Scattering from Finite Structures : an Extended Fourier Modal Method

Total Page:16

File Type:pdf, Size:1020Kb

Scattering from Finite Structures : an Extended Fourier Modal Method Scattering from finite structures : an extended Fourier modal method Citation for published version (APA): Pisarenco, M. (2011). Scattering from finite structures : an extended Fourier modal method. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR716275 DOI: 10.6100/IR716275 Document status and date: Published: 01/01/2011 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 09. Oct. 2021 Tot het bijwonen van de openbare verdediging van mijn proefschrift Scattering from Finite Structures: An Extended Fourier Modal Method Opwoensdag 7 september 2011 om 16:00 uur in het Auditorium van de Technische Universiteit Eindhoven. Maxim Pisarenco [email protected] Sint Gerlachstraat 22, 5643NM Einhoven tel: +31 651802573 ± 140 pag. = 9mm rug MAT-GLANS laminaat? Oplage: 200 stuks Tot het bijwonen van de openbare verdediging van mijn proefschrift Scattering from Finite Structures: An Extended Fourier Modal Method Opwoensdag 7 september 2011 om 16:00 uur in het Auditorium van de Technische Universiteit Eindhoven. Maxim Pisarenco [email protected] Sint Gerlachstraat 22, 5643NM Einhoven tel: +31 651802573 ± 140 pag. = 9mm rug MAT-GLANS laminaat? Oplage: 200 stuks Scattering from Finite Structures: An Extended Fourier Modal Method Copyright c 2011 by Maxim Pisarenco, Eindhoven, The Netherlands. All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the author. Cover design by Paul Verspaget and Maxim Pisarenco. A catalogue record is available from the Eindhoven University of Technology Library ISBN 978-90-386-2549-2 NUR 919 Subject headings: boundary value problems; differential operators; eigenvalue problems / electromagnetic waves; diffraction / electromagnetic scattering; numerical methods / inverse problems The work described in this thesis has been carried out under the auspices of - Veldhoven, The Netherlands. Scattering from Finite Structures: An Extended Fourier Modal Method PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op woensdag 7 september 2011 om 16.00 uur door Maxim Pisarenco geboren te Chişinˇau,Moldavië Dit proefschrift is goedgekeurd door de promotor: prof.dr. R.M.M. Mattheij Copromotor: dr. J.M.L. Maubach Contents Preface ix 1 Introduction1 1.1 Lithography................................... 1 1.2 Problem description.............................. 3 1.3 Objectives and main results.......................... 5 1.4 Outline of the thesis.............................. 6 2 Mathematical modeling9 2.1 Maxwell equations............................... 9 2.2 Interface conditions............................... 11 2.3 Time-harmonic Maxwell equations...................... 13 2.4 Problem geometry and incident field..................... 15 2.5 Boundary conditions.............................. 18 2.5.1 Pseudo-periodic boundary condition................. 18 2.5.2 Radiation boundary condition..................... 19 2.6 Numerical methods for Maxwell equations.................. 20 2.6.1 Finite-difference time-domain method................ 21 2.6.2 Finite element method......................... 22 2.6.3 Fourier modal method......................... 23 2.6.4 Integral equation methods....................... 24 3 Extension of the Fourier modal method for a model problem 27 3.1 Introduction................................... 27 3.2 Standard Fourier modal method....................... 29 3.3 Artificial periodization with PMLs...................... 31 3.4 The contrast-field formulation of the FMM................. 36 3.4.1 Contrast/background decomposition................. 36 3.4.2 Background field solution....................... 37 3.4.3 Contrast field solution......................... 39 3.5 Numerical results................................ 42 vi Contents 4 Generalization to arbitrary shapes and illumination 45 4.1 Standard Fourier modal method....................... 45 4.1.1 TE-polarization............................. 48 4.1.2 TM-polarization............................ 50 4.1.3 Conical incidence............................ 51 4.2 Aperiodic Fourier modal method....................... 54 4.2.1 TE-polarization............................. 59 4.2.2 TM-polarization............................ 61 4.2.3 Conical incidence............................ 63 4.3 Final remarks.................................. 64 5 Stable solution of the coupled linear systems 67 5.1 Introduction................................... 67 5.2 Homogeneous T-matrix and S-matrix algorithms.............. 