1. Geometry of the Unit Tangent Bundle

Total Page:16

File Type:pdf, Size:1020Kb

1. Geometry of the Unit Tangent Bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consi- der (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations Given a local chart (U, φ) on M, we will denote by (xi)16i6n the local coordinates and we write in these coordinates n X i j g = gijdx dx , i,j=1 ∂ ∂ ij where gij(x) = g , . We denote by (g ) the coefficient of the ∂xi ∂xj inverse matrix. Given x ∈ M, the norm of v ∈ TxM is given by |v|x = 1/2 1/2 gx(v, v) , which will sometimes be denoted hv, vix . In the following, we will often drop the index x. Note that if we are given other coordinates (yj), then one can check that in these new coordinates : n X ∂xi ∂xj k l (1.1) g = gij dy dy ∂yk ∂yl i,j,k,l=1 We define the musical isomorphism at x ∈ M by ∗ TxM → Tx M [ : v 7→ v[ = g(v, ·) This is an isomorphism between the two vector bundles TM and T ∗M since they are equidimensional and g is symmetric definite positive, thus non-degenerate. Given an orthonormal basis (ei) of TxM, we will denote i ∗ by (e ) the dual basis of Tx M which is, in other words, the image of the basis (ei) by the musical isomorphism. If E is a vector bundle over M, then the projection will be denoted π : E → M. We denote by Γ(M, E) the set of smooth sections of E. Γ(M) de- m ∗ notes Γ(M, T M), the set of vector fields. We will denote by Γ(M, ⊗S T M) the set of smooth symmetric covariant m-tensors on M. On the cotangent bundle T ∗M, we denote by ω the canonical symplectic form, which we Pn i i write in coordinates ω = i=1 dp ∧ dx . We recall that it is obtained as the differential of the canonical 1-form λ ∈ Ω1(T ∗M), defined intrinsically as λ(x,p)(ξ) = p dπ(x,p)(ξ) , 2 ∗ ∗ ∗ for a point (x, p) ∈ T M, ξ ∈ T(x,p)T M and where π : T M → M denotes the projection. Given a point x ∈ M, if (ei) is an orthonormal basis of TxM, we define dvol = e1 ∧ ... ∧ en. In local coordinates, it is given by the formula : q 1 n (1.2) dvol = det(gij)dx ∧ ... ∧ dx We recall that the Laplacian in local coordinates is given by : n X 1 (1.3) ∆f = √ ∂ pdet ggij∂ f det g i j i,j=1 We denote by ∇ the Levi-Civita connection on TM. In local coordinates, the Christoffel symbols are defined such that : n ∂ X k ∂ (1.4) ∇ ∂ = Γij ∂xi ∂xj ∂xk k=1 They are given by the Koszul formula : n k 1 X kl ∂gil ∂gjl ∂gij (1.5) Γij = g + − 2 ∂xj ∂xi ∂xl l=1 We denote the torsion tensor T ∇, which is defined as : ∇ T (X, Y ) = ∇X Y − ∇Y X − [X, Y ] The curvature tensor is denoted by F ∇ and defined as : ∇ (1.6) F (X, Y )Z = ∇X ∇Y Z − ∇Y ∇X Z − ∇[X,Y ]Z In particular, we clearly have F ∇(X, Y ) = −F ∇(Y, X). We recall that the Levi-Civita connection is the unique torsion-free and g-metric connection, namely it satisfies for any X, Y, Z ∈ Γ(M) : ∇ (1.7) T (X, Y ) = ∇X Y − ∇Y X − [X, Y ] = 0 (1.8) Z · (g(X, Y )) = g(∇Z X, Y ) + g(X, ∇Z Y ) The sectional curvature K is given at x by ∇ Kx(e1, e2) = hF (e1, e2)e1, e2i, where e1, e2 ∈ TxM are orthogonal. In particular, in the case of a surface, which is what we will be mostly interested in, the sectional curvature is a real number referred to as the Gaussian curvature (or simply the curvature if the context is not ambiguous). 