The Divisor Matrix, Dirichlet Series and SL (2, Z)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Language Reference Manual
MATLAB The Language5 of Technical Computing Computation Visualization Programming Language Reference Manual Version 5 How to Contact The MathWorks: ☎ (508) 647-7000 Phone PHONE (508) 647-7001 Fax FAX ☎ (508) 647-7022 Technical Support Faxback Server FAX SERVER ✉ MAIL The MathWorks, Inc. Mail 24 Prime Park Way Natick, MA 01760-1500 http://www.mathworks.com Web INTERNET ftp.mathworks.com Anonymous FTP server @ [email protected] Technical support E-MAIL [email protected] Product enhancement suggestions [email protected] Bug reports [email protected] Documentation error reports [email protected] Subscribing user registration [email protected] Order status, license renewals, passcodes [email protected] Sales, pricing, and general information Language Reference Manual (November 1996) COPYRIGHT 1994 - 1996 by The MathWorks, Inc. All Rights Reserved. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro- duced in any form without prior written consent from The MathWorks, Inc. U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S. Government, the following shall apply: (a) for units of the Department of Defense: RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restric- tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013. (b) for any other unit or agency: NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of, the computer software and accompanying documentation, the rights of the Government regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR. -
For Your Information
fyi.qxp 3/18/98 3:19 PM Page 244 For Your Information structure federal support. The study is part of a larger ef- International Study of fort at the Academy to gauge where the U.S. stands in- Mathematics and Science ternationally in scientific research. The motivation comes from a 1993 report by the Committee on Science, Engi- Achievement neering, and Public Policy (COSEPUP), which set forth strate- gies for making decisions about how best to use federal The first installment of results from the Third International research funds. COSEPUP is a committee of the NAS, the Mathematics and Science Study (TIMSS) was released on No- National Academy of Engineering, and the Institute of Med- vember 20. This first batch of data pertains to achievement icine. The COSEPUP report recommended that the U.S. aim of eighth-graders; later releases will focus on fourth- and to be the world leader in certain critical fields and to be twelfth-graders. The study found that U.S. eighth-graders among the leaders in other areas. The report urged field- performed below the international average in mathemat- by-field assessments by independent panels of researchers ics but slightly above average in science. The U.S. was in the field, researchers in closely related fields, and users among thirty-three countries in which there was no sta- of the research. The mathematical sciences study is the first tistically significant difference between the performance such assessment. If this project is successful, the Academy of eighth-grade boys and girls in mathematics. The study will follow suit with other areas. -
Kung J., Rota G.C., Yan C.H. Combinatorics.. the Rota Way
This page intentionally left blank P1: ... CUUS456-FM cuus456-Kung 978 0 521 88389 4 November 28, 2008 12:21 Combinatorics: The Rota Way Gian-Carlo Rota was one of the most original and colorful mathematicians of the twentieth century. His work on the foundations of combinatorics focused on revealing the algebraic structures that lie behind diverse combinatorial areas and created a new area of algebraic combinatorics. His graduate courses influenced generations of students. Written by two of his former students, this book is based on notes from his courses and on personal discussions with him. Topics include sets and valuations, partially or- dered sets, distributive lattices, partitions and entropy, matching theory, free matrices, doubly stochastic matrices, Mobius¨ functions, chains and antichains, Sperner theory, commuting equivalence relations and linear lattices, modular and geometric lattices, valuation rings, generating functions, umbral calculus, symmetric functions, Baxter algebras, unimodality of sequences, and location of zeros of polynomials. Many exer- cises and research problems are included and unexplored areas of possible research are discussed. This book should be on the shelf of all students and researchers in combinatorics and related areas. joseph p. s. kung is a professor of mathematics at the University of North Texas. He is currently an editor-in-chief of Advances in Applied Mathematics. gian-carlo rota (1932–1999) was a professor of applied mathematics and natural philosophy at the Massachusetts Institute of Technology. He was a member of the Na- tional Academy of Science. He was awarded the 1988 Steele Prize of the American Math- ematical Society for his 1964 paper “On the Foundations of Combinatorial Theory I. -
