Section 6: Earthquakes

Total Page:16

File Type:pdf, Size:1020Kb

Section 6: Earthquakes Natural Hazards Mitigation Plan Section 6 – Earthquakes City of Newport Beach, California SECTION 6: EARTHQUAKES Table of Contents Why Are Earthquakes A Threat to the City of Newport Beach? ................ 6-1 Earthquake Basics - Definitions.................................................................................................... 6-3 Causes of Earthquake Damage .................................................................................................... 6-7 Ground Shaking .................................................................................................................................................. 6-7 Liquefaction ......................................................................................................................................................... 6-8 Earthquake-Induced Landslides and Rockfalls .......................................................................................... 6-8 Fault Rupture ...................................................................................................................................................... 6-9 History of Earthquake Events in Southern California .................................... 6-9 Unnamed Earthquake of 1769 .................................................................................................................. 6-11 Unnamed Earthquake of 1800 .................................................................................................................. 6-11 Wrightwood Earthquake of December 12, 1812 ................................................................................ 6-12 Unnamed Earthquake of December 21, 1812 ..................................................................................... 6-12 Unnamed Earthquake of 1855 .................................................................................................................. 6-12 San Jacinto Earthquake of 1899 ............................................................................................................... 6-12 Elsinore Earthquake of 1910 ...................................................................................................................... 6-12 San Jacinto Earthquake of 1918 ............................................................................................................... 6-13 Long Beach Earthquake of 1933 ............................................................................................................... 6-13 Torrance-Gardena Earthquakes of 1941 ................................................................................................ 6-13 San Fernando (Sylmar) Earthquake of 1971 ......................................................................................... 6-14 Oceanside Earthquake of 1986 ................................................................................................................. 6-14 Whittier Narrows Earthquake of 1987 ................................................................................................... 6-14 Newport Beach Earthquake of 1989 ....................................................................................................... 6-15 Landers and Big Bear Earthquakes of 1992 .......................................................................................... 6-15 Northridge Earthquake of 1994 ................................................................................................................ 6-15 Hector Mine Earthquake of 1999 ............................................................................................................ 6-16 Chino Hills Earthquake of 2008 ................................................................................................................ 6-16 Baja California Earthquake of 2010 ......................................................................................................... 6-16 La Habra Earthquake of 2014 .................................................................................................................. 6-17 Earthquake Hazard Assessment .................................................................... 6-17 Choosing Earthquakes for Planning and Design ..................................................................... 6-17 Seismic Shaking .............................................................................................................................. 6-18 Newport-Inglewood Fault Zone .................................................................................................................. 6-21 San Joaquin Hills Fault .................................................................................................................................. 6-22 Compton Thrust Fault ................................................................................................................................... 6-22 Palos Verdes Fault Zone ............................................................................................................................... 6-23 Coronado Bank Fault ..................................................................................................................................... 6-24 Puente Hills Thrust Fault .............................................................................................................................. 6-24 Elsinore – Chino – Whittier Fault Zone ................................................................................................... 6-25 Sierra Madre Fault Zone .............................................................................................................................. 6-26 San Andreas Fault Zone ............................................................................................................................... 6-27 Fault Rupture ................................................................................................................................. 6-29 Liquefaction and Related Ground Failure ................................................................................ 6-32 2014 PAGE 6-i Natural Hazards Mitigation Plan Section 6 – Earthquakes City of Newport Beach, California Lateral Spreading ............................................................................................................................................ 6-33 Flow Failure ....................................................................................................................................................... 