(Re-) Emerging Neurotropic Viruses of Clinical Significance

Total Page:16

File Type:pdf, Size:1020Kb

(Re-) Emerging Neurotropic Viruses of Clinical Significance (Re-) emerging neurotropic viruses of clinical significance Prof. Anna Papa, MD, PhD ESCMIDAristotle University eLibraryof Thessaloniki, Greece © by author What is the meaning of “emerging” virus? A virus that: 1. is newly discovered 2. infected new hosts 3. altered its pathogenic characteristics 4. spread into new geographic areas or reappeared in an area 5. increased recently its incidence or there is a threat to increase in the near future 6. All the above ESCMID eLibrary 5831 © by author (Re-) Emerging viral diseases (Re-) Emerging viral diseases are diseases caused by viruses that have: • been newly discovered (previously unrecognized) • infected new hosts • altered characteristics of their pathogenesis • spread into new geographic areas (like Zika virus in the Americas). • reappeared in an area • increased their incidence recently or are threatening to increase in the near future. ESCMID eLibrary © by author Factors contributing to emergence of viral diseases • Virus genetic variations • Environmental factors changing weather patterns (e.g., El Niño) damming of rivers, tropical deforestation (alter the abundance and distribution of virus vectors or hosts, exposure to new vectors) • Demographic factors Increase in the human population urbanization in developing countries intensification of agriculture speed and volume of global transportation Also: Increased capability to identify novel pathogens (improved diagnostic techniques ESCMIDand enhanced surveillance eLibrarysystems) © by author Which viruses are mainly affected by environmental factors? 1. Arboviruses 2. Enteroviruses 3. Respiratory viruses 4. Zoonotic viruses ESCMID eLibrary 5830 © by author Neurotropic viruses A neurotropic virus is a virus that is capable to infect nerve cells causing neurological manifestations. A neurotropic virus is neuroinvasive = capable of entering the nervous system (overcoming both the extraneural and neural barriers), and neurovirulent = capable of causing disease within the nervous system. Factors contributing to disease’s course and outcome Host genetics ESCMIDHost immune system eLibrary Virus tropism Virus capability of© spread by within theauthor CNS Anatomy of the Blood-Brain-Barrier (BBB) ESCMID eLibrary © by author FSM Routes of virus spread into the CNS 1. Axonal retrograde transport along motor and olfactory neurons 2. Haematogenous spread across the BBB 3. Loss of integrity of BBB (changes in endothelial cell permeability, which is regulated by vasoactive cytokines) 4. Direct infection of brain microvascular endothelial cells 5. Transport of infected macrophages or neutrophils across the BBB into the brain parenchyma (“Trojan horse” model) ESCMID eLibrary Cho and Diamond 2012 © by author Immune response to neurotropic viruses Early immune response is critical to limiting the neuropathogenesis of neurotropic viruses. Early control: Innate immune response, including cell-intrinsic antiviral defenses, the type I IFN response and innate cell-mediated responses (involving neutrophils, NK cells and γδ T cells) Late stage control: adaptive immune response, including humoral and cellural immune responses The level of viremia is correlated with the viral dissemination to the CNS ESCMIDInnate and adaptive eLibrary immune responses are delicately balanced and may help or harm the host © by author (Re)-emerging neurotropic viruses of clinical importance Viral Family Virus Flaviviridae West Nile Japanese encephalitis Murray Valley encephalitis Zika Usutu Togaviridae Chikungunya Phenuiviridae Phleboviruses (Toscana) Paramyxoviridae Hendra, Nipah Picornaviridae Enteroviruses 71, D68 Parechovirus type 3 Bornaviridae Borna Disease Virus 1 ESCMIDAstroviridae eLibraryAstrovirus VA1/HMO-C Rhabdoviridae Australian bat lyssavirus © by author Flaviviridae Single-strand positive-sensed RNA viruses Flavivirus genus includes several viruses that are etiological agents of CNS infections. Glycosylation of the envelope protein is one determinant of neuroinvasion, increasing both axonal and trans-epithelial transportation. Innate immune response is important for controlling brain infection (infection of the brain microvascular endothelium occurs after loss of effective ESCMID clearance in peripheral eLibrarysites) © by author Tick-borne encephalitis (TBE) virus I. ricinus I. persulcatus TBE is the most important arboviral disease in Europe and central and eastern Asia, causing approx. 