Mercury Levels in Great Cormorant's Feathers from the Vistula Lagoon Ecosystem in Poland M

Total Page:16

File Type:pdf, Size:1020Kb

Mercury Levels in Great Cormorant's Feathers from the Vistula Lagoon Ecosystem in Poland M HEAVY METALS IN THE MARINE ENVIRONMENT Mercury Levels in Great Cormorant's Feathers from the Vistula Lagoon Ecosystem in Poland M. Misztal - Szkudlińska 1, P. Konieczka 2, J. Namieśnik 3, P. Szefer 4 1Department of Food Sciences, Medical University of Gdańsk, Gen. J. Hallera 107, PL 80-416 Gdańsk, POLAND, [email protected] 2Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, PL 80-233 Gdańsk, POLAND, [email protected] 3Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, PL 80-233 Gdańsk, POLAND, [email protected] 4Department of Food Sciences, Medical University of Gdańsk, Gen. J. Hallera 107, PL 80-416 Gdańsk, POLAND, [email protected] Abstract Monitoring of Hg in the marine environment is a priority. Some tissues of aquatic birds, as top predators, may exhibit high mercury levels due to food chain biomagnification. Birds are able to eliminate a substantial portion of their body burden of certain heavy metals via their plumage during the moulting period. During the moult, levels of some heavy met- als in internal tissues drop as they are sequestered in the feathers. The contour and tail feathers were collected from adult birds of Great Cormorant (n=44) from the Vistula Lagoon ecosystem in Poland. Feathers samples were rinsed three times with distilled water, deter- gent, Milli-Q water and with acetone. After drying at room temperature for one night, the total Hg concentration was determined by cold-vapor AAS technique (MA - 2000 Mercury Analyzer). In order to estimate trueness of the analytical measurements, the certified refer- ence materials such as DORM-2 and BCR-463 were used. The total Hg concentrations in contour feathers (9.73±5.63 µg/g d.w) were higher than in tail feathers (6.43±4.21 µg/g d.w) (p<0.005, U-test). Since feathers have been used as possible monitoring tissues for the exposure of birds to Hg, further studies are needed to support this finding. Key words: Mercury, Great Cormorant, feathers, biomonitoring, CV-AAS Introduction Material and Methods In aquatic environments Hg is convert- The birds were collected by shotgun at ed to methylmercury, and in this form is rap- the Vistula Lagoon (by permission of the idly incorporated into the food chain. Aquat- local environment protection authorities). ic birds, which are the top predators of food Contour and tail feathers were chosen for chain, may be exposed to significant concen- analyses. Samples were rinsed three times trations of Hg. They might serve as good by water with detergent, distilled water with monitors of spatial and temporal patterns of acetone (1:1) and next Mili-Q water (Saeki et Hg contamination in water ecosystems al. 2000). Then feathers were dried at room (Ochoa-acuna et al. 2002, Monteneiro and temperature by the one night to a constant Furness 1995). Feathers serve as a useful weight (Burger and Gochfeld 1997). Samples indicator of inorganic pollutants because were homogenized and the total Hg concen- metal concentration correlate well with their tration was determined by cold-vapor AAS internal levels during the time of feathers technique (MA - 2000 Mercury Analyzer). formation. Mercury level is also stable in Samples were thermally decomposed at feathers (Burger and Gochfeld 1997) and can 800°C under clean air flow and Hg was be bound to the sulphydryl groups of the ker- determined by CV-AAS at 253.65 nm. atin as feathers grow. Birds can excrete con- Three