68 5.3 Non-homogeneous S-matrix algorithm.................... 71 5.4 Numerical results................................ 75 6 Aperiodic Fourier modal method with alternative discretization 79 6.1 Introduction................................... 79 6.2 Two equivalent problems............................ 81 6.3 Discretization of the background field.................... 83 6.4 Recursive linear systems for the vertical problem.............. 85 6.5 Non-homogeneous S-matrix algorithm for repeating slices......... 88 6.5.1 Redheffer notation........................... 88 6.5.2 Non-homogeneous Redheffer star product.............. 89 6.5.3 Global stack description........................ 90 6.5.4 Intermediary coefficients........................ 92 6.6 Summary of computational costs....................... 93 6.7 Far-field recovery................................ 94 6.8 Numerical results................................ 94 7 Conclusions and suggestions for future work 103 A Vector calculus identities 107 B Derivations 109 B.1 Derivation of the convolution term...................... 109 B.2 Discretization using the Galerkin approach................. 109 Bibliography 113 Index 121 Contents vii Summary 123 Samenvatting 125 Curriculum vitae 127 Preface The work described in this thesis has been carried out in the framework of a continuing collaboration between the Centre for Analysis, Scientific computing and Applications (CASA) at Eindhoven University of Technology, and ASML, world leader in the manu- facturing of photolithography systems. It was a delight to work on a topic which posed challenging questions of a theoretical nature and in the same time had a direct practical application. Working on this thesis was a new experience for me that I will remem- ber for life and these lines are being written with genuine satisfaction for finishing the manuscript. I would like to take a moment now to express my gratitude to all people who contributed in one way or another to this thesis. I am indebted to Bob Mattheij for offering me the opportunity to work on a topic which looks as exciting to me now as it did four years ago. I would like to thank him and my copromotor Jos Maubach for their guidance and trust. I consider myself lucky to have Irwan Setija from ASML as a third supervisor. His enthusiasm has been extremely motivating in periods of productive research as well as in moments of stagnation. Our traditional Friday afternoon meetings usually lasted much longer than planned, and were often ended by Irwan’s ”I am very curious about the new results...“. Besides my three supervisors, my defense committee is completed by prof. dr. Gerard Granet, prof. dr. Paul Urbach, prof. dr. Wim Coene and prof. dr. Mark Peletier. I would like to thank them all for the invested time and their valuable comments. I am grateful to several other people who have had a direct contribution to this work. Nico and Mark, former PhD students who have been part of the CASA-ASML collaboration, performed excellent research which resulted in well-written dissertations
Recommended publications
  • Language Reference Manual
    MATLAB The Language5 of Technical Computing Computation Visualization Programming Language Reference Manual Version 5 How to Contact The MathWorks: ☎ (508) 647-7000 Phone PHONE (508) 647-7001 Fax FAX ☎ (508) 647-7022 Technical Support Faxback Server FAX SERVER ✉ MAIL The MathWorks, Inc. Mail 24 Prime Park Way Natick, MA 01760-1500 http://www.mathworks.com Web INTERNET ftp.mathworks.com Anonymous FTP server @ [email protected] Technical support E-MAIL [email protected] Product enhancement suggestions [email protected] Bug reports [email protected] Documentation error reports [email protected] Subscribing user registration [email protected] Order status, license renewals, passcodes [email protected] Sales, pricing, and general information Language Reference Manual (November 1996) COPYRIGHT 1994 - 1996 by The MathWorks, Inc. All Rights Reserved. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro- duced in any form without prior written consent from The MathWorks, Inc. U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S. Government, the following shall apply: (a) for units of the Department of Defense: RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restric- tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013. (b) for any other unit or agency: NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of, the computer software and accompanying documentation, the rights of the Government regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR.