3 1.2. Structure of SM 1.2.1. The horizontal distribution Let us first state some very general results. We consider a vector bundle π : E → M of rank r with a connection ∇. Given a path γ : I → M such −1 that γ(0) = x, γ˙ (0) = X ∈ TxM and an initial value s0 ∈ Ex = π ({x}), there exists a unique lift of γ to a path s : I → E — it is the parallel transport of s0 along γ — such that s(0) = s0, π(s) = γ and (1.9) ∇γ˙ s = 0 Now, we can associate to X the vector ˜ d (1.10) X = s(t) ∈ Ts0 E dt t=0 One can check that X˜ is well defined and only depends on the choice of (γ(0), γ˙ (0)). It is a linear application TxM → Ts0 E which we denote by i ∂ j θ : X 7→ X˜. In local coordinates, if we write X = X , s0 = s ej, then ∂xi the parallel transport equation (1.9) yield to : i ∂ k i j ∂ (1.11) θ(X) = X − ΓijX s ∂xi ∂sk We define the horizontal distribution on (E, ∇) at s0 ∈ E as : (1.12) ∇ = Span(θ(X),X ∈ T (s )) ⊂ T E Hs0 π 0 s0 In the following, we will drop the notation ∇ for Hs0 , but we insist on the fact that Hs0 is entirely determined by the choice of ∇. Actually, one can check that choosing a connection ∇ is strictly equivalent to choosing a smooth distribution of vector spaces H ⊂ TE. Note that we have the following theorem : Theorem 1.1. — The following assertions are equivalent : — The distribution s0 7→ Hs0 is integrable. — The connection ∇ is flat, i.e. T ∇ vanishes. — The holonomy i.e. the parallel transport of a section along a closed loop is invariant by homotopy of this loop. Since θ is clearly injective by definition, it defines an isomorphism bet- ∼ ween Tπ(s0) −→ Hs0 . We define the vertical distribution on (E, ∇) at s0 as Vs0 = ker dπs0 = Eπ(s0) ⊂ Ts0 E. Thanks to (1.9), it is easy to check that θ is exactly the inverse of the differential dπs0 restricted to the subspace Hs0 of Ts0 E. We therefore have the splitting : (1.13) Ts0 E = Hs0 ⊕ Vs0 4 Given a vector ξ ∈ Ts0 E, which we write in local coordinates ξ = ∂ ∂ Xi + Y k , (1.11) shows that it is in ∇ if and only if Hs0 ∂xi ∂sk k k i j (1.14) Y + ΓijX s = 0, i for all 1 6 k 6 r, and it is in Vs0 if and only if X = 0 for all 1 6 i 6 n. 1.2.2. The Sasaki metric We now apply the previous formalism to the particular case when E = TM and construct a canonical metric hh·, ·ii on TM, called the Sasaki metric. If ∇ is the Levi-Civita connection on TM, then it automatically determines a splitting like in (1.13). In this case, there also exists a canonical application K : T(x,v)TM → TxM whose kernel is exactly H(x,v). Somehow, it can be seen as a com- plementary application to dπ. Given ξ ∈ T(x,v)TM, we can consider a local curve c in TM such that c(0) = (x, v) and c˙(0) = ξ. We can write c(t) = (γ(t),Z(t)), where Z is a vector field along the curve γ. We define : (1.15) K(x,v)(ξ) = ∇γ˙ Z(0) One can easily check that the application K now defines an isomorphism between V(x,v) and TxM and its kernel is precisely H(x,v), the horizontal distribution. Definition 1.2. — Given a point (x, v) ∈ TM and ξ, η ∈ T(x,v)TM, we set : — If ξ, η are vertical, namely ξ, η ∈ V(x,v) = TxM, then hhξ, ηii := hK(ξ), K(η)i, — If ξ, η are horizontal, then hhξ, ηii := hdπ(x,v)(ξ), dπ(x,v)ηi, — V(x,v) and H(x,v) are orthogonal for hh·, ·ii. Note that the last line induces in particular that the decomposition (1.13) is