Altered Nucleophosmin Transport in Acute Myeloid Leukaemia with Mutated NPM1: Molecular Basis and Clinical Implications

Total Page:16

File Type:pdf, Size:1020Kb

Altered Nucleophosmin Transport in Acute Myeloid Leukaemia with Mutated NPM1: Molecular Basis and Clinical Implications Leukemia (2009) 23, 1731–1743 & 2009 Macmillan Publishers Limited All rights reserved 0887-6924/09 $32.00 www.nature.com/leu REVIEW Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications B Falini1, N Bolli1,5, A Liso2, MP Martelli1, R Mannucci3, S Pileri4 and I Nicoletti3 1The Institute of Haematology, University of Perugia, IBiT Foundation, Fondazione IRCCS Biotecnologie nel Trapianto, Perugia, Italy; 2Institute of Haematology, University of Foggia, Foggia, Italy; 3Institute of Internal Medicine, University of Perugia, Perugia, Italy and 4Unit of Haematopathology, Policlinico S. Orsola, University of Bologna, Bologna, Italy Nucleophosmin (NPM1) is a highly conserved nucleo-cytoplas- n. NM_001037738) with a distinct C-terminus; it accounts for mic shuttling protein that shows a restricted nucleolar localiza- minimal nucleophosmin content in tissues. NPM1 (B23.1) and tion. Mutations of NPM1 gene leading to aberrant cytoplasmic NPM1.2 (B23.2) have different subcellular distribution patterns:5 dislocation of nucleophosmin (NPMc þ ) occurs in about one 6,7 third of acute myeloid leukaemia (AML) patients that exhibit NPM1 protein is localized only in the nucleolus and NPM1.2 8 distinctive biological and clinical features. We discuss the mainly in the nucleoplasm. A third variant (accession number latest advances in the molecular basis of nucleophosmin traffic NM_199185) lacks an alternate in-frame exon compared with under physiological conditions, describe the molecular ab- variant 1, resulting in a shorter protein whose functions and normalities underlying altered transport of nucleophosmin in expression pattern are unknown. NPM1-mutated AML and present evidences supporting the view that cytoplasmic nucleophosmin is a critical event for leukae- Experiments on NPM1/B23 migration in interspecies (chick- mogenesis. We then outline how a highly specific immunohis- mouse) heterokaryons and studies on nuclear accumulation of tochemical assay can be exploited to diagnose NPM1-mutated cytoplasmically microinjected anti-nucleophosmin antibodies AML and myeloid sarcoma in paraffin-embedded samples by provided conclusive evidence that NPM1 (B23.1), despite its looking at aberrant nucleophosmin accumulation in cytoplasm nucleolar localization,6,7 shuttles constantly back and forth of leukaemic cells. This procedure is also suitable for detection between nucleus and cytoplasm.9 As NPM1 gene mutations in of haemopoietic multilineage involvement in bone marrow trephines. Moreover, use of immunohistochemistry as surro- acute myeloid leukaemia (AML) always result in traffic altera- gate for molecular analysis can serve as first-line screening in tions of the most common isoform 1, we will refer to it AML and should facilitate implementation of the 2008 World constantly as NPM1 in this review. Health Organization classification of myeloid neoplasms that now incorporates AML with mutated NPM1 (synonym: NPMc þ AML) as a new provisional entity. Finally, we discuss the future therapeutic perspectives aimed at reversing the altered nucleo- Functional domains regulating cellular traffic of wild-type phosmin transport in AML with mutated NPM1. NPM1 Leukemia (2009) 23, 1731–1743; doi:10.1038/leu.2009.124; published online 11 June 2009 Nuclear-cytoplasmic shuttling of wild-type NPM1 (NPM1wt)9,10 Keywords: nucleophosmin; NPM1; mutations; myeloid leukaemia; is critical for most of its functions, including regulation of cell transport; monoclonal antibodies ribosome biogenesis and control of centrosome duplication.11 NPM1wt shuttles across cytoplasm and nucleoplasm as well as between nucleoplasm and nucleolus. Distinct NPM1wt func- tional domains regulate this complex shuttling activity. Nucleophosmin is a nuclear-cytoplasmic shuttling protein NPM1wt transport between cytoplasmic and nuclear Nucleophosmin (NPM1), also named B23 or Numatrin, is