13,000 hospitalizations each year. TBE is an emerging disease due to its rising incidence and the expansion in new areas. Transmission: tick bite Ixodes ricinus and I. persulcatus ticks (in Europe), consumption of unpasteurized dairy products from infected livestock, needle stick Reservoir hosts: rodents, insectivores Incubation period: 7 -14 d after a tick bite, 3–5 d after consumption of infected milk Subtypes: European, Siberian, Far-Eastern Symptoms ESCMID: Diphasic illness, febrile eLibrary - neurological; it can result in long - term neurological symptoms, and even death Fatality: European 0.5 -©2%, Siberian by 1 -3%,author Far Eastern up to 35% Steps during TBEV infection Infection of the brain Virus transmission from an infected tick Crossing of the BBB Replication in Primary viremia regional lymph node Secondary viremia In an in vitro BBB model, TBEV crossed the BBB via a transcellular pathway ESCMID without compromising theeLibrary integrity of the cell monolayer (Palus et al., 2017). © by author Known, unknown and emerging TBE foci 2009: first cases in Bulgaria 2014: first case in Greece 2016, first case in the Netherlands ESCMIDHaditsch & Kunze , 2013eLibrary © by author VBZ 2010 The only North American member of the tick-borne encephalitis serogroup of flaviviruses. Vector: Ixodes spp. Rare but severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae Fatality: 10% ESCMID eLibrary © by author West Nile virus WNV is an important emerging neurotropic virus, responsible for encephalitis outbreaks worldwide Originally isolated in in the West Nile province of Uganda in 1937 Vectors: Culex mosquitos (mainly C. pipiens) Host reservoir: resident birds 7 genetic lineages; lineages 1 and 2 are responsible for the major epidemics in humans. Incubation period: 3–14 d. Viremia occurs within 1–3 d and can last up to 11 d. Groups at risk: elderly, immunocompromised, patients with diabetes, hypertension, and chronic kidney disease. Symptoms: most asymptomatic - approx. 20% flu-like illness, maculopapular rash - <1% neuroinvasive disease: encephalitis (mental status change, Parkinsonian movement disorders), meningitis or acute flaccid ESCMID paralysis, Guillain–Barré-like eLibrary syndrome (probably as result of damage to the anterior horn cells). Neurological disability in over half of patients at 1 -year follow -©up. by author Schematic of WNV pathogenesis in humans WNV replicates in keratinocytes, skin-resident dermal dendritic cells (DCs) and Langerhans cells Infected DCs migrate to the regional lymph node leading to viraemia Subsequent infection of peripheral organs (e.g. spleen, kidney and liver). By day 4, viral replication peaks in the spleen and serum. Between days 6 and 8, WNV is detected within the brain and spinal cord (via multiple routes of entrance) ESCMIDWNV infectseLibrary and injures neurons within the brain stem, hippocampus, cortex, cerebellum and spinal cord Suthar et al. Nat Rev © 2013 by author Epidemiological update: West Nile virus transmission season in Europe, 2017 In the European Union, 204 human WNF cases have been reported: Romania (66 cases), Italy (57), Greece (48), Hungary (21), Austria (5), Croatia (5), France (1) and Bulgaria (1). In the neighbouring countries, 84 cases were reported: Serbia (49), Israel (28) and Turkey (7). Many countries reported cases in newly affected areas (areas where noESCMIDcases were ever reported before eLibrary) © by author West Nile virus in USA, 1999-2016 21,574 neuroinvasive disease cases The largest epidemics of