analytical subsamples were prepared tamination during the moult period as the from each sample. Each sample was consist- most important pathway elimination of Hg ed of 5-10 contour or tail feathers taken from (Dauve et al. 2003, Ochoa-acuna et al. one specimen. Quality control was assured 2002). by analyses of CRMs, i.e. DORM-2 (Nation- The aim of this study was to analyze al Research Council, Canada) and BCR-463 the total Hg level in feathers of Great Cor- (IRMM, Belgium). The respective recoveries morants from the Vistula Lagoon and its of the total Hg were 101.0 and 97.1%; the comparison to that in the other aquatic birds' respective standard deviations amounted to feathers. 15 th ICHMET 615 HEAVY METALS IN THE MARINE ENVIRONMENT 0.09 and 0.09%. Other validation parame- µg/g d.w.). Inverse tendency was observed in ters for the analytical method were described the case of tail feathers; smaller Hg concen- by Misztal-Szkudlińska et al. (2008). The tration was observed in females (5.57±4.20 concentration data were processed statisti- µg/g d.w.) than in males (7.01±4.22 µg/g cally by STATISTICA 8.0 for Windows d.w.) Variations of Hg concentrations in the (Copyright© StatSoft, Inc. 1984-2008). The two kinds of feathers are shown in Figure 2. nonparametric Mann-Withney U test Feathers of cormorant from the Vistula (p<0.005) was used for checking statistical- Lagoon ecosystems are characterized by sig- ly significant dependence of Hg concentra- nificantly higher level of Hg as compared to tions on different kinds of feathers. cormorants from Japan. According to Saeki et al. (2000) and Nam et al. (2005) Great Results and Discussion Cormorant's feathers contained ca. 3 µg Hg/g Concentration of Hg in contour feath- d.w. Phalacrocorax auritius from two reser- ers (9.73±5.63 µg/g d.w.) was significantly voirs in New Mexico concentrated Hg at lev- higher than that in tail feathers (6.43±4.21 els of 4.01 and 2.34 µg/g w.w. in tail feathers µg/g d.w.) (Mann-Withney U test; p<0.005) (Caldwell et al. 1999). (Figure 1). Female contour feathers con- tained 10.6±6.69 µg Hg/g d.w. while male ones had somewhat lower levels (8.98±4.55 Figure 1. Concentrations of total Hg (µg/g d.w.) in Great Cormorants feathers. Figure 2. Concentrations of total Hg (µg/g d.w.) in feathers from male and female Great Cormorants. 616 15 th ICHMET HEAVY METALS IN THE MARINE ENVIRONMENT Very low level of Hg (0.251 µg/g d.w.) Africa. Environ Monit Assess 2001;69:196- has been observed by Burger and Gochfeld 203. (2001) in the feathers of Cape Cormorant Burger J, Gochfeld M. Risk, mercury (Phalacrocorax capensis) from Namibia in levels and birds: relating adverse laboratory southern Africa. Great cormorants analysed effects to field biomonitoring. Environ Res in our studies contained in feathers similar 1997;75:160-172. concentration of Hg to that in royal albatross Caldwell CA, Arnold MA, Gould WR. (6.8 µg/g d.w.) and black-footed albatross (7.2 Mercury distribution in blood, tissues, and µg/g d.w.) from Japan as well as in herring gull feathers of Double-Creased Cormorant (6.06 µg/g d.w.) and glaucous gull (5.96 µg/g nestlings from Arid-lands reservoirs in south d.w.) from Siberia (Kim et al. 1996 a, b). central New Mexico. Arch Environ Contam Ochoa-acuna et al. (2002) found differ- Toxicol 1999,36:456-461. ences in Hg concentrations in contour feath- Dauwe T, Bervoets L, Pinxten R, Blust ers across taxonomic bird groups. They R, Eens M. Variation of heavy metals within assumed that correlation depends on feeding and among feathers of birds of prey: effects of strategy and to a less extent on differences in molt