an compartments ubiquitously expressed protein belonging to the nucleoplasmin This process requires energy and closely depends on two family of nuclear chaperones.1 It is encoded by the NPM1 gene 2 NPM1wt functional domains (Figure 1). A bipartite nuclear that, in humans, maps to chromosome 5q35. NPM1 is essential localization signal (NLS),12 which is located between the two for embryonic development3 and is frequently translocated or 4 acidic regions in the nucleophosmin mid-region, drives mutated in haematological malignancies. NPM1wt from cytoplasm to nucleoplasm. Moreover, NPM1wt Three nucleophosmin isoforms are generated through alter- contains two leucine-rich nuclear export signal (NES) motifs13,14 native splicing. NPM1 (or B23.1), the dominant isoform 5 with the generally accepted loose consensus L-x(2,3)-(LIVFM)- (accession n. NM_002520), is a 294-amino acid phospho- x(2,3)-L-x-(LI) (that is, a core of closely spaced leucines or other protein of about 37 kDa that is expressed in all tissues. NPM1.2 large hydrophobic amino acids). One is found within residues 0 (or B23.2) uses an alternate 3 -terminal exon compared with 94–102 with the sequence I-xx-P-xx-L-x-L13 and the other at the variant 1, resulting in a 259-amino acid protein (accession N-terminus within amino acids 42 to 49 (sequence L-x-L-xx-V-x-L), with leucines 42 and 44 being critical nuclear export residues.14 Correspondence: Professor B Falini, Institute of Haematology, These NES motifs mediate NPM1wt nuclear export by interact- University of Perugia, Perugia, Italy. ing with the evolutionary conserved export receptor Crm116 E-mail: [email protected] (also called exportin 1) (Figure 1). Fluorescence recovery after 5Current address: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. photobleaching (FRAP) showed Crm1 travels unimpeded within Received 12 March 2009; revised 6 May 2009; accepted 13 May the nuclear compartment and interacts with NES-containing 2009; published online 11 June 2009 proteins both in nucleoplasm and nucleolus.17 Altered traffic of nucleophosmin in AML B Falini et al 1732 Structure of NPM1 C-terminus DIMERIZATION W288 Wild-type NPM1 NUCLEAR NUCLEOLAR DOMAIN LOCALIZATION LOCALIZATION SIGNAL SIGNAL W290 NES NES CRM1 DIMERIZATION W288 Mutated NPM1 NUCLEAR NUCLEOLAR DOMAIN LOCALIZATION LOCALIZATION SIGNAL SIGNAL W290 NES NES NES CRM1 Figure 1 Traffic of wild-type NPM1 is mainly dictated by three functional motifs: two leucine-rich nuclear export signal (NES) motifs located in the N-terminal portion of the protein (dimerization domain); a bipartite nuclear localization signal (NLS) motif (residues 152–157 and 190–197, respectively); and an aromatic region at the C-terminus of the protein containing the nucleolar localization signal with tryptophans at positions 288 and 290. The 3-helix structure of C-terminus with the two tryptophans 288 and 290 (arrows) embedded in the hydrophobic core is shown on the top (by courtesy of Prof. Alan Warren and Dr Mark Bycroft, University of Cambridge, UK). The mutated NPM1 protein in AML differs from wild- type NPM1 because of mutations of both tryptophans or tryptophan 290 only and the presence of a new NES motif at the C-terminus of the protein. CRM1 (Exportin 1) binds specifically to the wild-type and mutated NPM1 proteins through the NES motifs. NPM1wt traffic between nucleoplasm and nucleolus bundle22 that appears similar to the archeal ribosomal protein Intranuclear trafficking of NPM1wt (and other nuclear proteins) S17e23 (Figure 1). Maintenance of C-terminus tertiary conforma- is mostly driven by diffusion, a rapid, non-directional process tion closely depends on tryptophans 288 and 290 that form part that usually occurs through energy-independent mechanisms.18 of the folded domain’s hydrophobic core (Figure 1), although FRAP analysis revealed that, in a continuous exchange with phenylalanines 268 and 273 may also play a role.22 Stabiliza- nucleoplasm,18,19 nucleophosmin (like other typical nucleolar tion of the C-terminus 3-helix structure by the two tryptophans proteins) rapidly associates with, and dissociates from the is, in turn, critical for NPM1wt binding