6-33 Ground Oscillation .......................................................................................................................................... 6-34 Loss of Bearing Strength ............................................................................................................................... 6-34 Ground Lurching .............................................................................................................................................. 6-34 Seismically Induced Slope Failure ............................................................................................................... 6-34 Ridgetop Fissuring and Shattering .............................................................................................................. 6-35 Vulnerability Assessment ................................................................................ 6-35 Risk Analysis....................................................................................................... 6-38 HazUS Scenario Earthquakes for the Newport Beach Area ............................................... 6-43 Inventory Data Used in the HazUS Loss Estimation Models for Newport Beach ......... 6-45 Estimated Losses Associated with the Earthquake Scenarios ............................................. 6-48 Building Damage ............................................................................................................................................. 6-49 Casualties .......................................................................................................................................................... 6-52 Essential Facility Damage ............................................................................................................................. 6-54 Building-Related Losses ................................................................................................................................. 6-55 Shelter Requirement ...................................................................................................................................... 6-55 Transportation Damage ............................................................................................................................... 6-56 Utility Systems Damage ................................................................................................................................ 6-57 Fire Following Earthquake ............................................................................................................................ 6-58 Debris Generation .......................................................................................................................................... 6-60 Existing Mitigation Activities ........................................................................... 6-60 California Earthquake Mitigation Legislation .......................................................................................... 6-60 City of Newport
Recommended publications
  • Structure Preliminary Geotechnical Report
    I NITIAL S TUDY/MITIGATED N EGATIVE D ECLARATION Y ORBA L INDA B OULEVARD W IDENING I MPROVEMENTS P ROJECT S EPTEMBER 2020 Y ORBA L INDA, C ALIFORNIA APPENDIX F STRUCTURE PRELIMINARY GEOTECHNICAL REPORT P:\HNT1901.02 - Yorba Linda\Draft ISMND\Draft ISMND_Yorba Linda Blvd Widening Improvements Project_9.18.20.docx «09/18/20» Y ORBA L INDA B OULEVARD W IDENING I MPROVEMENTS P ROJECT I NITIAL S TUDY/MITIGATED N EGATIVE D ECLARATION Y ORBA L INDA, C ALIFORNIA S EPTEMBER 2020 This page intentionally left blank P:\HNT1901.02 - Yorba Linda\Draft ISMND\Draft ISMND_Yorba Linda Blvd Widening Improvements Project_9.18.20.docx «09/18/20» Earth Mechanics, Inc. Geotechnical & Earthquake Engineering November 13, 2019 EMI Project No. 19-143 HNTB 200 E. Sandpointe Avenue, Suite 200 Santa Ana, California 92707 Attention: Mr. Patrick Somerville Subject: Structure Preliminary Geotechnical Report Yorba Linda Blvd Bridge over Santa Ana River (Widen), Bridge No. 55C-0509 Yorba Linda Boulevard and Savi Ranch Parkway Widening Project City of Yorba Linda, California Dear Mr. Somerville: Attached is our Structure Preliminary Geotechnical Report (SPGR) for the proposed widening of the Yorba Linda Boulevard Bridge over the Santa Ana River (Bridge No. 55C-0509) in the City of Yorba Linda, California. The bridge widening is part of the Yorba Linda Boulevard and Savi Ranch Parkway Widening Project. This report was prepared to support the Project Approval and Environmental Document (PA-ED) phase of the project. The SPGR includes information required by the 2017 California Department of Transportation (Caltrans) Foundation Reports for Bridges document.
    [Show full text]
  • Ebird Top 100 Birding Hot Sots
    eBird Top 100 Birding Locations in Orange County 01 Huntington Central Park 02 San Joaquin Wildlife Sanctuary 03 Bolsa Chica Ecological Reserve 04 Seal Beach NWR (restricted access) 05 Huntington Central Park – East 06 Bolsa Chica – walkbridge/inner bay 07 Huntington Central Park – West 08 William R. Mason Regional Park 09 Upper Newport Bay 10 Laguna Niguel Regional Park 11 Harriett M. Wieder Regional Park 12 Upper Newport Bay Nature Preserve 13 Mile Square Regional Park 14 Irvine Regional Park 15 Peters Canyon Regional Park 16 Newport Back Bay 17 Talbert Nature Preserve 18 Upper Newport Bay – Back Bay Dr. 19 Yorba Regional Park 20 Crystal Cove State Park 21 Doheny State Beach 22 Bolsa Chica - Interpretive Center/Bolsa Bay 23 Upper Newport Bay – Back Bay Dr. parking lot 24 Bolsa Chica – Brightwater area 25 Carbon Canyon Regional Park 26 Santiago Oaks Regional Park 27 Upper Santa Ana River – Lincoln Ave. to Glassel St. 28 Huntington Central Park – Shipley Nature Center 29 Upper Santa Ana River – Lakeview Ave. to Imperial Hwy. 30 Craig Regional Park 31 Irvine Lake 32 Bolsa Chica – full tidal area 33 Upper Newport Bay Nature Preserve – Muth Interpretive Center area 1 eBird Top 100 Birding Locations in Orange County 34 Upper Santa Ana River – Tustin Ave. to Lakeview Ave. 35 Fairview Park 36 Dana Point Harbor 37 San Joaquin Wildlife Area – Fledgling Loop Trail 38 Crystal Cove State Park – beach area 39 Ralph B. Clark Regional Park 40 Anaheim Coves Park (aka Burris Basin) 41 Villa Park Flood Control Basin 42 Aliso and Wood Canyons Wilderness Park 43 Upper Newport Bay – boardwalk 44 San Joaquin Wildlife Sanctuary – Tree Hill Trail 45 Starr Ranch 46 San Juan Creek mouth 47 Upper Newport Bay – Big Canyon 48 Santa Ana River mouth 49 Bolsa Chica State Beach 50 Crystal Cover State Park – El Moro 51 Riley Wilderness Park 52 Riverdale Park (ORA County) 53 Environmental Nature Center 54 Upper Santa Ana River – Taft Ave.