and external contamination. Environ the metabolism and excretion of Hg. The Pollut 2003,124:429-436. highest levels of Hg were observed in Procel- Kim EY, Ichihashi H, Saeki K, lariide, Sulidae, Laridae and Phalacrocoraci- Atrashkevich G, Tanabe S, Tatsukawa R. dae whilst Charadriidae, Threskiornithidae Metal accumulation in tissues of seabirds and Anatidae contained the lowest its levels. from Chaun, northeast Siberia, Russia. Env- Birds from genus Phalacrocorax are iron Pollut 1996b,92:247-252. mainly fish-eating, so they have been able to Kim EY, Murakami T, Seaki K, Tat- accumulate contamination like Hg. sukawa R. Mercury levels and its chemical Limited data for Hg levels in feathers form in tissues and organs of seabirds. Arch indicate a range of 5 to 40 µg/g d.w. as being Environ Contam Toxicol 1996a,30:259- associated with adverse effects connected 266. with lower reproduction and survival (Burger Misztal-Szkudlińska M, Konieczka P, and Gochfeld 1997, 2000). Feathers of Great Namieśnik J, Szefer P. Total mercury in Cormorants from Vistula Lagoon are charac- Great Cormorant (Phalacrocorax carbo) and terized by generally higher levels of Hg as fish in Polish sector of Vistula Lagoon. 14th compared to those from other regions world- International Conference on Heavy Metals wide. Since feathers have been used as possi- in the Environment, Taipei, Taiwan, 23 - ble monitoring tissues for the exposure of 30.11.2008 birds to Hg, further studies are needed to Monteiro LR, Furness RW. Seabirds as support this finding. monitors of mercury in the marine environ- ment. Water Air Soil Pollut 1995;80:851- Acknowledgements 870. The authors gratefully acknowledge Nam DH, Anan Y, Ikemoto T, Okabe the financial support received from grant no. Y, Kim E-Y, Subramanian A. Specific accu- N305 049336 of the Polish Ministry of mulation of 20 trace elements in Great Cor- Science and Higher Education. We are morants (Phalacrocorax carbo) from Japan. indebted to Dr. Gerard Kanarek who assisted Environ Pollut 2005,134:503-514. with collecting the biological material. Ochoa-acuna H, Sepúlveda MS, Gross TS. Mercury in feathers from Chilean birds: References influence of location, feeding strategy, and Burger J, Gochfeld M. Metal levels in taxonomic affiliation.
Recommended publications
  • Kachemak Bay Birds Checklist
    LEGEND SPECIES Sp Su F W Status SPECIES Sp Su F W Status SPECIES Sp Su F W Status __Greater Scaup C C C C rmb __Red-tailed Hawk C C C - sb Laridae - Gulls & Terns C Common - Easily found in small to large numbers in __Lesser Scaup U - U - m __Rough-legged Hawk U U U - sb __Franklin’s Gull - A - - v appropriate habitat. __Steller’s Eider C R C C w __Golden Eagle R R R A s __Black-headed Gull - A - - v __Spectacled Eider - - - A v Falconidae - Falcons __Bonaparte’s Gull C C C R sb U Uncommon - Occasionally, but not always, found in small __King Eider R R R R w __American Kestrel R R R - m __Black-tailed Gull - A - - v numbers with some effort in appropriate habitat. __Common Eider C C C U rb __Merlin U C R R sb __Mew Gull C C C C rb __Harlequin Duck C C C C rb __Gyrfalcon R R R R w __Ring-billed Gull A - - A v R Rare - occurs in very small numbers or in a very limited __Surf Scoter C C C C rm __Peregrine Falcon U U R R sb __California Gull - - A - v number of sites and may not be found every year or even with __White-winged Scoter C C C C rm Rallidae - Rails, Coots & Gallinules __Herring Gull C C C C r concentrated effort. There are more than a few records of __Black Scoter C C C C rmb __American Coot - - A - v __Heermann’s Gull - A - - v these species in appropriate habitats.