to the nucleolus.22 nucleolar component, which is in keeping with lack of Accordingly, earlier findings that artificially induced mutations nucleolus membrane. Indeed, the structure of the nucleolus is of tryptophans 288 and 290 in NPM1wt prevented its binding to thought to be determined by protein on-rate versus off-rate the nucleolus24,25 are now understood to be the result of loss of ratio.18 According to this model, nucleophosmin contributes to C-terminal domain folding.22 C-terminus tryptophan mutations build-up the nucleolar compartment in which it is one of the that consistently occur in natural NPM1 mutants in AML patients most abundant components20 among the approximately 700 prevent or reduce mutant binding to the nucleolus in the same proteins identified by proteomics.21 In fact, flux of nucleophosmin manner,25,26 thus contributing to their aberrant accumulation in at the nucleolus–nucleoplasm interface is definitively unba- leukaemic cell cytoplasm (see below). lanced towards the nucleolus. This is, in turn, the consequence The ability of NPM1wt protein to form homodimers also helps of the very efficient nucleolar-binding domain (NoLS) that drive it to the nucleolus. Indeed, artificial NPM1 mutants that NPM1wt contains at its C-terminus. contain the nucleolar-binding domain but are unable to form The structure of nucleophosmin C-terminal domain has oligomers cannot enter the nucleolus.27 Thus, it is not surprising recently been revealed by
Recommended publications
  • Parameter IV Dose (1 Mg/Kg) Oral Dose (10 Mg/Kg)
    AG-221, a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations Katharine Yen, Jeremy Travins, Fang Wang, Muriel D. David, Erin Artin, Kimberly Straley, Anil Padyana, Stefan Gross, Byron DeLaBarre, Erica Tobin, Yue Chen, Raj Nagaraja, Sung Choe, Lei Jin, Zenon Konteatis, Giovanni Cianchetta, Jeffrey O. Saunders, Francesco G. Salituro, Cyril Quivoron, Paule Opolon, Olivia Bawa, Véronique Saada, Angélo Paci, Sophie Broutin, Olivier Bernard, Stéphane de Botton, Benoît S. Marteyn, Monika Pilichowska, YingXia Xu, Cheng Fang, Fan Jiang, Wentao Wei, Shengfang Jin, Lee Silverman, Wei Liu, Hua Yang, Lenny Dang, Marion Dorsch, Virginie Penard-Lacronique, Scott A. Biller, Shin-San Michael Su SUPPLEMENTARY TABLES Supplementary Table 1. Drug metabolism and pharmacokinetic attributes of AG-221 Parameter IV dose (1 mg/kg) Oral dose (10 mg/kg) CL (l/h/kg) 0.83 ± 0.10 NA Vss (l/kg) 5.5 ± 1.6 NA AUC (h.ng/ml) 1,200 ± 130 5,000 ± 610 t1/2 (h) 5.4 ± 1.8 5.4 ± 1.2 F (%) NA 41 ± 5.0 IV and oral pharmacokinetic parameters of AG-221 in male Sprague-Dawley rats (mean ± s.d., n = 3). AUC, area under plasma concentration curve; CL, clearance; F, absolute oral bioavailability; IV, intravenous; NA, not applicable; t1/2, terminal half-life; Vss, volume of distribution at steady state. Page 1 of 12 Supplementary Table 2. Selectivity of AG-221 confirmed by testing against a panel of kinases Enzyme IC50 of AG-221 IC50 of reference Reference (nM) (nM) P13K >10,000 9.1 PI 103 JNK2 >10,000 5741.2 Staurosporine AKT1 >10,000 9.8 Staurosporine
    [Show full text]
  • Nucleolin and Its Role in Ribosomal Biogenesis
    NUCLEOLIN: A NUCLEOLAR RNA-BINDING PROTEIN INVOLVED IN RIBOSOME BIOGENESIS Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Julia Fremerey aus Hamburg Düsseldorf, April 2016 2 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. A. Borkhardt Korreferent: Prof. Dr. H. Schwender Tag der mündlichen Prüfung: 20.07.2016 3 Die vorgelegte Arbeit wurde von Juli 2012 bis März 2016 in der Klinik für Kinder- Onkologie, -Hämatologie und Klinische Immunologie des Universitätsklinikums Düsseldorf unter Anleitung von Prof. Dr. A. Borkhardt und in Kooperation mit dem ‚Laboratory of RNA Molecular Biology‘ an der Rockefeller Universität unter Anleitung von Prof. Dr. T. Tuschl angefertigt. 4 Dedicated to my family TABLE OF CONTENTS 5 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................... 5 LIST OF FIGURES ......................................................................................................10 LIST OF TABLES .......................................................................................................12 ABBREVIATION .........................................................................................................13 ABSTRACT ................................................................................................................19 ZUSAMMENFASSUNG