    [Show full text]
  • Kung J., Rota G.C., Yan C.H. Combinatorics.. the Rota Way
    This page intentionally left blank P1: ... CUUS456-FM cuus456-Kung 978 0 521 88389 4 November 28, 2008 12:21 Combinatorics: The Rota Way Gian-Carlo Rota was one of the most original and colorful mathematicians of the twentieth century. His work on the foundations of combinatorics focused on revealing the algebraic structures that lie behind diverse combinatorial areas and created a new area of algebraic combinatorics. His graduate courses influenced generations of students. Written by two of his former students, this book is based on notes from his courses and on personal discussions with him. Topics include sets and valuations, partially or- dered sets, distributive lattices, partitions and entropy, matching theory, free matrices, doubly stochastic matrices, Mobius¨ functions, chains and antichains, Sperner theory, commuting equivalence relations and linear lattices, modular and geometric lattices, valuation rings, generating functions, umbral calculus, symmetric functions, Baxter algebras, unimodality of sequences, and location of zeros of polynomials. Many exer- cises and research problems are included and unexplored areas of possible research are discussed. This book should be on the shelf of all students and researchers in combinatorics and related areas. joseph p. s. kung is a professor of mathematics at the University of North Texas. He is currently an editor-in-chief of Advances in Applied Mathematics. gian-carlo rota (1932–1999) was a professor of applied mathematics and natural philosophy at the Massachusetts Institute of Technology. He was a member of the Na- tional Academy of Science. He was awarded the 1988 Steele Prize of the American Math- ematical Society for his 1964 paper “On the Foundations of Combinatorial Theory I.
    [Show full text]
  • The Generalized Dedekind Determinant
    Contemporary Mathematics Volume 655, 2015 http://dx.doi.org/10.1090/conm/655/13232 The Generalized Dedekind Determinant M. Ram Murty and Kaneenika Sinha Abstract. The aim of this note is to calculate the determinants of certain matrices which arise in three different settings, namely from characters on finite abelian groups, zeta functions on lattices and Fourier coefficients of normalized Hecke eigenforms. Seemingly disparate, these results arise from a common framework suggested by elementary linear algebra. 1. Introduction The purpose of this note is three-fold. We prove three seemingly disparate results about matrices which arise in three different settings, namely from charac- ters on finite abelian groups, zeta functions on lattices and Fourier coefficients of normalized Hecke eigenforms. In this section, we state these theorems. In Section 2, we state a lemma from elementary linear algebra, which lies at the heart of our three theorems. A detailed discussion and proofs of the theorems appear in Sections 3, 4 and 5. In what follows below, for any n × n matrix A and for 1 ≤ i, j ≤ n, Ai,j or (A)i,j will denote the (i, j)-th entry of A. A diagonal matrix with diagonal entries y1,y2, ...yn will be denoted as diag (y1,y2, ...yn). Theorem 1.1. Let G = {x1,x2,...xn} be a finite abelian group and let f : G → C be a complex-valued function on G. Let F be an n × n matrix defined by F −1 i,j = f(xi xj). For a character χ on G, (that is, a homomorphism of G into the multiplicative group of the field C of complex numbers), we define Sχ := f(s)χ(s).
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Analytic Number Theory
    Mathematisches Forschungsinstitut Oberwolfach Report No. 50/2019 DOI: 10.4171/OWR/2019/50 Analytic Number Theory Organized by J¨org Br¨udern, G¨ottingen Kaisa Matom¨aki, Turku Robert C. Vaughan, State College Trevor D. Wooley, West Lafayette 3 November – 9 November 2019 Abstract. Analytic number theory is a subject which is central to modern mathematics. There are many important unsolved problems which have stim- ulated a large amount of activity by many talented researchers. At least two of the Millennium Problems can be considered to be in this area. Moreover in recent years there has been very substantial progress on a number of these questions. Mathematics Subject Classification (2010): 11Bxx, 11Dxx, 11Jxx-11Pxx. Introduction by the Organizers The workshop Analytic Number Theory, organised by J¨org Br¨udern (G¨ottingen), Kaisa Matom¨aki (Turku), Robert C. Vaughan (State College) and Trevor D. Woo- ley (West Lafayette) was well attended with over 50 participants from a broad geographic spectrum, all either distinguished and leading workers in the field or very promising younger researchers. Over the last decade or so there has been considerable and surprising movement in our understanding of a whole series of questions in analytic number theory and related areas. This includes the establishment of infinitely many bounded gaps in the primes by Zhang, Maynard and Tao, significant progress on our understand- ing of the behaviour of multiplicative functions such as the M¨obius function by Matom¨aki and Radziwi l l, the work on the Vinogradov
    [Show full text]
  • Matrices Related to Dirichlet Series 2
    MATRICES RELATED TO DIRICHLET SERIES DAVID A. CARDON Abstract. We attach a certain n n matrix An to the Dirichlet series × ∞ −s L(s)= k=1 akk . We study the determinant, characteristic polynomial, eigenvalues,P and eigenvectors of these matrices. The determinant of An can be understood as a weighted sum of the first n coefficients of the Dirichlet series L(s)−1. We give an interpretation of the partial sum of a Dirichlet series as a product of eigenvalues. In a special case, the determinant of An is the sum of the M¨obius function. We disprove a conjecture of Barrett and Jarvis regarding the eigenvalues of An. 1. Introduction To the Dirichlet series ∞ a L(s)= k , ks Xk=1 we attach the n n matrix × ∞ Dn = akEn(k), Xk=1 where E (k) is the n n matrix whose ijth entry is 1 if j = ki and 0 otherwise. n × For example, a1 a2 a3 a4 a5 a6 arXiv:0809.0076v1 [math.NT] 30 Aug 2008 a1 a2 a3 a1 a2 D6 = . a1 a1 a1 Since En(k1)En(k2)= En(k1k2) for every k ,k N, formally manipulating linear combinations of E (k) is 1 2 ∈ n very similar to formally manipulating Dirichlet series. However, because En(k) Date: October 28, 2018. 1 MATRICES RELATED TO DIRICHLET SERIES 2 is the zero matrix whenever k > n, the sum defining Dn is guaranteed to converge. Of course, the n n matrix contains less information than the × Dirichlet series. Letting n tend to infinity produces semi-infinite matrices, the formal manipulation of which is exactly equivalent to formally manipulating Dirichlet series.