orthogonal for the Sasaki metric. In the rest of this paragraph, we explain how to recover the Sasaki metric from the symplectic point of view. We recall that λ is the canonical 1-form defined on T ∗M and introduced in the previous section. It can be pulled 5 back via the musical isomorphism to get α = [∗λ ∈ Ω1(TM). Then α(x,v)(ξ) = λ(x,v[)(d [(x,v)(ξ)) [ = v dπ(x,v[) ◦ d [(x,v)(ξ) [ = v d (π ◦ [)(x,v) (ξ) = hv, dπ(x,v)(ξ)i = hhZ, ξii, for some vector field Z, according to Riesz representation theorem. We claim that Z is actually the geodesic vector field X. Indeed, first observe that X is a horizontal vector field (i.e. X(x, v) ∈ H(x,v)), which is an immediate consequence of the expressions in local coordinates (??) and (1.14). In particular, in local coordinates, expression (1.11) yield to : i ∂ (1.16) dπ(x,v)(X(x, v)) = v ∂xi In order to prove that Z = X, we just have to check that the expressions hv, dπ(x,v)(ξ)i and hhX, ξii agree when ξ runs through a basis of T(x,v)TM. If ξ is in V(x,v) (that is ξ is vertical), this is immediate since dπ(ξ) = 0 and ∂ k j ∂ ∂ X is horizontal. If ξ = ξi = − Γijv , then dπ(ξi) = by (1.11) ∂xi ∂vk ∂xi and hv, dπ(x,v)(ξ)i = vi.
Recommended publications
  • Laplacians in Geometric Analysis
    LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1.
    [Show full text]
  • Characterization of Exact Lumpability for Vector Fields on Smooth Manifolds
    Preprint. Final version in: Differ.Geom.Appl. 48 (2016) 46-60 doi: 10.1016/j.difgeo.2016.06.001 Characterization of Exact Lumpability for Vector Fields on Smooth Manifolds Leonhard Horstmeyer∗ † Fatihcan M. Atay‡ Abstract We characterize the exact lumpability of smooth vector fields on smooth man- ifolds. We derive necessary and sufficient conditions for lumpability and express them from four different perspectives, thus simplifying and generalizing various re- sults from the literature that exist for Euclidean spaces. We introduce a partial connection on the pullback bundle that is related to the Bott connection and be- haves like a Lie derivative. The lumping conditions are formulated in terms of the differential of the lumping map, its covariant derivative with respect to the con- nection and their respective kernels. Some examples are discussed to illustrate the theory. PACS numbers: 02.40.-k, 02.30.Hq, 02.40.Hw AMS classification scheme numbers: 37C10, 34C40, 58A30, 53B05, 34A05 Keywords: lumping, aggregation, dimensional reduction, Bott connection 1 Introduction Dimensional reduction is an important aspect in the study of smooth dynamical systems and in particular in modeling with ordinary differential equations (ODEs). Often a reduction can elucidate key mechanisms, find decoupled subsystems, reveal conserved quantities, make the problem computationally tractable, or rid it from redundancies. A dimensional reduction by which micro state variables are aggregated into macro state variables also goes by the name of lumping. Starting from a micro state dynamics, this arXiv:1607.01237v2 [math.DG] 6 Jul 2016 aggregation induces a lumped dynamics on the macro state space. Whenever a non- trivial lumping, one that is neither the identity nor maps to a single point, confers the ∗Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany.