    [Show full text]
  • NPM1-ALK (Human) Recombinant Gene Summary: the 2;5 Chromosomal Translocation Is Protein Frequently Associated with Anaplastic Large Cell Lymphomas (Alcls)
    NPM1-ALK (Human) Recombinant Gene Summary: The 2;5 chromosomal translocation is Protein frequently associated with anaplastic large cell lymphomas (ALCLs). The translocation creates a fusion Catalog Number: P5782 gene consisting of the ALK (anaplastic lymphoma kinase) gene and the nucleophosmin (NPM) gene: the 3' Regulation Status: For research use only (RUO) half of ALK, derived from chromosome 2, is fused to the 5' portion of NPM from chromosome 5. A recent study Product Description: Human NPM1-ALK (BAA08343.1, shows that the product of the NPM-ALK fusion gene is 1 a.a. - 680 a.a.) partial recombinant protein with GST oncogenic. The deduced amino acid sequences reveal tag expressed in Baculovirus infected Sf21 cells. that ALK is a novel receptor protein-tyrosine kinase having a putative transmembrane domain and an Host: Insect extracellular domain. These sequences are absent in the product of the transforming NPM-ALK gene. ALK shows Theoretical MW (kDa): 103 the greatest sequence similarity to LTK (leukocyte tyrosine kinase). ALK plays an important role in the Applications: Func, SDS-PAGE development of the brain and exerts its effects on (See our web site product page for detailed applications specific neurons in the nervous system. [provided by information) RefSeq] Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Form: Liquid Preparation Method: Baculovirus infected insect cell (Sf21) expression system Purification: Glutathione sepharose chromatography Purity: 81 % by SDS-PAGE/CBB staining Activity: The activity was measured by off-chip mobility shift assay. The enzyme was incubated with fluorescence-labeled substrate and Mg (or Mn)/ATP.
    [Show full text]
  • Transcriptome-Wide Profiling of Cerebral Cavernous Malformations
    www.nature.com/scientificreports OPEN Transcriptome-wide Profling of Cerebral Cavernous Malformations Patients Reveal Important Long noncoding RNA molecular signatures Santhilal Subhash 2,8, Norman Kalmbach3, Florian Wegner4, Susanne Petri4, Torsten Glomb5, Oliver Dittrich-Breiholz5, Caiquan Huang1, Kiran Kumar Bali6, Wolfram S. Kunz7, Amir Samii1, Helmut Bertalanfy1, Chandrasekhar Kanduri2* & Souvik Kar1,8* Cerebral cavernous malformations (CCMs) are low-fow vascular malformations in the brain associated with recurrent hemorrhage and seizures. The current treatment of CCMs relies solely on surgical intervention. Henceforth, alternative non-invasive therapies are urgently needed to help prevent subsequent hemorrhagic episodes. Long non-coding RNAs (lncRNAs) belong to the class of non-coding RNAs and are known to regulate gene transcription and involved in chromatin remodeling via various mechanism. Despite accumulating evidence demonstrating the role of lncRNAs in cerebrovascular disorders, their identifcation in CCMs pathology remains unknown. The objective of the current study was to identify lncRNAs associated with CCMs pathogenesis using patient cohorts having 10 CCM patients and 4 controls from brain. Executing next generation sequencing, we performed whole transcriptome sequencing (RNA-seq) analysis and identifed 1,967 lncRNAs and 4,928 protein coding genes (PCGs) to be diferentially expressed in CCMs patients. Among these, we selected top 6 diferentially expressed lncRNAs each having signifcant correlative expression with more than 100 diferentially expressed PCGs. The diferential expression status of the top lncRNAs, SMIM25 and LBX2-AS1 in CCMs was further confrmed by qRT-PCR analysis. Additionally, gene set enrichment analysis of correlated PCGs revealed critical pathways related to vascular signaling and important biological processes relevant to CCMs pathophysiology.