arboviral meningoencephalitis in US history, the largest epidemics of WNV neuroinvasive disease reported to date Average annual incidence of WNV neuroinvasive WNV neuroinvasive disease incidence disease reported to CDC by state, 1999-2016 reported to CDC by year, 1999-2016 ESCMID eLibrary © by author Usutu virus African mosquito-borne virus closely related to WNV. Vector: Culex spp. mosquitoes (C. pipiens) Mass mortality in blackbirds Resevoir hosts: wild birds (Austria 2001) 2009: USUV detected in human encephalitis cases Italy, retrospective study published in 2017: USUV was the cause of previously unexplained encephalitis suggesting that neurological cases associated to USUV may be more common than previously thought. Deleterious effect of Usutu virus on human neural cells (Salinas et al. PNTD 2017). USUV efficiently infects neurons, astrocytes, microglia and human neuronal stem cells. When compared to ZIKV, USUV led to a higher infection rate, viral production, and stronger cell death and antiviral response. Threat of USUV emergence? While ESCMIDhuman cases are infrequent, eLibrarythe potential for neuroinvasive infection suggests a need for clinical awareness and diagnostic capability © by author Japanese encephalitis virus The most important cause of viral encephalitis worldwide. Annual encephalitis cases nearly 70,000 (half in China) - 10,000 deaths. First identified in Japan in the 19th century. Currently in China, Southeast Asia, India, New Guinea, and Australia. Continues to expand its geographic range. Vector: Culex mosquitoes (mainly C. tritaeniorhynchus)
Recommended publications
  • A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses
    A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, Corinne Maufrais, Valérie Caro, Hervé Bourhy To cite this version: Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, et al.. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.. PLoS ONE, Public Library of Science, 2014, 9 (1), pp.e87194. 10.1371/journal.pone.0087194.s006. pasteur-01430485 HAL Id: pasteur-01430485 https://hal-pasteur.archives-ouvertes.fr/pasteur-01430485 Submitted on 9 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses Laurent Dacheux1*, Minerva Cervantes-Gonzalez1,
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Dengue Fever, Chikungunya and the Zika Virus
    #57 Focus Dengue Fever, Chikungunya and the Zika Virus Arboviruses are a group of virus that can be southern regions of mainland France and transmitted between animals and humans, on the island of Réunion, Aedes albopictus and they are common to humans and many provides the sole vector for transmission. vertebrates (mammals, birds, reptiles, Transmission amphibians). There are over 500 species of Dengue Fever, Chikungunya and the Zika arbovirus, sub-divided into approximately virus are all transmitted in the same way. 10 different families, including Togaviridae, Human to human transmission takes place Flaviviridae, Reoviridae, Rhabdoviridae, International and Bunyaviridae. These viruses have RNA by mosquito vector in urban areas during with a very heterogeneous structure and are epidemics: the mosquito picks up the virus transmitted via bites from hematophagous when it bites a carrier, and then transmits it arthropods such as mosquitoes, sandflies, to a healthy person with another bite. The ticks and mites (arbovirus is short for mosquito bites people outside their homes arthropod-borne virus). throughout the day, with peak activity at dawn and dusk. The mosquitoes live in Chikungunya urban areas and lay their eggs in pools of stagnant water (250 eggs every 2 days), This disease was first described in Tanzania where they develop into larvae. The eggs in 1952. It is caused by an arbovirus of the are resistant to the cold in winter and hatch genus Alphavirus from the Togaviridae family. when weather conditions improve. It was then also described in Africa, Southeast Aedes albopictus is spreading globally; it Asia, the Indian subcontinent and the Indian has adapted to both tropical and temperate Ocean.