    [Show full text]
  • Lorentzian Cobordisms, Compact Horizons and the Generic Condition
    Lorentzian Cobordisms, Compact Horizons and the Generic Condition Eric Larsson Master of Science Thesis Stockholm, Sweden 2014 Lorentzian Cobordisms, Compact Horizons and the Generic Condition Eric Larsson Master’s Thesis in Mathematics (30 ECTS credits) Degree programme in Engineering Physics (300 credits) Royal Institute of Technology year 2014 Supervisor at KTH was Mattias Dahl Examiner was Mattias Dahl TRITA-MAT-E 2014:29 ISRN-KTH/MAT/E--14/29--SE Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci iii Abstract We consider the problem of determining which conditions are necessary for cobordisms to admit Lorentzian metrics with certain properties. In particu- lar, we prove a result originally due to Tipler without a smoothness hypothe- sis necessary in the original proof. In doing this, we prove that compact hori- zons in a smooth spacetime satisfying the null energy condition are smooth. We also prove that the ”generic condition” is indeed generic in the set of Lorentzian metrics on a given manifold. Acknowledgements I would like to thank my advisor Mattias Dahl for invaluable advice and en- couragement. Thanks also to Hans Ringström. Special thanks to Marc Nardmann for feedback on Chapter 2. Contents Contents iv 1 Lorentzian cobordisms 1 1.1 Existence of Lorentzian cobordisms . 2 1.2 Lorentzian cobordisms and causality . 4 1.3 Lorentzian cobordisms and energy conditions . 8 1.3.1 C 2 null hypersurfaces . 9 1.3.1.1 The null Weingarten map . 9 1.3.1.2 Generator flow on C 2 null hypersurfaces .
    [Show full text]
  • The Holomorphic Φ-Sectional Curvature of Tangent Sphere Bundles with Sasakian Structures
    ANALELE S¸TIINT¸IFICE ALE UNIVERSITAT¸II˘ \AL.I. CUZA" DIN IAS¸I (S.N.) MATEMATICA,˘ Tomul LVII, 2011, Supliment DOI: 10.2478/v10157-011-0004-5 THE HOLOMORPHIC '-SECTIONAL CURVATURE OF TANGENT SPHERE BUNDLES WITH SASAKIAN STRUCTURES BY S. L. DRUT¸ A-ROMANIUC˘ and V. OPROIU Abstract. We study the holomorphic '-sectional curvature of the natural diagonal tangent sphere bundles with Sasakian structures, determined by Drut¸a-Romaniuc˘ and Oproiu. After finding the explicit expressions for the components of the curvature tensor field and of the curvature tensor field corresponding to the Sasakian space forms, we find that there are no tangent sphere bundles of natural diagonal lift type of constant holomorphic '-sectional curvature. Mathematics Subject Classification 2000: 53C05, 53C15, 53C55. Key words: natural lift, tangent sphere bundle, Sasakian structure, holomorphic '-sectional curvature. 1. Introduction The geometry of the tangent sphere bundles of constant radius r, endowed with the metrics induced by some Riemannian metrics from the ambi- ent tangent bundle, was studied by authors like Abbassi, Boeckx, Cal- varuso, Kowalski, Munteanu, Park, Sekigawa, Sekizawa (see [1], [2], [4]-[7], [9], [12]-[14], [16]). In the most part of the papers, such as [4], [5] and [16], the metric considered on the tangent bundle TM was the Sasaki metric, but Boeckx noticed that the unit tangent bundle equipped with the induced Cheeger-Gromoll metric is isometric to the tangent sphere bun- dle T p1 M with the induced Sasaki metric. Then, in 2000, Kowalski and 2 Sekizawa showed how the geometry of the tangent sphere bundles depends on the radius (see [10]).
    [Show full text]
  • On a Class of Einstein Space-Time Manifolds
    Publ. Math. Debrecen 67/3-4 (2005), 471–480 On a class of Einstein space-time manifolds By ADELA MIHAI (Bucharest) and RADU ROSCA (Paris) Abstract. We deal with a general space-time (M,g) with usual differen- tiability conditions and hyperbolic metric g of index 1, which carries 3 skew- symmetric Killing vector fields X, Y , Z having as generative the unit time-like vector field e of the hyperbolic metric g. It is shown that such a space-time (M,g) is an Einstein manifold of curvature −1, which is foliated by space-like hypersur- faces Ms normal to e and the immersion x : Ms → M is pseudo-umbilical. In addition, it is proved that the vector fields X, Y , Z and e are exterior concur- rent vector fields and X, Y , Z define a commutative Killing triple, M admits a Lorentzian transformation which is in an orthocronous Lorentz group and the distinguished spatial 3-form of M is a relatively integral invariant of the vector fields X, Y and Z. 0. Introduction Let (M,g) be a general space-time with usual differentiability condi- tions and hyperbolic metric g of index 1. We assume in this paper that (M,g) carries 3 skew-symmetric Killing vector fields (abbr. SSK) X, Y , Z having as generative the unit time-like vector field e of the hyperbolic metric g (see[R1],[MRV].Therefore,if∇ is the Levi–Civita connection and ∧ means the wedge product of vector Mathematics Subject Classification: 53C15, 53D15, 53C25. Key words and phrases: space-time, skew-symmetric Killing vector field, exterior con- current vector field, orthocronous Lorentz group.