    [Show full text]
  • Pattern Avoidance and Fiber Bundle Structures on Schubert Varieties
    Thursday 2.10 Auditorium B Pattern Avoidance and Fiber Bundle Structures on Schubert Varieties Timothy Alland [email protected] SUNY Stony Brook (This talk is based on joint work with Edward Richmond.) MSC2000: 05E15, 14M15 Permutations are known to index type A Schubert varieties. A question one can ask regarding a specific Schubert variety is whether it is an iterated fiber bundle of Grass- mannian Schubert varieties, that is, if it has a complete parabolic bundle structure. We have found that a Schubert variety has a complete parabolic bundle structure if and only if its associated permutation avoids the patterns 3412, 52341, and 635241. We find this by first identifying when the standard projection from the Schubert variety in the complete flag variety to the Schubert variety in the Grassmannian is a fiber bundle using what we have called \split pattern avoidance". In this talk, I will demonstrate how we were able to move from a characterization of this projection in terms of the support and left descents of the permutation's parabolic decomposition to one that applies split pattern avoidance. I will also give a flavor of the proof of how the three patterns mentioned above determine whether a Schubert variety has a complete parabolic bundle structure. Monday 3.55 Auditorium B A simple proof of Shamir's conjecture Peter Allen [email protected] LSE (This talk is based on joint work with Julia B¨ottcher, Ewan Davies, Matthew Jenssen, Yoshiharu Kohayakawa, Barnaby Roberts.) MSC2000: 05C80 It is well known (and easy to show) that the threshold for a perfect matching in the bino- log n mial random graph G(n; p) is p = Θ n , coinciding with the threshold for every vertex to be in an edge (and much more is known).
    [Show full text]
  • A Multiprecision Derivative-Free Schur–Parlett Algorithm for Computing Matrix Functions
    A Multiprecision Derivative-Free Schur–Parlett Algorithm for Computing Matrix Functions Higham, Nicholas J. and Liu, Xiaobo 2020 MIMS EPrint: 2020.19 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 A MULTIPRECISION DERIVATIVE-FREE SCHUR{PARLETT ALGORITHM FOR COMPUTING MATRIX FUNCTIONS∗ NICHOLAS J. HIGHAMy AND XIAOBO LIUy Abstract. The Schur{Parlett algorithm, implemented in MATLAB as funm, computes a function f(A) of an n × n matrix A by using the Schur decomposition and a block recurrence of Parlett. The algorithm requires the ability to compute f and its derivatives, and it requires that f has a Taylor series expansion with a suitably large radius of convergence. We develop a version of the Schur{Parlett algorithm that requires only function values and uses higher precision arithmetic to evaluate f on the diagonal blocks of order greater than 2 (if there are any) of the reordered and blocked Schur form. The key idea is to compute by diagonalization the function of a small random diagonal perturbation of each triangular block, where the perturbation ensures that diagonalization will succeed. This multiprecision Schur{Parlett algorithm is applicable to arbitrary functions f and, like the original Schur{Parlett algorithm, it generally behaves in a numerically stable fashion. Our algorithm is inspired by Davies's randomized approximate diagonalization method, but we explain why that is not a reliable numerical method for computing matrix functions.