    [Show full text]
  • Everything You Always Wanted to Know About Rabies Virus ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ (But Were Afraid to Ask) Benjamin M
    ANNUAL REVIEWS Further Click here to view this article's online features: t%PXOMPBEmHVSFTBT115TMJEFT t/BWJHBUFMJOLFESFGFSFODFT t%PXOMPBEDJUBUJPOT Everything You Always Wanted t&YQMPSFSFMBUFEBSUJDMFT t4FBSDILFZXPSET to Know About Rabies Virus (But Were Afraid to Ask) Benjamin M. Davis,1 Glenn F. Rall,2 and Matthias J. Schnell1,2,3 1Department of Microbiology and Immunology and 3Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; email: [email protected] 2Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Annu. Rev. Virol. 2015. 2:451–71 Keywords First published online as a Review in Advance on rabies virus, lyssaviruses, neurotropic virus, neuroinvasive virus, viral June 24, 2015 transport The Annual Review of Virology is online at virology.annualreviews.org Abstract This article’s doi: The cultural impact of rabies, the fatal neurological disease caused by in- 10.1146/annurev-virology-100114-055157 fection with rabies virus, registers throughout recorded history. Although Copyright c 2015 by Annual Reviews. ⃝ rabies has been the subject of large-scale public health interventions, chiefly All rights reserved through vaccination efforts, the disease continues to take the lives of about 40,000–70,000 people per year, roughly 40% of whom are children. Most of Access provided by Thomas Jefferson University on 11/13/15. For personal use only. Annual Review of Virology 2015.2:451-471. Downloaded from www.annualreviews.org these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, al- though the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is cur- rently no effective treatment that will save the life of a symptomatic rabies patient.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Progressive Multifocal Leukoencephalopathy and the Spectrum of JC Virus-​Related Disease
    REVIEWS Progressive multifocal leukoencephalopathy and the spectrum of JC virus- related disease Irene Cortese 1 ✉ , Daniel S. Reich 2 and Avindra Nath3 Abstract | Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV- related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. Progressive multifocal leukoencephalopathy (PML) is for multiple sclerosis. Taken together, HIV, lymphopro- a rare, debilitating and often fatal disease of the CNS liferative disease and multiple sclerosis account for the caused by JC virus (JCV).
    [Show full text]
  • Congenital Cytomegalovirus Infection Alters Olfaction Before Hearing Deterioration in Mice
    10424 • The Journal of Neuroscience, December 5, 2018 • 38(49):10424–10437 Development/Plasticity/Repair Congenital Cytomegalovirus Infection Alters Olfaction Before Hearing Deterioration In Mice X Franc¸oise Lazarini,1,2 Lida Katsimpardi,1,2* Sarah Levivien,1,2,3*Se´bastien Wagner,1,2 XPierre Gressens,3,4,5 Natacha Teissier,3,4,6† and Pierre-Marie Lledo1,2† 1Institut Pasteur, Perception and Memory Unit, F-75015 Paris, France, 2Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 3571, F-75015 Paris, France, 3PROTECT, INSERM, Unite´ 1141, F-75019 Paris, France, 4Paris Diderot University, Sorbonne Paris Cite´, F-75018 Paris, France, 5Center for Developing Brain, King’s College, London, WC2R2LS United Kingdom, and 6Pediatric Otorhinolaryngology Department, Robert Debre´ Hospital, Assistance Publique–Hoˆpitaux de Paris, F-75019 Paris, France In developed countries, cytomegalovirus (CMV)-infected newborns are at high risk of developing sensorineural handicaps such as hearing loss, requiring extensive follow-up. However, early prognostic tools for auditory damage in children are not yet available. In the fetus, CMV infection leads to early olfactory bulb (OB) damage, suggesting that olfaction might represent a valuable prognosis for neurological outcome of this viral infection. Here, we demonstrate that in utero CMV inoculation causes fetal infection and growth retardation in mice of both sexes. It disrupts OB normal development, leading to disproportionate OB cell layers and rapid major olfactory deficits. Olfaction is impaired as early as day 6 after birth in both sexes, long before the emergence of auditory deficits. Olfactometry in males reveals a long-lasting alteration in olfactory perception and discrimination, particularly in binary mixtures of monomolecular odorants.