Spring 2014 Fine Letters
Spring 2014 Issue 3 Department of Mathematics Department of Mathematics Princeton University Fine Hall, Washington Rd. Princeton, NJ 08544 Department Chair’s letter The department is continuing its period of Assistant to the Chair and to the Depart- transition and renewal. Although long- ment Manager, and Will Crow as Faculty The Wolf time faculty members John Conway and Assistant. The uniform opinion of the Ed Nelson became emeriti last July, we faculty and staff is that we made great Prize for look forward to many years of Ed being choices. Peter amongst us and for John continuing to hold Among major faculty honors Alice Chang Sarnak court in his “office” in the nook across from became a member of the Academia Sinica, Professor Peter Sarnak will be awarded this the common room. We are extremely Elliott Lieb became a Foreign Member of year’s Wolf Prize in Mathematics. delighted that Fernando Coda Marques and the Royal Society, John Mather won the The prize is awarded annually by the Wolf Assaf Naor (last Fall’s Minerva Lecturer) Brouwer Prize, Sophie Morel won the in- Foundation in the fields of agriculture, will be joining us as full professors in augural AWM-Microsoft Research prize in chemistry, mathematics, medicine, physics, Alumni , faculty, students, friends, connect with us, write to us at September. Algebra and Number Theory, Peter Sarnak and the arts. The award will be presented Our finishing graduate students did very won the Wolf Prize, and Yasha Sinai the by Israeli President Shimon Peres on June [email protected] well on the job market with four win- Abel Prize. -
The Generalized Dedekind Determinant
Contemporary Mathematics Volume 655, 2015 http://dx.doi.org/10.1090/conm/655/13232 The Generalized Dedekind Determinant M. Ram Murty and Kaneenika Sinha Abstract. The aim of this note is to calculate the determinants of certain matrices which arise in three different settings, namely from characters on finite abelian groups, zeta functions on lattices and Fourier coefficients of normalized Hecke eigenforms. Seemingly disparate, these results arise from a common framework suggested by elementary linear algebra. 1. Introduction The purpose of this note is three-fold. We prove three seemingly disparate results about matrices which arise in three different settings, namely from charac- ters on finite abelian groups, zeta functions on lattices and Fourier coefficients of normalized Hecke eigenforms. In this section, we state these theorems. In Section 2, we state a lemma from elementary linear algebra, which lies at the heart of our three theorems. A detailed discussion and proofs of the theorems appear in Sections 3, 4 and 5. In what follows below, for any n × n matrix A and for 1 ≤ i, j ≤ n, Ai,j or (A)i,j will denote the (i, j)-th entry of A. A diagonal matrix with diagonal entries y1,y2, ...yn will be denoted as diag (y1,y2, ...yn). Theorem 1.1. Let G = {x1,x2,...xn} be a finite abelian group and let f : G → C be a complex-valued function on G. Let F be an n × n matrix defined by F −1 i,j = f(xi xj). For a character χ on G, (that is, a homomorphism of G into the multiplicative group of the field C of complex numbers), we define Sχ := f(s)χ(s). -
Selected Papers
Selected Papers Volume I Arizona, 1968 Peter D. Lax Selected Papers Volume I Edited by Peter Sarnak and Andrew Majda Peter D. Lax Courant Institute New York, NY 10012 USA Mathematics Subject Classification (2000): 11Dxx, 35-xx, 37Kxx, 58J50, 65-xx, 70Hxx, 81Uxx Library of Congress Cataloging-in-Publication Data Lax, Peter D. [Papers. Selections] Selected papers / Peter Lax ; edited by Peter Sarnak and Andrew Majda. p. cm. Includes bibliographical references and index. ISBN 0-387-22925-6 (v. 1 : alk paper) — ISBN 0-387-22926-4 (v. 2 : alk. paper) 1. Mathematics—United States. 2. Mathematics—Study and teaching—United States. 3. Lax, Peter D. 4. Mathematicians—United States. I. Sarnak, Peter. II. Majda, Andrew, 1949- III. Title. QA3.L2642 2004 510—dc22 2004056450 ISBN 0-387-22925-6 Printed on acid-free paper. © 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. -
Mathematisches Forschungsinstitut Oberwolfach Analytic Number Theory