    [Show full text]
  • Table of Contents
    Contents PREFACE to The Mathematica GuideBooks CHAPTER 0 Introduction and Orientation 0.1 Overview 0.1.1 Content Summaries 0.1.2 Relation of the Four Volumes 0.1.3 Chapter Structure 0.1.4 Code Presentation Style 0.2 Requirements 0.2.1 Hardware and Software 0.2.2 Reader Prerequisites 0.3 What the GuideBooks Are and What They Are Not 0.3.1 Doing Computer Mathematics 0.3.2 Programming Paradigms 0.4 Exercises and Solutions 0.4.1 Exercises 0.4.2 Solutions 0.5 The Books Versus the Electronic Components 0.5.1 Working with the Notebook 0.5.2 Reproducibility of the Results 0.5.3 Earlier Versions of the Notebooks 0.6 Style and Design Elements 0.6.1 Text and Code Formatting 0.6.2 References 0.6.3 Variable Scoping, Input Numbering, and Warning Messages 0.6.4 Graphics 0.6.5 Notations and Symbols 0.6.6 Units 0.6.7 Cover Graphics © 2004, 2005 Springer Science+Business Media, Inc. 2 Printed from THE MATHEMATICA GUIDEBOOKS 0.7 Production History 0.8 Four General Suggestions @ @ References P R O G R A M M I N G CHAPTER 1 Introduction to Mathematica 1.0 Remarks 1.1 Basics of Mathematica as a Programming Language 1.1.1 General Background In and Out Numbering † General Naming, Spelling, and Capitalization Conventions for Symbols † Options and Option Settings † Messages † Add-On Packages 1.1.2 Elementary Syntax Common Shortcuts † Parentheses, Braces, and Brackets † Comments Inside Code † Font Usage † Referring to Outputs † Functional Programming Style † “Ideal” Formatting 1.2 Introductory Examples 1.2.0 Remarks 1.2.1 Numerical Computations Periodic Continued
    [Show full text]
  • The Divisor Matrix, Dirichlet Series and SL(2,Z)
    The Divisor Matrix, Dirichlet Series and SL(2, Z) Peter Sin and John G.Thompson May 8th, 2008. Overview Basic notions and notations Overgroups of the divisor matrix A special representation of SL(2, Z) Ordered factorizations Jordan form of D Construction of representations The main construction From group elements to Dirichlet series Related topics The Divisor matrix I D = (di,j )i,j∈N defined by ( 1, if i divides j, di,j = 0 otherwise. The matrix ring A I E := free Q-module with basis {en}n∈N. ∼ I EndQ(E) = A := the space of matrices A = (ai,j )i,j∈N, with rational entries, such that each column has only finitely many nonzero entries. ∗ ∼ N ∗ I E = Q , sequences of rational numbers, f ∈ E is identified with the sequence (f (en))n∈N. Write f (en) as f (n) for short. ∗ I A acts on the right of E : X N (fA)(n) = am,nf (m), f ∈ Q , A ∈ A. m∈N The matrix ring A I E := free Q-module with basis {en}n∈N. ∼ I EndQ(E) = A := the space of matrices A = (ai,j )i,j∈N, with rational entries, such that each column has only finitely many nonzero entries. ∗ ∼ N ∗ I E = Q , sequences of rational numbers, f ∈ E is identified with the sequence (f (en))n∈N. Write f (en) as f (n) for short. ∗ I A acts on the right of E : X N (fA)(n) = am,nf (m), f ∈ Q , A ∈ A. m∈N The matrix ring A I E := free Q-module with basis {en}n∈N.
