 10.1002/2013JE004579 Science Laboratory results from Bradbury Special Section: Landing to Rocknest Results from the first 360 Sols of the Mars Science Laboratory N. T. Bridges1, F. J. Calef2, B. Hallet3, K. E. Herkenhoff4, N. L. Lanza5, S. Le Mouélic6, C. E. Newman7, Mission: Bradbury Landing D. L. Blaney2,M.A.dePablo8,G.A.Kocurek9, Y. Langevin10,K.W.Lewis11, N. Mangold6, through Yellowknife Bay S. Maurice12, P.-Y. Meslin12,P.Pinet12,N.O.Renno13,M.S.Rice14, M. E. Richardson7,V.Sautter15, R. S. Sletten3,R.C.Wiens6, and R. A. Yingst16 Key Points: • Ventifacts in Gale Crater 1Applied Physics Laboratory, Laurel, Maryland, USA, 2Jet Propulsion Laboratory, Pasadena, California, USA, 3Department • Maybeformedbypaleowind of Earth and Space Sciences, College of the Environments, University of Washington, Seattle, Washington, USA, 4U.S. • Can see abrasion textures at range 5 6 of scales Geological Survey, Flagstaff, Arizona, USA, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, LPGNantes, UMR 6112, CNRS/Université de Nantes, Nantes, France, 7Ashima Research, Pasadena, California, USA, 8Universidad de Alcala, Madrid, Spain, 9Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Supporting Information: Austin, Texas, USA, 10Institute d’Astrophysique Spatiale, Université Paris-Sud, Orsay, France, 11Department of • Figure S1 12 fi • Figure S2 Geosciences, Princeton University, Princeton, New Jersey, USA, Centre National de la Recherche Scienti que, Institut 13 • Table S1 de Recherche en Astrophysique et Planétologie, CNRS-Université Toulouse, Toulouse, France, Department of Atmospheric, Oceanic, and Space Science; College of Engineering, University of Michigan, Ann Arbor, Michigan, USA, Correspondence to: 14Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 15Lab N.
    [Show full text]
  • Lessons from Insight for Future Planetary Seismology
    Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is a publisher's version published in: https://oatao.univ-toulouse.fr/26931 Official URL : https://doi.org/10.1029/2019JE006353 To cite this version : Panning, M. P. and Pike, W. T. and Lognonné, Philippe,... [et al.]On͈Deck Seismology: Lessons from InSight for Future Planetary Seismology. (2020) Journal of Geophysical Research: Planets, 125 (4). ISSN 2169-9097 Any correspondence concerning this service should be sent to the repository administrator: [email protected] RESEARCH ARTICLE On-Deck Seismology: Lessons from InSight for Future 10.1029/2019JE006353 Planetary Seismology Special Section: 1 2 3 1 4 5 InSightatMars M. P. Panning , W. T. Pike , P. Lognonné , W. B. Banerdt , N. Murdoch , D. Banfield , C. Charalambous2 , S. Kedar1, R. D. Lorenz6 , A. G. Marusiak7 , J. B. McClean2,8 ,C. 1 9 2 10 Key Points: Nunn , S. C. Stähler ,A.E.Stott , and T. Warren • Based on InSight recordings, 1 2 atmospheric noise is amplified for Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, Department of Electrical and seismic sensors on deck, consistent Electronic Engineering, Imperial College London, London, UK, 3Planetology and Space Science Team, Université de with Viking observations Paris, Institut de Physique du Globe, CNRS, Paris, France, 4Department of Electronics, Optronics and Signal Processing, •
    [Show full text]
  • Chemical Variations in Yellowknife Bay Formation Sedimentary Rocks
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Chemical variations in Yellowknife Bay formation 10.1002/2014JE004681 sedimentary rocks analyzed by ChemCam Special Section: on board the Curiosity rover on Mars Results from the first 360 Sols of the Mars Science Laboratory N. Mangold1, O. Forni2, G. Dromart3, K. Stack4, R. C. Wiens5, O. Gasnault2, D. Y. Sumner6, M. Nachon1, Mission: Bradbury Landing P.-Y. Meslin2, R. B. Anderson7, B. Barraclough4, J. F. Bell III8, G. Berger2, D. L. Blaney9, J. C. Bridges10, through Yellowknife Bay F. Calef9, B. Clark11, S. M. Clegg5, A. Cousin5, L. Edgar8, K. Edgett12, B. Ehlmann4, C. Fabre13, M. Fisk14, J. Grotzinger4, S. Gupta15, K. E. Herkenhoff7, J. Hurowitz16, J. R. Johnson17, L. C. Kah18, N. Lanza19, Key Points: 2 1 20 21 12 16 2 • J. Lasue , S. Le Mouélic , R. Léveillé , E. Lewin , M. Malin , S. McLennan , S. Maurice , Fluvial sandstones analyzed by 22 22 23 19 19 24 25 ChemCam display subtle chemical N. Melikechi , A. Mezzacappa , R. Milliken , H. Newsom , A. Ollila , S. K. Rowland , V. Sautter , variations M. Schmidt26, S. Schröder2,C.d’Uston2, D. Vaniman27, and R. Williams27 • Combined analysis of chemistry and texture highlights the role of 1Laboratoire de Planétologie et Géodynamique de Nantes, CNRS, Université de Nantes, Nantes, France, 2Institut de Recherche diagenesis en Astrophysique et Planétologie, CNRS/Université de Toulouse, UPS-OMP, Toulouse, France, 3Laboratoire de Géologie de • Distinct chemistry in upper layers 4 5 suggests distinct setting and/or Lyon, Université de Lyon, Lyon, France, California Institute of Technology, Pasadena, California, USA, Los Alamos National 6 source Laboratory, Los Alamos, New Mexico, USA, Earth and Planetary Sciences, University of California, Davis, California, USA, 7Astrogeology Science Center, U.S.