    [Show full text]
  • Kendall Birds
    Kendall-Frost Reserve Breeding Common Name Scientific Name Regulatory Status Status Waterfowl - Family Anatidae Brant Branta bernicla W Special Concern Gadwall Ana strepera W American Wigeon Anas americana W Mallard Anas platyrhynchos Y Cinnamon Teal Anas cyanoptera W Northern Shoveler Anas clypeata W Northern Pintail Anas acuta W Green-winged Teal Anas crecca W Redhead Aythya americana W Lesser Scaup Aythya affinis W Bufflehead Bucephala albeola W Red-breasted Merganser Mergus serrator W Ruddy Duck Oxyura jamaicensis W Loons - Family Gaviidae Common Loon Gavia immer W Special Concern Grebes - Family Podicipedidae Pied-billed Grebe Podilymbus podiceps W Horned Grebe Podiceps auritus W Eared Grebe Podiceps nigricollis W Western Grebe Aechmophorus occidentalis W Clark's Grebe Aechmophorus clarkii W Pelicans - Family Pelecanidae Brown Pelican Pelecanus occidentalis Y Endangered Frigatebirds - Family Fregatidae Magnificent Frigatebird Fregata magnificens X Cormorants - Family Phalacrocoracide Double-crested Cormorant Phalacrocorax auritus Y Herons and Bitterns - Family Ardeidae Great Blue Heron Ardea herodias Y Great Egret Ardea alba Y Snowy Egret Egretta thula Y Little Blue Heron Egretta caerulea Y Green Heron Butorides virescens Y Black-crowned Night Heron Nycticorax nycticorax Y Hawks, Kites and Eagles - Family Accipitridae Osprey Pandion haliaetus Y White-tailed Kite Elanus leucurus W Northern Harrier Circus cyaneus W Special Concern Cooper's Hawk Accipiter cooperii Y Red-shouldered Hawk Buteo lineatus Y Red-tailed Hawk Buteo jamaicensis
    [Show full text]
  • Differential Responses of Boobies and Other Seabirds in the Galapagos to the 1986-87 El Nino- Southern Oscillation Event
    MARINE ECOLOGY PROGRESS SERIES Published March 22 Mar. Ecol. Prog. Ser. Differential responses of boobies and other seabirds in the Galapagos to the 1986-87 El Nino- Southern Oscillation event David J. Anderson Department of Biology. University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA ABSTRACT: The impact of the 1986-87 El Nido-Southern Oscillation (ENSO) event on seabirds in the Galapagos Islands was generally less severe than that of the previous ENSO in 1982-83. Sea surface temperatures (SST) rose to levels comparable to those of 4 ENSOs pnor to the 1982-83 event. SST became anomalous approximately in January and had returned to typical levels by July. Blue-footed booby Sula nebouxii reproductive attempts failed throughout the archipelago, and breeding colonies were deserted, shortly after SST became unusually warm in January. Masked boobies S. dactylatra, red- footed boobies S. sula and several other species were apparently unaffected by the anomalous conditions, or temporarily suspended breeding for several months. A gradient in both SST and in the ENSO's impact on some seabirds was evident, with populations nesting in the cooler south of the archipelago affected less than those in the warmer north. At one colony studied both before and during the ENSO, blue-footed booby failure was associated with apparent reductions in both availablllty and body size of their primary prey item. INTRODUCTION 1985 (Valle 1986). The diversity of responses produced seabird assemblages with proportions and reproductive Oceanographic change has a dramatic impact upon performances that were markedly different, over the tropical seabird reproduction and adult mortality on short term at least, from pre-ENS0 assemblages, and both local and regional scales.