    [Show full text]
  • Cancer Stem Cells and Nucleolin As Drivers of Carcinogenesis
    pharmaceuticals Review Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis Laura Sofia Carvalho 1,Nélio Gonçalves 1 , Nuno André Fonseca 1,2 and João Nuno Moreira 1,3,* 1 CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; laurasofi[email protected] (L.S.C.); [email protected] (N.G.); [email protected] (N.A.F.) 2 TREAT U, SA—Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal 3 UC—University of Coimbra, CIBB, Faculty of Pharmacy (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal * Correspondence: [email protected]; Tel.: +351-239-820-190 Abstract: Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies Keywords: tumor heterogeneity; drug resistance; cancer stem cells; nucleolin; targeted therapies; epithelial-to-mesenchymal transition Citation: Carvalho, L.S.; Gonçalves, N.; Fonseca, N.A.; Moreira, J.N.
    [Show full text]
  • Increased Expression of NPM1 Suppresses P27kip1 Function in Cancer Cells
    cancers Article Increased Expression of NPM1 Suppresses p27Kip1 Function in Cancer Cells Tatsuya Kometani, Takuya Arai and Taku Chibazakura * Department of Bioscience, Tokyo University of Agriculture 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] (T.K.); [email protected] (T.A.) * Correspondence: [email protected] Received: 4 August 2020; Accepted: 5 October 2020; Published: 8 October 2020 Simple Summary: Cancer malignancy frequently correlates with a low expression of p27Kip1, a major cyclin-dependent kinase inhibitor, and the p27 protein level has been reportedly responsible for its antiproliferative function. However, we found the function of overexpressed p27 is suppressed in some cancer cells, suggesting that p27 function is also regulated independently of its protein level. The aim of this study was to clarify this unknown p27 regulatory mechanism and its impact on cancer proliferation. We isolated nucleophosmin isoform 1 (NPM1), which is highly expressed in variety of cancers, as a novel p27-interacting protein. Overexpressing NPM1 in normal cells suppressed and silencing NPM1 in cancer cells rescued the p27 function, respectively, in vitro. Moreover, NPM1 silencing and p27 induction in cancer cells significantly suppressed their proliferation in mouse xenografts. Our findings reveal that NPM1 is a novel p27 functional suppressor and a potential anti-cancer target, especially in cancers with normal p27 expression. Abstract: p27Kip1, a major cyclin-dependent kinase inhibitor, is frequently expressed at low levels in cancers, which correlates with their malignancy. However, in this study, we found a qualitative suppression of p27 overexpressed in some cancer cells. By proteomic screening for factors interacting with p27, we identified nucleophosmin isoform 1 (NPM1) as a novel p27-interacting factor and observed that NPM1 protein was expressed at high levels in some cancer cells.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Core Transcription Factors, Oct4, Sox2 and Nanog, Individually Form Complexes with Nucleophosmin (Npm1) to Control Embryonic Stem
    www.impactaging.com AGING, November 2010, Vol 2 N 11 Research Paper Core transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination Helena Johansson and Stina Simonsson Department of Medical Biochemistry and Cell Biology; Institute of Biomedicine; University of Gothenburg, box 440, 405 30 Gothenburg, Västra Götaland; Sweden Key words: Npm1, Oct4, Sox2, Nanog, ES cells, Tpt1 Received: 10/25/10; accepted: 11/10/10; published on line: 11/12/10 Corresponding author: Stina Simonsson, PhD; E‐mail: [email protected] Copyright: © Johansson and Simonsson. This is an open‐access article distributed under the terms of the Creative Commons A ttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract: Embryonic stem (ES) cells have therapeutic potential in regenerative medicine, although the molecular mechanism controlling their pluripotency is not completely understood. Depending on interaction partners most proteins can be involved in several different cellular mechanisms. We screened for novel protein‐protein interactions using in situ proximity ligation assays together with specific antibodies directed against known important ES cell proteins. We found that all three core transcription factors, namely Oct4, Sox2 and Nanog, individually formed complexes with nucleophosmin (Npm1). We showed that the Npm1/Sox2 complex was sustained when cells were induced to differentiate by retinoic acid, while decreased in the other differentiation pathways. Moreover, Oct4 also formed individual complexes with translationally controlled tumor protein (Tpt1). Downregulation of Npm1 or Tpt1 increased mRNA levels for genes involved in mesoderm and ectoderm differentiation pathways, respectively, indicative of their involvement in ES cell maintenance.
