An Introduction to Lévy and Feller Processes – Advanced Courses in Mathematics - CRM Barcelona 2014 – René L. Schilling TU Dresden, Institut für Mathematische Stochastik, 01062 Dresden, Germany
[email protected] http://www.math.tu-dresden.de/sto/schilling These course notes will be published, together Davar Khoshnevisan’s notes on Invariance and Comparison Principles for Parabolic Stochastic Partial Differential Equations as From Lévy-Type Processes to Parabolic SPDEs by the CRM, Barcelona and Birkäuser, Cham 2017 (ISBN: 978-3-319-34119-4). The arXiv-version and the published version may differ in layout, pagination and wording, but not in content. arXiv:1603.00251v2 [math.PR] 17 Oct 2016 Contents Preface 3 Symbols and notation 5 1. Orientation 7 2. Lévy processes 12 3. Examples 16 4. On the Markov property 24 5. A digression: semigroups 30 6. The generator of a Lévy process 36 7. Construction of Lévy processes 44 8. Two special Lévy processes 49 9. Random measures 55 10.A digression: stochastic integrals 64 11.From Lévy to Feller processes 75 12.Symbols and semimartingales 84 13.Dénouement 93 A. Some classical results 97 Bibliography 104 1 Preface These lecture notes are an extended version of my lectures on Lévy and Lévy-type processes given at the Second Barcelona Summer School on Stochastic Analysis organized by the Centre de Recerca Matemàtica (CRM). The lectures are aimed at advanced graduate and PhD students. In order to read these notes, one should have sound knowledge of measure theoretic probability theory and some background in stochastic processes, as it is covered in my books Measures, Integals and Martingales [54] and Brownian Motion [56].