    [Show full text]
  • Recent Establishments and Extinctions of Northern Gannet Morus Bassanus Colonies in North Norway, 1995-2008
    Recent establishments and extinctions of Northern Gannet Morus bassanus colonies in North Norway, 1995-2008 Robert T. Barrett Barrett, R.T. 2008. Recent establishments and extinctions of Northern Gannet Morus bassanus colonies in North Norway, 1995-2008. – Ornis Norvegica 31: 172-182. Since the last published review of the development of the Northern Gannet Morus bassanus population in Norway (Barrett & Folkestad 1996), there has been a general increase in numbers breeding in North Norway from ca. 2200 occupied nests in 1995 to ca. 2700 in 2008. In Lofoten and Vesterålen, however, numbers have decreased from 1500 occupied nests in 1989 to 500 in 2008, and what were the two largest colonies on Skarvklakken and Hovsflesa have been abandoned. Small colonies have, in the meantime, been established in the region, but these are all characteristically unstable. A new colony established in Troms in 2001 increased to 400 occupied sites in 2007, but the population dropped to 326 in 2008. Harassment by White-tailed eagles Haliaeetus albicilla is mooted as the main cause of the decline in Lofoten and Vesterålen. Robert T. Barrett, Dept. of Natural Science, Tromsø University Museum, N-9037 Tromsø, Norway. INTRODUCTION the well-established colonies, Skarvklakken and Hovsflesa in the north of the country, there were Apart from perhaps the Great Skua Catharacta even signs of declines between 1991 and 1995. skua, there is no species whose establishment as a This paper documents the subsequent fate of the breeding bird in Norway and subsequent popula- North Norwegian colonies, including the extinc- tion development has been so well documented tion of some and the establishment of others.
    [Show full text]
  • Double-Crested Cormorant Management
    U.S. Fish & Wildlife Service Double-crested Cormorant Management Quick Facts Current Status • Cormorants have been In October 2003, the U.S. Fish and protected under the federal Wildlife Service released a Final Rule Migratory Bird Treaty Act since and Record of Decision allowing more 1972 after their populations flexibility in the control of double- dropped precipitously as a result crested cormorants where they are of factors such as use of the causing damage to aquaculture and pesticide DDT. public resources such as fisheries, vegetation or other birds. • Today, cormorant populations are at historic highs in many The rule expands an aquaculture areas due in large part to the depredation order that has been in presence of ample food in their place in 13 states since 1998 to allow summer and winter ranges, the U.S. Department of Agriculture’s federal and state protection, and reduced contaminant levels. Wildlife Services division to conduct winter roost control. It also establishes Hot Topic • The total estimated a public resource depredation order to population of double-crested allow state wildlife agencies, tribes and cormorants in North America is Wildlife Services to conduct cormorant Michigan Initiates Cormorant control to protect public resources in 24 approximately 2 million birds. Management Plan: states, including Illinois, Indiana, In May, USDA Iowa, Kansas, Michigan, Minnesota, Wildlife Services and the U.S. Fish Management Needs Missouri, Ohio and Wisconsin. Without and Wildlife Service released the these depredation orders, agencies and final Environmental Assessment • Any agency that wants to individuals would not be able to control spelling out plans to reduce double- control double-crested cormorant cormorants without a federal permit.
    [Show full text]
  • Parasites of the Neotropic Cormorant Nannopterum (Phalacrocorax) Brasilianus (Aves, Phalacrocoracidae) in Chile
    Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile Parasitos da biguá Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) do Chile Daniel González-Acuña1* ; Sebastián Llanos-Soto1,2; Pablo Oyarzún-Ruiz1 ; John Mike Kinsella3; Carlos Barrientos4; Richard Thomas1; Armando Cicchino5; Lucila Moreno6 1 Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile 2 Laboratorio de Vida Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile 3 Helm West Lab, Missoula, MT, USA 4 Escuela de Medicina Veterinaria, Universidad Santo Tomás, Concepción, Chile 5 Universidad Nacional de Mar del Plata, Mar del Plata, Argentina 6 Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile How to cite: González-Acuña D, Llanos-Soto S, Oyarzún-Ruiz P, Kinsella JM, Barrientos C, Thomas R, et al. Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile. Braz J Vet Parasitol 2020; 29(3): e003920. https://doi.org/10.1590/S1984-29612020049 Abstract The Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Suliformes: Phalacrocoracidae) is widely distributed in Central and South America. In Chile, information about parasites for this species is limited to helminths and nematodes, and little is known about other parasite groups. This study documents the parasitic fauna present in 80 Neotropic cormorants’ carcasses collected from 2001 to 2008 in Antofagasta, Biobío, and Ñuble regions. Birds were externally inspected for ectoparasites and necropsies were performed to examine digestive and respiratory organs in search of endoparasites.