    [Show full text]
  • Next Generation Gene Sequencing -Solid Tumor
    Cancer‐related Mutaon Analysis Next Generaon Gene Sequencing for Solid Tumors Assay Summary IU Health Molecular Pathology Laboratory now offers high throughput sequencing for hot spot mutations found in clinically relevant cancer genes. In addition to a general panel of 48 genes, selected panels have been developed for a more tailored application in specific cancers. Comparing to single gene assay, these panels offer a more comprehensive and economic way to assess prognosis and/or treatment options for cancer patients at the initial diagnosis or at the relapse. Orderable Name: Use IU Health Molecular Pathology requisition; Call 317.491.6417 for requisition. Panels include: Lung cancer panel AKT1, ALK, BRAF, EGFR, KRAS, MET, NRAS, PIK3CA, PTEN Colon cancer panel APC, AKT1, BRAF, KRAS, NRAS, PIK3CA, PTEN, SMAD4 Gastrointestinal stromal tumor (GIST) panel BRAF, KIT, PDGFRA Melanoma panel BRAF, CTNNB1, GNA11, GNAQ, KIT, NRAS Ovarian cancer panel BRAF, KRAS, PIK3CA, PTEN Thyroid cancer panel KIT, BRAF, RET Breast cancer panel AKT1, ERBB2, PIK3CA Oncology sequencing panel ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH1, JAK2, JAK3, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL Clinical Utility: This test is useful for the assessment of prognosis and/or treatment options for individuals with cancers at initial diagnosis or at replase1. Clinical Information: The Oncology Sequencing Solid Tumor Panel is a highly multiplexed targeted resequencing assay for detecting somatic mutations across hundreds of mutational hotspots in cancer genomes.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. Phosphoryl I-Area II-Area II-Debunker III-Area Gene Symbol Protein Name Phosphorylated Peptide I-R2 I-Debunker score II-R2 III-R2 ation Site Ratio Ratio score Ratio 92154 ABBA-1 Actin-bundling protein with BAIAP2 homologyK.TPTVPDS*PGYMGPTR.A S601 1.76 0.95 0.999958250 1.18 0.98 0.999971836 0.98 0.98 92154 ABBA-1 Actin-bundling protein with BAIAP2 homologyR.AGS*EECVFYTDETASPLAPDLAK.A S612 1.40 0.99 0.999977464 1.03 0.99 0.999986373 1.00 0.99 92154 ABBA-1 Actin-bundling protein with BAIAP2 homologyK.GGGAPWPGGAQTYS*PSSTCR.Y S300 0.49 0.98 0.999985406 0.97 0.99 0.999983906 2.03 0.97 23 ABCF1 ATP-binding cassette sub-family F memberK.QQPPEPEWIGDGESTS*PSDK.V 1 S22 1.09 0.98 0.872361494 0.81 1.00 0.847115585 0.97 0.97 27 ABL2 Isoform IA of Tyrosine-protein kinase ABL2K.VPVLIS*PTLK.H S936 0.76 0.98 0.999991559 1.06 0.99 0.999989547 0.99 0.96 3983 ABLIM1 Actin binding LIM protein 1 R.TLS*PTPSAEGYQDVR.D S433 1.27 0.99 0.999994010 1.16 0.98 0.999989861 1.11 0.99 31 ACACA acetyl-Coenzyme A carboxylase alpha isoformR.FIIGSVSEDNS*EDEISNLVK.L 1 S29 1.23 0.99 0.999992898 0.72 0.99 0.999992499 0.83 0.99 65057 ACD Adrenocortical dysplasia protein homologR.TPS*SPLQSCTPSLSPR.S S424 1.51 0.90 0.999936226 0.82 0.88 0.997623142 0.46 0.93 22985 ACIN1 Apoptotic chromatin condensation inducerK.ASLVALPEQTASEEET*PPPLLTK.E in the nucleus T414 0.90 0.92 0.922696554 0.91 0.92 0.993049132 0.95 0.99 22985 ACIN1 Apoptotic chromatin condensation inducerK.ASLVALPEQTAS*EEETPPPLLTK.E in the nucleus S410 1.02 0.99 0.997470008 0.80 0.99 0.999702808 0.96
    [Show full text]
  • Rnascope® Probes for Stem Cells Research Get Probes for Your Gene of Interest Designed and Manufactured in Two Weeks