Mathematisches Forschungsinstitut Oberwolfach Report No. 50/2019 DOI: 10.4171/OWR/2019/50 Analytic Number Theory Organized by J¨org Br¨udern, G¨ottingen Kaisa Matom¨aki, Turku Robert C. Vaughan, State College Trevor D. Wooley, West Lafayette 3 November – 9 November 2019 Abstract. Analytic number theory is a subject which is central to modern mathematics. There are many important unsolved problems which have stim- ulated a large amount of activity by many talented researchers. At least two of the Millennium Problems can be considered to be in this area. Moreover in recent years there has been very substantial progress on a number of these questions. Mathematics Subject Classification (2010): 11Bxx, 11Dxx, 11Jxx-11Pxx. Introduction by the Organizers The workshop Analytic Number Theory, organised by J¨org Br¨udern (G¨ottingen), Kaisa Matom¨aki (Turku), Robert C. Vaughan (State College) and Trevor D. Woo- ley (West Lafayette) was well attended with over 50 participants from a broad geographic spectrum, all either distinguished and leading workers in the field or very promising younger researchers. Over the last decade or so there has been considerable and surprising movement in our understanding of a whole series of questions in analytic number theory and related areas. This includes the establishment of infinitely many bounded gaps in the primes by Zhang, Maynard and Tao, significant progress on our understand- ing of the behaviour of multiplicative functions such as the M¨obius function by Matom¨aki and Radziwi l l, the work on the Vinogradov -
Child of Vietnam War Wins Top Maths Honour 19 August 2010, by P.S
Child of Vietnam war wins top maths honour 19 August 2010, by P.S. Jayaram Vietnamese-born mathematician Ngo Bao Chau Presented every four years to two, three, or four on Thursday won the maths world's version of a mathematicians -- who must be under 40 years of Nobel Prize, the Fields Medal, cementing a journey age -- the medal comes with a cash prize of 15,000 that has taken him from war-torn Hanoi to the Canadian dollars (14,600 US dollars). pages of Time magazine. The only son of a physicist father and a mother who Ngo, 38, was awarded his medal in a ceremony at was a medical doctor, Ngo's mathematical abilities the International Congress of Mathematicians won him a place, aged 15, in a specialist class of meeting in the southern Indian city of Hyderabad. the Vietnam National University High School. The other three recipients were Israeli In 1988, he won a gold medal at the 29th mathematician Elon Lindenstrauss, Frenchman International Mathematical Olympiad and repeated Cedric Villani and Swiss-based Russian Stanislav the same feat the following year. Smirnov. After high school, he was offered a scholarship by Ngo, who was born in Hanoi in 1972 in the waning the French government to study in Paris. He years of the Vietnam war, was cited for his "brilliant obtained a PhD from the Universite Paris-Sud in proof" of a 30-year-old mathematical conundrum 1997 and became a professor there in 2005. known as the Fundamental Lemma. Earlier this year he became a naturalised French The proof offered a key stepping stone to citizen and accepted a professorship at the establishing and exploring a revolutionary theory University of Chicago. -
Arxiv:1904.08041V1 [Math.NT] 17 Apr 2019 Aeyee Roduioua Atcs Hr Santrlprobability Natural a Is There Lattices
THE SIEGEL VARIANCE FORMULA FOR QUADRATIC FORMS NASER T. SARDARI Abstract. We introduce a smooth variance sum associated to a pair of posi- tive definite symmetric integral matrices Am×m and Bn×n, where m ≥ n. By using the oscillator representation, we give a formula for this variance sum in terms of a smooth sum over the square of a functional evaluated on the B- th Fourier coefficients of the vector valued holomorphic Siegel modular forms A which are Hecke eigenforms and obtained by the theta transfer from O m m . By using the Ramanujan bound on the Fourier coefficients of the holomorphic× cusp forms, we give a sharp upper bound on this variance when n = 1. As applications, we prove a cutoff phenomenon for the probability that a uni- modular lattice of dimension m represents a given even number. This gives an optimal upper bound on the sphere packing density of almost all even unimod- ular lattices. Furthermore, we generalize the result of Bourgain, Rudnick and Sarnak [BRS17], and also give an optimal bound on the diophantine exponent of the p-integral points on any positive definite d-dimensional quadric, where d ≥ 3. This improves the best known bounds due to Ghosh, Gorodnik and Nevo [GGN13] into an optimal bound. Contents 1. Introduction 1 2. Proof of Theorem 1.1 9 3. Proof of Theorem 1.4 14 4. The Siegel variance formula 17 5. Harmonic polynomials 21 6. The oscillator representations and Weyl’s sums 24 7. Proof of Theorem 1.8 30 References 30 arXiv:1904.08041v1 [math.NT] 17 Apr 2019 1. -
Matrices Related to Dirichlet Series 2