    [Show full text]
  • Phylogenetic Patterns of Size and Shape of the Nasal Gland Depression in Phalacrocoracidae
    PHYLOGENETIC PATTERNS OF SIZE AND SHAPE OF THE NASAL GLAND DEPRESSION IN PHALACROCORACIDAE DOUGLAS SIEGEL-CAUSEY Museumof NaturalHistory and Department of Systematicsand Ecology, University of Kansas, Lawrence, Kansas 66045-2454 USA ABSTRACT.--Nasalglands in Pelecaniformesare situatedwithin the orbit in closelyfitting depressions.Generally, the depressionsare bilobedand small,but in Phalacrocoracidaethey are more diversein shapeand size. Cormorants(Phalacrocoracinae) have small depressions typical of the order; shags(Leucocarboninae) have large, single-lobeddepressions that extend almost the entire length of the frontal. In all PhalacrocoracidaeI examined, shape of the nasalgland depressiondid not vary betweenfreshwater and marine populations.A general linear model detectedstrongly significant effectsof speciesidentity and gender on size of the gland depression.The effectof habitat on size was complexand was detectedonly as a higher-ordereffect. Age had no effecton size or shapeof the nasalgland depression.I believe that habitat and diet are proximateeffects. The ultimate factorthat determinessize and shape of the nasalgland within Phalacrocoracidaeis phylogenetichistory. Received 28 February1989, accepted1 August1989. THE FIRSTinvestigations of the nasal glands mon (e.g.Technau 1936, Zaks and Sokolova1961, of water birds indicated that theseglands were Thomson and Morley 1966), and only a few more developed in species living in marine studies have focused on the cranial structure habitats than in species living in freshwater associatedwith the nasal gland (Marpies 1932; habitats (Heinroth and Heinroth 1927, Marpies Bock 1958, 1963; Staaland 1967; Watson and Di- 1932). Schildmacher (1932), Technau (1936), and voky 1971; Lavery 1972). othersshowed that the degree of development Unlike most other birds, Pelecaniformes have among specieswas associatedwith habitat. Lat- nasal glands situated in depressionsfound in er experimental studies (reviewed by Holmes the anteromedialroof of the orbit (Siegel-Cau- and Phillips 1985) established the role of the sey 1988).
    [Show full text]
  • A Report on the Guano-Producing Birds of Peru [“Informe Sobre Aves Guaneras”]
    PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 197 A report on the guano-producing birds of Peru [“Informe sobre Aves Guaneras”] July 2018* *Original manuscript completed1942 William Vogt1 with translation and notes by David Cameron Duffy2 1 Deceased Associate Director of the Division of Science and Education of the Office of the Coordinator in Inter-American Affairs. 2 Director, Pacific Cooperative Studies Unit, Department of Botany, University of Hawai‘i at Manoa Honolulu, Hawai‘i 96822, USA PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: Pacific Cooperative Studies Unit, Department of Botany, University of Hawai‘i at Manoa 3190 Maile Way, St. John 408, Honolulu, Hawai‘i 96822, USA Recommended Citation: Vogt, W. with translation and notes by D.C. Duffy. 2018. A report on the guano-producing birds of Peru. Pacific Cooperative Studies Unit Technical Report 197. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 198 pages. Key words: El Niño, Peruvian Anchoveta (Engraulis ringens), Guanay Cormorant (Phalacrocorax bougainvillii), Peruvian Booby (Sula variegate), Peruvian Pelican (Pelecanus thagus), upwelling, bird ecology behavior nesting and breeding Place key words: Peru Translated from the surviving Spanish text: Vogt, W. 1942. Informe elevado a la Compañia Administradora del Guano par el ornitólogo americano, Señor William Vogt, a la terminación del contracto de tres años que con autorización del Supremo Gobierno celebrara con la Compañia, con el fin de que llevara a cabo estudios relativos a la mejor forma de protección de las aves guaneras y aumento de la produción de las aves guaneras.