    [Show full text]
  • Mosquito-Borne Viruses, Insect-Specific
    FULL PAPER Virology Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes SUPRIYONO1), Ryusei KUWATA1,2), Shun TORII1), Hiroshi SHIMODA1), Keita ISHIJIMA3), Kenzo YONEMITSU1), Shohei MINAMI1), Yudai KURODA3), Kango TATEMOTO3), Ngo Thuy Bao TRAN1), Ai TAKANO1), Tsutomu OMATSU4), Tetsuya MIZUTANI4), Kentaro ITOKAWA5), Haruhiko ISAWA6), Kyoko SAWABE6), Tomohiko TAKASAKI7), Dewi Maria YULIANI8), Dimas ABIYOGA9), Upik Kesumawati HADI10), Agus SETIYONO10), Eiichi HONDO11), Srihadi AGUNGPRIYONO10) and Ken MAEDA1,3)* 1)Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan 2)Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan 3)Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 4)Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan 5)Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 6)Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1
    [Show full text]
  • The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System
    International Journal of Molecular Sciences Review The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System Raquel Bello-Morales 1,2,* , Sabina Andreu 1,2 and José Antonio López-Guerrero 1,2 1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; [email protected] (S.A.); [email protected] (J.A.L.-G.) 2 Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] Received: 30 June 2020; Accepted: 15 July 2020; Published: 16 July 2020 Abstract: Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes.
    [Show full text]
  • Risk Groups: Viruses (C) 1988, American Biological Safety Association
    Rev.: 1.0 Risk Groups: Viruses (c) 1988, American Biological Safety Association BL RG RG RG RG RG LCDC-96 Belgium-97 ID Name Viral group Comments BMBL-93 CDC NIH rDNA-97 EU-96 Australia-95 HP AP (Canada) Annex VIII Flaviviridae/ Flavivirus (Grp 2 Absettarov, TBE 4 4 4 implied 3 3 4 + B Arbovirus) Acute haemorrhagic taxonomy 2, Enterovirus 3 conjunctivitis virus Picornaviridae 2 + different 70 (AHC) Adenovirus 4 Adenoviridae 2 2 (incl animal) 2 2 + (human,all types) 5 Aino X-Arboviruses 6 Akabane X-Arboviruses 7 Alastrim Poxviridae Restricted 4 4, Foot-and- 8 Aphthovirus Picornaviridae 2 mouth disease + viruses 9 Araguari X-Arboviruses (feces of children 10 Astroviridae Astroviridae 2 2 + + and lambs) Avian leukosis virus 11 Viral vector/Animal retrovirus 1 3 (wild strain) + (ALV) 3, (Rous 12 Avian sarcoma virus Viral vector/Animal retrovirus 1 sarcoma virus, + RSV wild strain) 13 Baculovirus Viral vector/Animal virus 1 + Togaviridae/ Alphavirus (Grp 14 Barmah Forest 2 A Arbovirus) 15 Batama X-Arboviruses 16 Batken X-Arboviruses Togaviridae/ Alphavirus (Grp 17 Bebaru virus 2 2 2 2 + A Arbovirus) 18 Bhanja X-Arboviruses 19 Bimbo X-Arboviruses Blood-borne hepatitis 20 viruses not yet Unclassified viruses 2 implied 2 implied 3 (**)D 3 + identified 21 Bluetongue X-Arboviruses 22 Bobaya X-Arboviruses 23 Bobia X-Arboviruses Bovine 24 immunodeficiency Viral vector/Animal retrovirus 3 (wild strain) + virus (BIV) 3, Bovine Bovine leukemia 25 Viral vector/Animal retrovirus 1 lymphosarcoma + virus (BLV) virus wild strain Bovine papilloma Papovavirus/
    [Show full text]
  • Intrathecal Antibody Production Against Epstein-Barr, Herpes Simplex, and Other Neurotropic Viruses in Autoimmune Encephalitis