    [Show full text]
  • EDL – Lessons Learned and Recommendations
    ."#!(*"# 0 1(%"##" !)"#!(*"#* 0 1"!#"("#"#(-$" ."!##("""*#!#$*#( "" !#!#0 1%"#"! /!##"*!###"#" #"#!$#!##!("""-"!"##&!%%!%&# $!!# %"##"*!%#'##(#!"##"#!$$# /25-!&""$!)# %"##!""*&""#!$#$! !$# $##"##%#(# ! "#"-! *#"!,021 ""# !"$!+031 !" )!%+041 #!( !"!# #$!"+051 # #$! !%#-" $##"!#""#$#$! %"##"#!#(- IPPW Enabled International Collaborations in EDL – Lessons Learned and Recommendations: Ethiraj Venkatapathy1, Chief Technologist, Entry Systems and Technology Division, NASA ARC, 2 Ali Gülhan , Department Head, Supersonic and Hypersonic Technologies Department, DLR, Cologne, and Michelle Munk3, Principal Technologist, EDL, Space Technology Mission Directorate, NASA. 1 NASA Ames Research Center, Moffett Field, CA [email protected]. 2 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), German Aerospace Center, [email protected] 3 NASA Langley Research Center, Hampron, VA. [email protected] Abstract of the Proposed Talk: One of the goals of IPPW has been to bring about international collaboration. Establishing collaboration, especially in the area of EDL, can present numerous frustrating challenges. IPPW presents opportunities to present advances in various technology areas. It allows for opportunity for general discussion. Evaluating collaboration potential requires open dialogue as to the needs of the parties and what critical capabilities each party possesses. Understanding opportunities for collaboration as well as the rules and regulations that govern collaboration are essential. The authors of this proposed talk have explored and established collaboration in multiple areas of interest to IPPW community. The authors will present examples that illustrate the motivations for the partnership, our common goals, and the unique capabilities of each party. The first example involves earth entry of a large asteroid and break-up. NASA Ames is leading an effort for the agency to assess and estimate the threat posed by large asteroids under the Asteroid Threat Assessment Project (ATAP).
    [Show full text]
  • Mars Science Laboratory: Curiosity Rover Curiosity’S Mission: Was Mars Ever Habitable? Acquires Rock, Soil, and Air Samples for Onboard Analysis
    National Aeronautics and Space Administration Mars Science Laboratory: Curiosity Rover www.nasa.gov Curiosity’s Mission: Was Mars Ever Habitable? acquires rock, soil, and air samples for onboard analysis. Quick Facts Curiosity is about the size of a small car and about as Part of NASA’s Mars Science Laboratory mission, Launch — Nov. 26, 2011 from Cape Canaveral, tall as a basketball player. Its large size allows the rover Curiosity is the largest and most capable rover ever Florida, on an Atlas V-541 to carry an advanced kit of 10 science instruments. sent to Mars. Curiosity’s mission is to answer the Arrival — Aug. 6, 2012 (UTC) Among Curiosity’s tools are 17 cameras, a laser to question: did Mars ever have the right environmental Prime Mission — One Mars year, or about 687 Earth zap rocks, and a drill to collect rock samples. These all conditions to support small life forms called microbes? days (~98 weeks) help in the hunt for special rocks that formed in water Taking the next steps to understand Mars as a possible and/or have signs of organics. The rover also has Main Objectives place for life, Curiosity builds on an earlier “follow the three communications antennas. • Search for organics and determine if this area of Mars was water” strategy that guided Mars missions in NASA’s ever habitable for microbial life Mars Exploration Program. Besides looking for signs of • Characterize the chemical and mineral composition of Ultra-High-Frequency wet climate conditions and for rocks and minerals that ChemCam Antenna rocks and soil formed in water, Curiosity also seeks signs of carbon- Mastcam MMRTG • Study the role of water and changes in the Martian climate over time based molecules called organics.