    [Show full text]
  • Plumage and Sexual Maturation in the Great Frigatebird Fregata Minor in the Galapagos Islands
    Valle et al.: The Great Frigatebird in the Galapagos Islands 51 PLUMAGE AND SEXUAL MATURATION IN THE GREAT FRIGATEBIRD FREGATA MINOR IN THE GALAPAGOS ISLANDS CARLOS A. VALLE1, TJITTE DE VRIES2 & CECILIA HERNÁNDEZ2 1Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Campus Cumbayá, Jardines del Este y Avenida Interoceánica (Círculo de Cumbayá), PO Box 17–12–841, Quito, Ecuador ([email protected]) 2Pontificia Universidad Católica del Ecuador, Departamento de Ciencias Biológicas, PO Box 17–01–2184, Quito, Ecuador Received 6 September 2005, accepted 12 August 2006 SUMMARY VALLE, C.A., DE VRIES, T. & HERNÁNDEZ, C. 2006. Plumage and sexual maturation in the Great Frigatebird Fregata minor in the Galapagos Islands. Marine Ornithology 34: 51–59. The adaptive significance of distinctive immature plumages and protracted sexual and plumage maturation in birds remains controversial. This study aimed to establish the pattern of plumage maturation and the age at first breeding in the Great Frigatebird Fregata minor in the Galapagos Islands. We found that Great Frigatebirds attain full adult plumage at eight to nine years for females and 10 to 11 years for males and that they rarely attempted to breed before acquiring full adult plumage. The younger males succeeded only at attracting a mate, and males and females both bred at the age of nine years when their plumage was nearly completely adult. Although sexual maturity was reached as early as nine years, strong competition for nest-sites may further delay first reproduction. We discuss our findings in light of the several hypotheses for explaining delayed plumage maturation in birds, concluding that slow sexual and plumage maturation in the Great Frigatebird, and perhaps among all frigatebirds, may result from moult energetic constraints during the subadult stage.
    [Show full text]
  • An Albino Cape Cormorant Phalacrocorax Capensis
    72 Cook et al.: Albino Cape Cormorant AN ALBINO CAPE CORMORANT PHALACROCORAX CAPENSIS Timothée R. COOK1, OLIVER J.D. JEWELL2,3, WILFRED CHIVELL2 & MarthÁN N. BESTER3 1Percy FitzPatrick Institute of African Ornithology, DST ⁄ NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa ([email protected]) 2Dyer Island Conservation Trust, 5 Geelbek Street, Kleinbaai 7720, South Africa 3Department of Zoology and Entomology, University of Pretoria, Hatfield 0002 South Africa 0002 Received 28 November 2011, accepted 11 March 2012 Albinism has been recorded in many vertebrate taxa (Halls 2004). It of misidentifying the cause of the aberration, the use of the term is a genetic anomaly in which an autosomal recessive gene causes an “partial albinism” is incorrect, as albinism, by definition, cannot absence of the enzyme tyrosinase, resulting in a total lack of melanin be partial. An albino Cape Cormorant Phalacrocorax capensis was pigment in the skin, scales, hairs, feathers and eyes (van Grouw reported by Cooper (1985) in the collections of the South African 2006). The skin and eye colour of albinos is pink because the blood Museum of Cape Town. Examination of this 100-year-old specimen can be seen through the transparent, unpigmented tissues. In birds, it revealed that it might indeed have been an albino. However, in the is the most frequently reported colour aberration, although it is the absence of information about the eye colour of this bird when it was least frequent in occurrence. This is because it is commonly mistaken alive, this will remain difficult to confirm.