    ARTICLE OPEN ACCESS Intrathecal Antibody Production Against Epstein-Barr, Herpes Simplex, and Other Neurotropic Viruses in Autoimmune Encephalitis Philipp Schwenkenbecher, MD, Thomas Skripuletz, MD, Peter Lange, Marc Durr,¨ MD, Felix F. Konen, MD, Correspondence Nora Mohn,¨ MD, Marius Ringelstein, MD, Til Menge, MD, Manuel A. Friese, MD, Nico Melzer, MD, Dr. Schwenkenbecher schwenkenbecher.philipp@ ¨ Michael P. Malter, MD, Martin Hausler, MD, Franziska S. Thaler, MD, Martin Stangel, MD, Jan Lewerenz, MD, mh-hannover.de and Kurt-Wolfram Suhs,¨ MD, on behalf of the German Network for Research on Autoimmune Encephalitis Neurol Neuroimmunol Neuroinflamm 2021;8:e1062. doi:10.1212/NXI.0000000000001062 Abstract Background and Objectives Neurotropic viruses are suspected to play a role in the pathogenesis of autoimmune diseases of the CNS such as the association between the Epstein-Barr virus (EBV) and multiple sclerosis (MS). A group of autoimmune encephalitis (AE) is linked to antibodies against neuronal cell surface proteins. Because CNS infection with the herpes simplex virus can trigger anti–NMDA receptor (NMDAR) encephalitis, a similar mechanism for EBV and other neurotropic viruses could be postulated. To investigate for previous viral infections of the CNS, intrathecally produced virus-specific antibody synthesis was determined in patients with AE. Methods Antibody-specific indices (AIs) against EBV and measles, rubella, varicella zoster, herpes simplex virus, and cytomegalovirus were determined in 27 patients having AE (anti-NMDAR encephalitis, n = 21, and LGI1 encephalitis, n = 6) and in 2 control groups comprising of 30 patients with MS and 21 patients with noninflammatory CNS diseases (NIND), which were sex and age matched. Results An intrathecal synthesis of antibodies against EBV was found in 5/27 (19%) patients with AE and 2/30 (7%) of the patients with MS.
    [Show full text]
  • Neurotropic Viral Infections in Bangladesh: Burden and Challenges
    http://www.banglajol.info/index.php/BJID/index Editorial Bangladesh Journal of Infectious Diseases June 2016, Volume 3, Number 1 ISSN (Online) 2411-670X ISSN (Print) 2411-4820 Neurotropic Viral Infections in Bangladesh: Burden and Challenges Mohammad Enayet Hussain Assistant Professor, Department of Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; Email: [email protected] Neurotropic virus infections continue to cause encephalopathies. In addition, influenza viruses major disease and economic burdens on society1. It have been linked to the development of Guillan poses a major challenge to human health care Barré syndrome, Kleine Levin syndrome and systems due to the associated morbidity and transfer myelitis5. Maternal influenza has been mortality worldwide. This creates a unique problem associated with schizophrenia and bipolar disorder in providing treatment to the patients involved. This (BD) in the offspring. Acute demyelinating is largely due to unique features of the central encephalomyelitis (ADME) typically occurs in nervous system (CNS), with a plethora of measles patients. Subacute sclerosing interconnected and interdependent cell types, panencephalitis (SSPE) occurs on average 4– complex structures and functions, reduced immune 10 years following acute MV infection. Mumps surveillance and limited regeneration capacity. virus was the leading cause of aseptic meningitis in Infection by neurotropic viruses as well as the local the pre-vaccine era. Pathologically, mumps induced immune responses can
    [Show full text]