MATRICES RELATED TO DIRICHLET SERIES DAVID A. CARDON Abstract. We attach a certain n n matrix An to the Dirichlet series × ∞ −s L(s)= k=1 akk . We study the determinant, characteristic polynomial, eigenvalues,P and eigenvectors of these matrices. The determinant of An can be understood as a weighted sum of the first n coefficients of the Dirichlet series L(s)−1. We give an interpretation of the partial sum of a Dirichlet series as a product of eigenvalues. In a special case, the determinant of An is the sum of the M¨obius function. We disprove a conjecture of Barrett and Jarvis regarding the eigenvalues of An. 1. Introduction To the Dirichlet series ∞ a L(s)= k , ks Xk=1 we attach the n n matrix × ∞ Dn = akEn(k), Xk=1 where E (k) is the n n matrix whose ijth entry is 1 if j = ki and 0 otherwise. n × For example, a1 a2 a3 a4 a5 a6 arXiv:0809.0076v1 [math.NT] 30 Aug 2008 a1 a2 a3 a1 a2 D6 = . a1 a1 a1 Since En(k1)En(k2)= En(k1k2) for every k ,k N, formally manipulating linear combinations of E (k) is 1 2 ∈ n very similar to formally manipulating Dirichlet series. However, because En(k) Date: October 28, 2018. 1 MATRICES RELATED TO DIRICHLET SERIES 2 is the zero matrix whenever k > n, the sum defining Dn is guaranteed to converge. Of course, the n n matrix contains less information than the × Dirichlet series. Letting n tend to infinity produces semi-infinite matrices, the formal manipulation of which is exactly equivalent to formally manipulating Dirichlet series. -
Pattern Avoidance and Fiber Bundle Structures on Schubert Varieties
Thursday 2.10 Auditorium B Pattern Avoidance and Fiber Bundle Structures on Schubert Varieties Timothy Alland [email protected] SUNY Stony Brook (This talk is based on joint work with Edward Richmond.) MSC2000: 05E15, 14M15 Permutations are known to index type A Schubert varieties. A question one can ask regarding a specific Schubert variety is whether it is an iterated fiber bundle of Grass- mannian Schubert varieties, that is, if it has a complete parabolic bundle structure. We have found that a Schubert variety has a complete parabolic bundle structure if and only if its associated permutation avoids the patterns 3412, 52341, and 635241. We find this by first identifying when the standard projection from the Schubert variety in the complete flag variety to the Schubert variety in the Grassmannian is a fiber bundle using what we have called \split pattern avoidance". In this talk, I will demonstrate how we were able to move from a characterization of this projection in terms of the support and left descents of the permutation's parabolic decomposition to one that applies split pattern avoidance. I will also give a flavor of the proof of how the three patterns mentioned above determine whether a Schubert variety has a complete parabolic bundle structure. Monday 3.55 Auditorium B A simple proof of Shamir's conjecture Peter Allen [email protected] LSE (This talk is based on joint work with Julia B¨ottcher, Ewan Davies, Matthew Jenssen, Yoshiharu Kohayakawa, Barnaby Roberts.) MSC2000: 05C80 It is well known (and easy to show) that the threshold for a perfect matching in the bino- log n mial random graph G(n; p) is p = Θ n , coinciding with the threshold for every vertex to be in an edge (and much more is known). -
A Multiprecision Derivative-Free Schur–Parlett Algorithm for Computing Matrix Functions
A Multiprecision Derivative-Free Schur–Parlett Algorithm for Computing Matrix Functions Higham, Nicholas J. and Liu, Xiaobo 2020 MIMS EPrint: 2020.19 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 A MULTIPRECISION DERIVATIVE-FREE SCHUR{PARLETT ALGORITHM FOR COMPUTING MATRIX FUNCTIONS∗ NICHOLAS J. HIGHAMy AND XIAOBO LIUy Abstract. The Schur{Parlett algorithm, implemented in MATLAB as funm, computes a function f(A) of an n × n matrix A by using the Schur decomposition and a block recurrence of Parlett. The algorithm requires the ability to compute f and its derivatives, and it requires that f has a Taylor series expansion with a suitably large radius of convergence. We develop a version of the Schur{Parlett algorithm that requires only function values and uses higher precision arithmetic to evaluate f on the diagonal blocks of order greater than 2 (if there are any) of the reordered and blocked Schur form. The key idea is to compute by diagonalization the function of a small random diagonal perturbation of each triangular block, where the perturbation ensures that diagonalization will succeed. This multiprecision Schur{Parlett algorithm is applicable to arbitrary functions f and, like the original Schur{Parlett algorithm, it generally behaves in a numerically stable fashion. Our algorithm is inspired by Davies's randomized approximate diagonalization method, but we explain why that is not a reliable numerical method for computing matrix functions.