    [Show full text]
  • The Pancam Instrument for the Exomars Rover
    ASTROBIOLOGY ExoMars Rover Mission Volume 17, Numbers 6 and 7, 2017 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2016.1548 The PanCam Instrument for the ExoMars Rover A.J. Coates,1,2 R. Jaumann,3 A.D. Griffiths,1,2 C.E. Leff,1,2 N. Schmitz,3 J.-L. Josset,4 G. Paar,5 M. Gunn,6 E. Hauber,3 C.R. Cousins,7 R.E. Cross,6 P. Grindrod,2,8 J.C. Bridges,9 M. Balme,10 S. Gupta,11 I.A. Crawford,2,8 P. Irwin,12 R. Stabbins,1,2 D. Tirsch,3 J.L. Vago,13 T. Theodorou,1,2 M. Caballo-Perucha,5 G.R. Osinski,14 and the PanCam Team Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier.
    [Show full text]
  • Sanjay Limaye US Lead-Investigator Ludmila Zasova Russian Lead-Investigator Steering Committee K
    Answer to the Call for a Medium-size mission opportunity in ESA’s Science Programme for a launch in 2022 (Cosmic Vision 2015-2025) EuropEan VEnus ExplorEr An in-situ mission to Venus Eric chassEfièrE EVE Principal Investigator IDES, Univ. Paris-Sud Orsay & CNRS Universite Paris-Sud, Orsay colin Wilson Co-Principal Investigator Dept Atm. Ocean. Planet. Phys. Oxford University, Oxford Takeshi imamura Japanese Lead-Investigator sanjay Limaye US Lead-Investigator LudmiLa Zasova Russian Lead-Investigator Steering Committee K. Aplin (UK) S. Lebonnois (France) K. Baines (USA) J. Leitner (Austria) T. Balint (USA) S. Limaye (USA) J. Blamont (France) J. Lopez-Moreno (Spain) E. Chassefière(F rance) B. Marty (France) C. Cochrane (UK) M. Moreira (France) Cs. Ferencz (Hungary) S. Pogrebenko (The Neth.) F. Ferri (Italy) A. Rodin (Russia) M. Gerasimov (Russia) J. Whiteway (Canada) T. Imamura (Japan) C. Wilson (UK) O. Korablev (Russia) L. Zasova (Russia) Sanjay Limaye Ludmilla Zasova Eric Chassefière Takeshi Imamura Colin Wilson University of IKI IDES ISAS/JAXA University of Oxford Wisconsin-Madison Laboratory of Planetary Space Science and Spectroscopy Univ. Paris-Sud Orsay & Engineering Center Space Research Institute CNRS 3-1-1, Yoshinodai, 1225 West Dayton Street Russian Academy of Sciences Universite Paris-Sud, Bat. 504. Sagamihara Dept of Physics Madison, Wisconsin, Profsoyusnaya 84/32 91405 ORSAY Cedex Kanagawa 229-8510 Parks Road 53706, USA Moscow 117997, Russia FRANCE Japan Oxford OX1 3PU Tel +1 608 262 9541 Tel +7-495-333-3466 Tel 33 1 69 15 67 48 Tel +81-42-759-8179 Tel 44 (0)1-865-272-086 Fax +1 608 235 4302 Fax +7-495-333-4455 Fax 33 1 69 15 49 11 Fax +81-42-759-8575 Fax 44 (0)1-865-272-923 [email protected] [email protected] [email protected] [email protected] [email protected] European Venus Explorer – Cosmic Vision 2015 – 2025 List of EVE Co-Investigators NAME AFFILIATION NAME AFFILIATION NAME AFFILIATION AUSTRIA Migliorini, A.