    [Show full text]
  • On Manifolds of Negative Curvature, Geodesic Flow, and Ergodicity
    ON MANIFOLDS OF NEGATIVE CURVATURE, GEODESIC FLOW, AND ERGODICITY CLAIRE VALVA Abstract. We discuss geodesic flow on manifolds of negative sectional curva- ture. We find that geodesic flow is ergodic on the tangent bundle of a manifold, and present the proof for both n = 2 on surfaces and general n. Contents 1. Introduction 1 2. Riemannian Manifolds 1 2.1. Geodesic Flow 2 2.2. Horospheres and Horocycle Flows 3 2.3. Curvature 4 2.4. Jacobi Fields 4 3. Anosov Flows 4 4. Ergodicity 5 5. Surfaces of Negative Curvature 6 5.1. Fuchsian Groups and Hyperbolic Surfaces 6 6. Geodesic Flow on Hyperbolic Surfaces 7 7. The Ergodicity of Geodesic Flow on Compact Manifolds of Negative Sectional Curvature 8 7.1. Foliations and Absolute Continuity 9 7.2. Proof of Ergodicity 12 Acknowledgments 14 References 14 1. Introduction We want to understand the behavior of geodesic flow on a manifold M of constant negative curvature. If we consider a vector in the unit tangent bundle of M, where does that vector go (or not go) when translated along its unique geodesic path. In a sense, we will show that the vector goes \everywhere," or that the vector visits a full measure subset of T 1M. 2. Riemannian Manifolds We first introduce some of the initial definitions and concepts that allow us to understand Riemannian manifolds. Date: August 2019. 1 2 CLAIRE VALVA Definition 2.1. If M is a differentiable manifold and α :(−, ) ! M is a dif- ferentiable curve, where α(0) = p 2 M, then the tangent vector to the curve α at t = 0 is a function α0(0) : D ! R, where d(f ◦ α) α0(0)f = j dt t=0 for f 2 D, where D is the set of functions on M that are differentiable at p.
    [Show full text]
  • On Riemannian Manifolds Endowed with a Locally Conformal Cosymplectic Structure
    ON RIEMANNIAN MANIFOLDS ENDOWED WITH A LOCALLY CONFORMAL COSYMPLECTIC STRUCTURE ION MIHAI, RADU ROSCA, AND VALENTIN GHIS¸OIU Received 18 September 2004 and in revised form 7 September 2005 We deal with a locally conformal cosymplectic manifold M(φ,Ω,ξ,η,g)admittingacon- formal contact quasi-torse-forming vector field T. The presymplectic 2-form Ω is a lo- cally conformal cosymplectic 2-form. It is shown that T is a 3-exterior concurrent vector field. Infinitesimal transformations of the Lie algebra of ∧M are investigated. The Gauss map of the hypersurface Mξ normal to ξ is conformal and Mξ × Mξ is a Chen submanifold of M × M. 1. Introduction Locally conformal cosymplectic manifolds have been investigated by Olszak and Rosca [7] (see also [6]). In the present paper, we consider a (2m + 1)-dimensional Riemannian manifold M(φ, Ω,ξ,η,g) endowed with a locally conformal cosymplectic structure. We assume that M admits a principal vector field (or a conformal contact quasi-torse-forming), that is, ∇T = sdp + T ∧ ξ = sdp + η ⊗ T − T ⊗ ξ, (1.1) with ds = sη. First, we prove certain geometrical properties of the vector fields T and φT. The exis- tence of T and φT is determined by an exterior differential system in involution (in the sense of Cartan [3]). The principal vector field T is 3-exterior concurrent (see also [8]), it defines a Lie relative contact transformation of the co-Reeb form η, and the Lie differential of T with respect to T is conformal to T.ThevectorfieldφT is an infinitesimal transfor- mation of generators T and ξ.Thevectorfieldsξ, T,andφT commute and the distri- bution DT ={T,φT,ξ} is involutive.