    [Show full text]
  • The Divisor Matrix, Dirichlet Series and SL (2, Z)
    THE DIVISOR MATRIX, DIRICHLET SERIES AND SL(2, Z) PETER SIN AND JOHN G. THOMPSON Abstract. A representation of SL(2, Z) by integer matrices act- ing on the space of analytic ordinary Dirichlet series is constructed, in which the standard unipotent element acts as multiplication by the Riemann zeta function. It is then shown that the Dirichlet series in the orbit of the zeta function are related to it by algebraic equations. arXiv:0712.0837v6 [math.NT] 18 Jul 2008 2000 Mathematics Subject Classification. 11M06, 20C12. 1 2 1. Introduction This paper is concerned with group actions on the space of ana- lytic Dirichlet series. A formal Dirichlet series is a series of the form s n∞=1 ann− , where an n∞=1 is a sequence of complex numbers and s is formal variable. Such{ } series form an algebra [[s]] under the opera- tionsP of termwise addition and scalar multiplicationD and multiplication defined by Dirichlet convolution: ∞ ∞ ∞ s s s (1) ( ann− )( bnn− )= ( aibj)n− . n=1 n=1 n=1 ij=n X X X X It is well known that this algebra, sometimes called the algebra of arithmetic functions, is isomorphic with the algebra of formal power series in a countably infinite set of variables. The analytic Dirichlet series, those which converge for some complex value of the variable s, form a subalgebra s , shown in [6] to be a local, non-noetherian unique factorizationD{ domain.} As a vector space we can identify [[s]] with the space of sequences and s with the subspace of sequencesD satifying a certain polynomial growthD{ } condition.
    [Show full text]
  • Arxiv:0811.3701V4 [Math.NT] 9 Mar 2009 Matrices Are Not Symmetric, and Many Eigenvalues Must Be Computed to Estimate the Determi- Nants
    Symmetric matrices related to the Mertens function Jean-Paul Cardinal D´epartement de Math´ematiques Universit´eParis 13 93430 Villetaneuse, France [email protected] Abstract ∗ In this paper we explore a family of congruences over N from which one builds a sequence of symmetric matrices related to the Mertens function. From the results of numerical experiments, we formulate a conjecture about the growth of the quadratic norm of these matrices, which implies the Riemann hypothesis. This suggests that matrix analysis methods may come to play a more important role in this classical and difficult problem. Key words: Mertens function, Symmetric Eigenvalue Problem, Riemann hypothesis 2000 MSC: 11C20, 11N56, 15A36, 15A60 1. Introduction Among the numerous statements equivalent to the Riemann hypothesis, a few have been formulated as matrix problems. The Redheffer matrix An = (ai;j)1≤i;j≤n is an n × n matrix defined by ai;j = 1 if j = 1 or if i divides j, and ai;j = 0 otherwise. R. Redheffer [16] proved that the Riemann hypothesis is true if and only if 1=2+ det(An) = O(n ); for every > 0: F. Roesler [17] defined the matrix Bn = (bi;j)2≤i;j≤n by bi;j = i − 1 if i divides j, and bi;j = −1 otherwise, and he thus proved that the Riemann hypothesis is true if and only if −1=2+ det(Bn) = O(n!n ); for every > 0: Both the Redheffer and Roesler matrices are related, via their determinants, to the Mertens func- tion, which is by definition the summatory function of the M¨obiusfunction (see [1] p.91).
    [Show full text]
  • Four Faces of Number Theory Titus Hilberdink Jürgen Sander This Book Arises from Courses Given at the International Summer School
    Series of Lectures in Mathematics Titus Hilberdink and Jürgen Sander and Jürgen Titus Hilberdink Bugeaud, Bringmann, Yann Kathrin Kathrin Bringmann Yann Bugeaud Titus Hilberdink Jürgen Sander Kathrin Bringmann Yann Bugeaud Four Faces of Number Theory Titus Hilberdink Jürgen Sander This book arises from courses given at the International Summer School organized in August 2012 by the number theory group of the Department of Four Faces of Number Theory Mathematics at the University of Würzburg. It consists of four essentially self- contained chapters and presents recent research results highlighting the strong Four Faces of interplay between number theory and other fields of mathematics, such as combinatorics, functional analysis and graph theory. The book is addressed to (under)graduate students who wish to discover various aspects of number theory. Number Theory Remarkably, it demonstrates how easily one can approach frontiers of current research in number theory by elementary and basic analytic methods. Kathrin Bringmann gives an introduction to the theory of modular forms and, in particular, so-called Mock theta-functions, a topic which had been untouched for decades but has obtained much attention in the last years. Yann Bugeaud is concerned with expansions of algebraic numbers. Here combinatorics on words and transcendence theory are combined to derive new information on the sequence of decimals of algebraic numbers and on their continued fraction expansions. Titus Hilberdink reports on a recent and rather unexpected approach to extreme values of the Riemann zeta-function by use of (multiplicative) Toeplitz matrices and functional analysis. Finally, Jürgen Sander gives an introduction to algebraic graph theory and the impact of number theoretical methods on fundamental questions about the spectra of graphs and the analogue of the Riemann hypothesis.
    [Show full text]