    [Show full text]
  • Determining Mineralogy on Mars with the Chemin X-Ray Diffractometer the Chemin Team Logo Illustrating the Diffraction of Minerals on Mars
    Determining Mineralogy on Mars with the CheMin X-Ray Diffractometer The CheMin team logo illustrating the diffraction of minerals on Mars. Robert T. Downs1 and the MSL Science Team 1811-5209/15/0011-0045$2.50 DOI: 10.2113/gselements.11.1.45 he rover Curiosity is conducting X-ray diffraction experiments on the The mineralogy of the Martian surface of Mars using the CheMin instrument. The analyses enable surface is dominated by the phases found in basalt and its ubiquitous Tidentifi cation of the major and minor minerals, providing insight into weathering products. To date, the the conditions under which the samples were formed or altered and, in turn, major basaltic minerals identi- into past habitable environments on Mars. The CheMin instrument was devel- fied by CheMin include Mg– Fe-olivines, Mg–Fe–Ca-pyroxenes, oped over a twenty-year period, mainly through the efforts of scientists and and Na–Ca–K-feldspars, while engineers from NASA and DOE. Results from the fi rst four experiments, at the minor primary minerals include Rocknest, John Klein, Cumberland, and Windjana sites, have been received magnetite and ilmenite. CheMin and interpreted. The observed mineral assemblages are consistent with an also identifi ed secondary minerals formed during alteration of the environment hospitable to Earth-like life, if it existed on Mars. basalts, such as calcium sulfates KEYWORDS: X-ray diffraction, Mars, Gale Crater, habitable environment, CheMin, (anhydrite and bassanite), iron Curiosity rover oxides (hematite and akaganeite), pyrrhotite, clays, and quartz. These secondary minerals form and INTRODUCTION persist only in limited ranges of temperature, pressure, and The Mars rover Curiosity landed in Gale Crater on August ambient chemical conditions (i.e.
    [Show full text]
  • Analysis of Surface Materials by the Curiosity Mars Rover
    INTRODUCTION OVERVIEW Analysis of Surface Materials by the Curiosity Mars Rover THE 6 AUGUST 2012 ARRIVAL OF THE CURIOSITY ROVER ON THE SURFACE and showing that these larger components probably break apart to of Mars delivered the most technically advanced geochemistry labo- form part of the soil. In contrast, the fi ne-grained soil component is ratory ever sent to the surface of another planet. Its 10 instruments mafi c, similar to soils observed by the Pathfi nder and Mars Explora- (1)* were commissioned for operations and were tested on a diverse tion Rover missions. set of materials, including rocks, soils, and the atmosphere, during Curiosity scooped, processed, and analyzed a small deposit of the fi rst 100 martian days (sols) of the mission. The fi ve articles pre- windblown sand/silt/dust at Rocknest that has similar morphology and sented in full in the online edition of Science (www.sciencemag.org/ bulk elemental composition to other aeolian deposits studied at other extra/curiosity), with abstracts in print (pp. 1476–1477), describe the Mars landing sites. Based solely on analysis of CheMin x-ray diffrac- mission’s initial results, in which Curiosity’s full laboratory capabil- tion (XRD) data from Mars, calibrated with terrestrial standards, Bish ity was used. et al. estimate the Rocknest deposit to be composed of ~71% crystal- Curiosity was sent to explore a site located in Gale crater, where line material of basaltic origin, in addition to ~29% x-ray–amorphous a broad diversity of materials was observed from orbit. Materials materials. In an independent approach, Blake et al.
    [Show full text]
  • Composition of Mars, Michelle Wenz
    The Composition of Mars Michelle Wenz Curiosity Image NASA Importance of minerals . Role in transport and storage of volatiles . Ex. Water (adsorbed or structurally bound) . Control climatic behavior . Past conditions of mars . specific pressure and temperature formation conditions . Constrains formation and habitability Curiosity Rover at Mount Sharp drilling site, NASA image Missions to Mars . 44 missions to Mars (all not successful) . 21 NASA . 18 Russia . 1 ESA . 1 India . 1 Japan . 1 joint China/Russia . 1 joint ESA/Russia . First successful mission was Mariner 4 in 1964 Credit: Jason Davis / astrosaur.us, http://utprosim.com/?p=808 First Successful Mission: Mariner 4 . First image of Mars . Took 21 images . No evidence of canals . Not much can be said about composition Mariner 4, NASA image Mariner 4 first image of Mars, NASA image Viking Lander . First lander on Mars . Multispectral measurements Viking Planning, NASA image Viking Anniversary Image, NASA image Viking Lander . Measured dust particles . Believed to be global representation . Computer generated mixtures of minerals . quartz, feldspar, pyroxenes, hematite, ilmenite Toulmin III et al., 1977 Hubble Space Telescope . Better resolution than Mariner 6 and 7 . Viking limited to three bands between 450 and 590 nm . UV- near IR . Optimized for iron bearing minerals and silicates Hubble Space Telescope NASA/ESA Image featured in Astronomy Magazine Hubble Spectroscopy Results . 1994-1995 . Ferric oxide absorption band 860 nm . hematite . Pyroxene 953 nm absorption band . Looked for olivine contributions . 1042 nm band . No significant olivine contributions Hubble Space Telescope 1995, NASA Composition by Hubble . Measure of the strength of the absorption band . Ratio vs.