    [Show full text]
  • Thurston's Eight Model Geometries
    Thurston's Eight Model Geometries Nachiketa Adhikari May 2016 Abstract Just like the distance in Euclidean space, we can assign to a manifold a no- tion of distance. Two manifolds with notions of distances can be topologically homoemorphic, but geometrically very different. The question then arises: are there any \standard" or \building block" manifolds such that any manifold is either a quotient of these manifolds or somehow \made up" of such quotients? If so, how do we define such standard manifolds, and how do we discover how many of them there are? In this project, we ask, and partially answer, these questions in three di- mensions. We go over the material necessary for understanding the proof of the existence and sufficiency of Thurston's eight three-dimensional geometries, study a part of the proof, and look at some examples of manifolds modeled on these geometries. On the way we try to throw light on some of the basic ideas of differential and Riemannian geometry. Done as part of the course Low Dimensional Geometry and Topology, under the supervision of Dr Vijay Ravikumar. The main sources used are [7] and [6]. Contents 1 Preliminaries 2 1.1 Basics . .2 1.2 Foliations . .3 1.3 Bundles . .4 2 Model Geometries 8 2.1 What is a model geometry? . .8 2.2 Holonomy and the developing map . .9 2.3 Compact point stabilizers . 11 3 Thurston's Theorem 14 3.1 In two dimensions . 14 3.2 In three dimensions . 14 3.2.1 Group discussion . 15 3.2.2 The theorem .
    [Show full text]
  • Research Article Slant Curves in the Unit Tangent Bundles of Surfaces
    Hindawi Publishing Corporation ISRN Geometry Volume 2013, Article ID 821429, 5 pages http://dx.doi.org/10.1155/2013/821429 Research Article Slant Curves in the Unit Tangent Bundles of Surfaces Zhong Hua Hou and Lei Sun Institute of Mathematics, Dalian University of Technology, Dalian, Liaoning 116024, China Correspondence should be addressed to Lei Sun; [email protected] Received 26 September 2013; Accepted 25 October 2013 Academic Editors: T. Friedrich and M. Pontecorvo Copyright © 2013 Z. H. Hou and L. Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let (, ) be a surface and let ((), ) be the unit tangent bundle of endowed with the Sasaki metric. We know that any curve Γ() in () consistofacurve() in and as unit vector field () along (). In this paper we study the geometric properties () and () satisfying when Γ() is a slant geodesic. 1. Introduction Theorem 1. Let Γ() = ((), ()) be a Legendrian geodesic parameterized by arc length in () with domain ∈[,]. (,,,,) Let be a 3-dimensional contact metric mani- If the set consisting of points ∈[,]such that () = 1 fold.Theslantcurvesin are generalization of Legendrian is discrete, then () is a geodesic of velocity 2 and () is the curves which form a constant angle with the Reeb vector field normal direction of in . .Choetal.[1] studied Lancret type problem for curves in Sasakian 3-manifold. They showed that a curve () ⊂ Theorem 2. Let Γ() = ((), ()) be a slant geodesic param- is slant if and only if ( ± 1)/ is constant where and eterized by arc length in () which is not Legendrian.