    [Show full text]
  • Status of the Double-Crested Cormorant (Phalacrocorax Auritus) in North America
    STATUS OF THE DOUBLE-CRESTED CORMORANT (PHALACROCORAX AURITUS) IN NORTH AMERICA PREPARED BY: LINDA R. WIRES FRANCESCA J. CUTHBERT DALE R. TREXEL ANUP R. JOSHI UNIVERSITY OF MINNESOTA DEPARTMENT OF FISHERIES AND WILDLIFE 1980 FOLWELL AVE. ST. PAUL, MN 55108 USA MAY 2001 PREPARED UNDER CONTRACT WITH *U.S. FISH AND WILDLIFE SERVICE *CONTENT MATERIAL OF THIS REPORT DOES NOT NECESSARILY REPRESENT THE OPINIONS OF USFWS Recommended citation: Wires, L.R., F.J. Cuthbert, D.R. Trexel and A.R. Joshi. 2001. Status of the Double-crested Cormorant (Phalacrocorax auritus) in North America. Final Report to USFWS. FINAL DRAFT Executive Summary i EXECUTIVE SUMMARY Introduction: Since the late-1970s, numbers of Double-crested Cormorants (Phalacrocorax auritus) (DCCO) have increased significantly in many regions of North America. A variety of problems, both real and perceived, have been associated with these increases, including impacts to aquaculture, sport and commercial fisheries, natural habitats, and other avian species. Concern is especially strong over impacts to sport and commercial fishes and aquaculture. Because of increasing public pressure on U.S. government agencies to reduce DCCO conflicts, the USFWS is preparing an Environmental Impact Statement (EIS), and in conjunction with the U.S. Department of Agriculture/Wildlife Services (USDA/WS) and state resource management agencies, will develop a national management plan for the DCCO. This assessment will be used to prepare the EIS and management plan. Populations and trends: The DCCO breeding range in North America is divided into five geographic areas. Since at least 1980, numbers have clearly increased in three of the breeding areas: Canadian and U.S.
    [Show full text]
  • Table Mountain National Park
    BIRDS OF TABLE MOUNTAIN NATIONAL PARK The Cape Peninsula has many records of vagrant species blown by storms, ship assisted or victims of reverse migration Bolded [1] depicts vagrant species Rob # English (Roberts 7) English (Roberts 6) Table Mountain 1 Common Ostrich Ostrich 1 2 King Penguin King Penguin [1] 2.1 Gentoo Penguin (925) Gentoo Penguin [1] 3 African Penguin Jackass Penguin 1 4 Rockhopper Penguin Rockhopper Penguin [1] 5 Macaroni Penguin Macaroni Penguin [1] 6 Great Crested Grebe Great Crested Grebe 1 7 Blacknecked Grebe Blacknecked Grebe 1 8 Little Grebe Dabchick 1 9 Southern Royal Albatross Royal Albatross 1 9.1 Northern Royal Albatross 1 10 Wandering Albatross Wandering Albatross 1 11 Shy Albatross Shy Albatross 1 12 Blackbrowed Albatross Blackbrowed Albatross 1 13 Greyheaded Albatross Greyheaded Albatross 1 14 Atlantic Yellownosed Albatross Yellownosed Albatross 1 15 Sooty Albatross Darkmantled Sooty Albatross 1 16 Lightmantled Albatross Lightmantled Sooty Albatross 1 17 Southern Giant-Petrel Southern Giant Petrel 1 18 Northern Giant-Petrel Northern Giant Petrel 1 19 Antarctic Fulmar Antarctic Fulmar 1 21 Pintado Petrel Pintado Petrel 1 23 Greatwinged Petrel Greatwinged Petrel 1 24 Softplumaged Petrel Softplumaged Petrel 1 26 Atlantic Petrel Atlantic Petrel 1 27 Kerguelen Petrel Kerguelen Petrel 1 28 Blue Petrel Blue Petrel 1 29 Broadbilled Prion Broadbilled Prion 1 32 Whitechinned Petrel Whitechinned Petrel 1 34 Cory's Shearwater Cory's Shearwater 1 35 Great Shearwater Great Shearwater 1 36 Fleshfooted Shearwater Fleshfooted
    [Show full text]