    [Show full text]
  • GEP-Exomars: a Geophysics And
    Lunar and Planetary Science XXXVII (2006) 1982.pdf GEP-ExoMars: a Geophysics and Environment observatory on Mars : Philippe Lognonné1, Tilman Spohn2, David Mimoun1,*, Stephan Ulamec3, Jens Biele3, the ML2SP team and the Aurora Environment team 1IPGP, St. Maur des Fossés, France 2DLR, Institute for Planetary Research, D-12489 Berlin, Germany 3DLR, Institute for Space Simulation, D-51170 Köln, Germany , *E-mail: [email protected] Mass / average Network Instrument Heritage Description Comments kg power, W science Scientific objective: Seismic suite: 2 VBB oblique seismometers Needs soil contact, plus one Short period horizontal MEMS wind and sun SEIS Netlander (Phase B) 1,615 0,28 (Micro-Electro Mechanical System) sensor x protection and The goal of the Long-Lived Geoscience Observatory completing the trihedron. Target sensitivity < decoupling from Meteo suite: wind, temperature, pressure, partly to be replaced humidity, OD, UV spectra, dust impact. by similar Pasteur ATM Beagle-2 (flown) 0,685 0,095 x on Mars, GEP (Geophysics Package) is to initiate the Modes: low/nominal/campaign/dust devil instruments, see rates below Atmospheric electricity probe to measure setup of a permanent network of fixed stations on the electric conductivity, quasi DC electric field AEP Netlander (Phase B) 0,147 0,105 CORE (up to 300 V/m), ELF/VLF radio-electric x emissions (10 Hz to 4 kHz) planet, with the objective to operate for several years. Heat flow and physical properties package. Deployed by a mole up to 5 m deep in Martian regolith: TEM, a thermal These stations will monitor with high resolution the HP3 Beagle-2 (flown) 1,195 0,003 measurement suite (thermal conductivity, heat capacity, thermal gradient [heat flux]); DACTIL, a set of accelerometers (orientation, seismic activity and the rotation of the planet, the depth, so Tri-axial vector magnetic field sensor Champ, Astrid-2 satellites including t and attitude sensors.
    [Show full text]
  • MAHLI): Characterization and Calibration Status
    Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status Kenneth S. Edgett, Michael A. Caplinger, Justin N. Maki, Michael A. Ravine, F. Tony Ghaemi, Sean McNair, Kenneth E. Herkenhoff, Brian M. Duston, Reg G. Willson, R. Aileen Yingst, Megan R. Kennedy, Michelle E. Minitti, Aaron J. Sengstacken, Kimberley D. Supulver, Leslie J. Lipkaman, Gillian M. Krezoski, Marie J. McBride, Tessa L. Jones, Brian E. Nixon, Jason K. Van Beek, Daniel J. Krysak, and Randolph L. Kirk MSL MAHLI Technical Report 0001, version 2 version 1: 19 June 2015; version 2: 05 October 2015 Citation: Edgett, K. S., M. A. Caplinger, J. N. Maki, M. A. Ravine, F. T. Ghaemi, S. McNair, K. E. Herkenhoff, B. M. Duston, R. G. Willson, R. A. Yingst, M. R. Kennedy, M. E. Minitti, A. J. Sengstacken, K. D. Supulver, L. J. Lipkaman, G. M. Krezoski, M. J. McBride, T. L. Jones, B. E. Nixon, J. K. Van Beek, D. J. Krysak, and R. L. Kirk (2015) Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status, MSL MAHLI Technical Report 0001 (version 1: 19 June 2015; version 2: 05 October 2015). doi:10.13140/RG.2.1.3798.5447 – MSL MAHLI Tech. Rept. 0001 – Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) Technical Report 0001 Cover photo Mars Science Laboratory (MSL) rover Curiosity’s Mars Hand Lens Imager (MAHLI; center) and Dust Removal Tool (DRT; right), as observed by the Mastcam-34 camera on Sol 30 (06 September 2012) in northern Gale crater, Mars.
    [Show full text]