    Probe List Series Stem Cell Research RNAscope® Probes for Stem Cells Research Get probes for your gene of interest designed and manufactured in two weeks. Featured Publications using Detection of Stem Cell Markers gene of interest, as for example long non-coding RNAscope® Technology RNA. The RNAscope® assay allows you to visualize The rapid and expansive field of stem cell biology and quantify virtually any gene from any genome in Wnts produced by Osterix- has demonstrated the remarkable capabilities any tissue. expressing osteolineage cells of these cells to self-renew, differentiate, and regulate their proliferation and reprogram. Yet the field is still burgeoning with differentiation. studies trying to elucidate stem cell populations, Tan SH. et. al. Proc Natl Acad Sci USA. 2014. Dec 9;111(49): characterize stem cell markers, and identify the ® E5262-71.PMID: 25422448 signals secreted from stem cells. RNAscope in situ hybridization (ISH) technology enables cell- Characterization of LGR5 stem specific localization of RNA transcripts quickly cells in colorectal adenomas and and precisely for markers of stem cell populations. carcinomas. The RNAscope® assay can be used to: Baker AM. et. al. Sci Rep. 2015 Mar 2;5:8654.PMID: 25728748 • Identify, characterize, and locate stem PMID: 25728748 cell populations • Reveal markers of stem cell maintenance Pontin functions as an essential coactivator for Oct4-dependent and regeneration lincRNA expression in mouse • Identify long non-coding RNAs in stem cells FIGURE 1. Detection of TP63 mRNA expression in embryonic stem cells. ® • Detect stem cell markers when no reliable human prostate FFPE tissue using RNAscope 2.0 HD Boo K.
    [Show full text]
  • Molecular Pathology Tests
    Cleveland Clinic Laboratories Molecular Pathology Tests Molecular Cytogenetics IGK PCR (BIOMED-2 Primers) Chromosome Studies TCRB PCR (BIOMED-2 Primers) Postnatal: TCRG PCR (BIOMED-2 Primers) Peripheral blood IGH (Southern blot) Fibroblasts TCRß (Southern blot) Products of Conception: BCL2 mbr (PCR) CVS (chorionic villi) p210 BCR/ABL1( RT-PCR, quantitative) Placenta p190 BCR/ABL1( RT-PCR, quantitative) Skin BCR/ABL Kinase Domain Mutation Analysis Bone PML/RARA RT-PCR, qualitative Cancer: Nucleophosmin gene (NPM1) mutation analysis ** Bone Marrow FLT3 Gene Mutations Leukemic blood JAK2 V617F mutation (PCR) Lymph node Fluorescence in-situ hybridization Fatty tumors 5q Renal tissue ALK Chromosomal Microarray BCL2 Whole Genome microarray (Oligo array) BCL6 BCR/ABL1 Molecular Genetic Pathology BIRC3(API2)/MALT1 Alpha-1-Antitrypsin genotyping (S and Z alleles) CBFB/MYH11 (inv 16) CYP2C9 and VKORC1 Warfarin PGX CLL (13q,11q, 17p,+12) CYP2C19 Clopidogrel PGX ETV6/RUNX1 (TEL/AML1) CYP2D6 FGFR1 CYP2D6 Tamoxifen PGX IGH Cystic fibrosis [ACOG panel] (PCR) IGH/BCL2 DNA fingerprinting for identity (STR;PCR) IGH/CCND1 Factor V Leiden (PCR) IGH/MALT1 Fragile X syndrome (FMR1) DNA analysis (PCR) IGH/MYC HFE [Hereditary Hemochromatosis] (PCR) MALT1(18q21) MTHFR (PCR) MLL PLA1, PLA2 (PCR) MYC Progenitor cell engraftment monitoring (STR;PCR) Myelodysplasia (-5/5q, -7/7q,+8,-20q) Prothrombin G20210A (PCR) Plasma cell myeloma [13q, IGH, TP53, t(11,14), t(4;14), Transthyretin (TTR) exon sequencing t(14;16)] VWF exon 28 sequencing PDGFRA PDGFRB Molecular Hematopathology
    [Show full text]