    [Show full text]
  • A. Vector and Affine Spaces
    A. Vector and affine spaces This appendix reviews basic facts about vector and affine spaces, including the notions of metric and orientation. To a large extent, the treatment follows Malament (2009). A.1. Matrices Definition 34. An m n matrix is a rectangular table of mn real numbers A , where ⇥ ij 1 i m and 1 j n, arrayed as follows: A A A 11 12 ··· 1n 0 A21 A22 A2n 1 ··· (A.1) . .. B . C B C BA A A C B m1 m2 mnC @ ··· A The operation of matrix multiplication is defined as follows. Definition 35. Given an m n matrix A and an n p matrix B, their matrix product AB ⇥ ⇥ is the m p matrix with entries (AB)i , where ⇥ k i i j (AB) k = A jB k (A.2) Note that this uses the Einstein summation convention: repeated indices are summed over. Definition 36. Given an m n matrix Ai , its transpose is an n m matrix denoted by ⇥ j ⇥ A j, and defined by the condition that for all 1 i m and 1 j n, A j = Ai , i i j An element of Rn can be identified with an n 1 matrix; as such, an m n matrix A ⇥ ⇥ encodes a map A : Rm Rn. Such a map is linear, in the sense that for any xi, yi Rm ! 2 97 and any a, b R, 2 i j j i j i j A j(ax + by )=a(A jx )+b(A jy ) (A.3) And, in fact, any linear map from Rm to Rn corresponds to some matrix.
    [Show full text]
  • Exterior Derivative
    Exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. e exterior derivative was first described in its current form by Élie Cartan in 1899; it allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus. If a k-form is thought of as measuring the flux through an infinitesimal k-parallelotope, then its exterior derivative can be thought of as measuring the net flux through the boundary of a (k + 1)-parallelotope. Contents Definition In terms of axioms In terms of local coordinates In terms of invariant formula Examples Stokes' theorem on manifolds Further properties Closed and exact forms de Rham cohomology Naturality Exterior derivative in vector calculus Gradient Divergence Curl Invariant formulations of grad, curl, div, and Laplacian See also Notes References Definition e exterior derivative of a differential form of degree k is a differential form of degree k + 1. If f is a smooth function (a 0-form), then the exterior derivative of f is the differential of f . at is, df is the unique 1-form such that for every smooth vector field X, df (X) = dX f , where dX f is the directional derivative of f in the direction of X. ere are a variety of equivalent definitions of the exterior derivative of a general k-form. In terms of axioms e exterior derivative is defined to be the unique ℝ-linear mapping from k-forms to (k + 1)-forms satisfying the following properties: 1.
    [Show full text]
  • Lectures on Mechanics Second Edition
    Lectures on Mechanics Second Edition Jerrold E. Marsden March 24, 1997 Contents Preface iv 1 Introduction 1 1.1 The Classical Water Molecule and the Ozone Molecule ........ 1 1.2 Lagrangian and Hamiltonian Formulation ............... 3 1.3 The Rigid Body .............................. 4 1.4 Geometry, Symmetry and Reduction .................. 11 1.5 Stability .................................. 13 1.6 Geometric Phases ............................. 17 1.7 The Rotation Group and the Poincare Sphere ............. 23 2 A Crash Course in Geometric Mechanics 26 2.1 Symplectic and Poisson Manifolds ................... 26 2.2 The Flow of a Hamiltonian Vector Field ................ 28 2.3 Cotangent Bundles ............................ 28 2.4 Lagrangian Mechanics .......................... 29 2.5 Lie-Poisson Structures and the Rigid Body .............. 30 2.6 The Euler-Poincare Equations ...................... 33 2.7 Momentum Maps ............................. 35 2.8 Symplectic and Poisson Reduction ................... 37 2.9 Singularities and Symmetry ....................... 40 2.10 A Particle in a Magnetic Field ..................... 41 3 Tangent and Cotangent Bundle Reduction 44 3.1 Mechanical G-systems .......................... 44 3.2 The Classical Water Molecule ...................... 47 3.3 The Mechanical Connection ....................... 50 3.4 The Geometry and Dynamics of Cotangent Bundle Reduction .... 55 3.5 Examples ................................. 59 3.6 Lagrangian Reduction and the Routhian ................ 65 3.7 The Reduced Euler-Lagrange
    [Show full text]