    [Show full text]
  • Rockwell International Corporation 1049 Camino Dos Rios (P.O
    SC543.J6FR "Mads available under NASA sponsrislP in the interest of early and wide dis­ *ninatf of Earth Resources Survey Program information and without liaoility IDENTIFICATION AND INTERPRETATION OF jOr my ou mAOthereot." TECTONIC FEATURES FROM ERTS-1 IMAGERY Southwestern North America and The Red Sea Area may be purchased ftohu Oriinal photograPhY EROS D-aa Center Avenue 1thSioux ad Falls. OanOta So, 7 - ' ... +=,+. Monem Abdel-Gawad and Linda Tubbesing -l Science Center, Rockwell International Corporation 1049 Camino Dos Rios (P.O. Box 1085) Thousand Oaks, California 91360 U.S.A. N75-252 3 9 , (E75-10 2 9 1 ) IDENTIFICATION AND FROM INTERPRETATION OF TECTONIC FEATURES AMERICA ERTS-1 IMAGERY: SOUTHWESTERN NORTH Unclas THE RED SEA AREA Final Report, 30 May !AND1972 - 11 Feb. 1975 (Rockwell International G3/43 00291 _ May 5, 1975 , Type III Fihnal Report for Period: May 30, 1972 - February 11, 1975, . ­ Prepared for NASAIGODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20071 Pwdu. by NATIONAL TECHNICAL INFORMATION SERVICE US Dopa.rm.nt or Commerco Snrnfaield, VA. 22151 N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGN.IZED THAT CER- TAIN PORTIONS ARE ILLEGIBLE, IT IS-BE'ING RE- LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. SC543.16FR IDENTIFICATION AND INTERPRETATION OF TECTONIC FEATURES FROM ERTS-1 IMAGERY Southwestern North America and The Red Sea Area Monem Abdel-Gawad and Linda Tubbesi'ng Science Center/Rockwell International Corporation 1049 Camino Dos Rios, P.O. Box 1085 Thousand Oaks, California 91360 U.S.A.
    [Show full text]
  • Development of Faults and Prediction of Earthquakes in the Himalayas
    Journal of Graphic Era University Vol. 6, Issue 2, 197-206, 2018 ISSN: 0975-1416 (Print), 2456-4281 (Online) Development of Faults and Prediction of Earthquakes in the Himalayas A. K. Dubey Department of Petroleum Engineering Graphic Era Deemed to be University, Dehradun, India E-mail: [email protected] (Received October 9, 2017; Accepted July 3, 2018) Abstract Recurrence period of high magnitude earthquakes in the Himalayas may be of the order of hundreds of years but a large number of smaller earthquakes occur every day. The low intensity earthquakes are not felt by human beings but recorded in sensitive instruments called seismometers. It is not possible to get rid of these earthquakes because the mountain building activity is still going on. Continuous compression and formation of faults in the region is caused by northward movement of the Indian plate. Some of the larger faults extend from Kashmir to Arunachal Pradesh. Strain build up in the region results in displacement along these faults that cause earthquakes. Types of these faults, mechanism of their formation and problems in predicting earthquakes in the region are discussed. Keywords- Faults and faulting, Himalayan thrusts, Oil trap, Seismicity, Superimposed deformation. 1. Introduction If we go back in the history of the Earth (~250 million years ago), India was part of a huge land mass called 'Pangaea'. The land mass was positioned in the southern hemisphere very close to the South pole (Antarctica). Because of some reason, not known to us till now, the landmass broke and India started its onward journey in a northerly direction.
    [Show full text]
  • SUMMARIES of TECHNICAL REPORTS, VOLUME X Prepared by Participants in NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM June 1980
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Office of Earthquake Studies SUMMARIES OF TECHNICAL REPORTS, VOLUME X Prepared by participants in NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM June 1980 OPEN-FILE REPORT 80-842 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature Menlo Park, California 1980 CONTENTS Earthquake Hazards Reduction Program I. Earthquake Hazards Studies (H) Page Objective 1, Establish an accurate and reliable national earthquake data base.——————————————————• Objective 2. Delineate and evaluate earthquake hazards and risk in the United States on a national scale. ——————————————————————————• 66 Objective 3. Delineate and evaluate earthquake hazards and risk in earthquake-prone urbanized regions in the western United States.——————————————• 77 Objective 4, Delineate and evaluate earthquake hazards and risk in earthquake-prone regions in the eastern United States. ————— —————————— — ———— 139 Objective 5. Improve capability to evaluate earthquake potential and predict character of surface faulting.———————————————— ————————— 171 Objective 6. Improve capability to predict character of damaging ground shaking.———————————————— 245 Objective 7. Improve capability to predict incidence, nature and extent of earthquake-induced ground failures, particularly landsliding and liquefaction.--——— 293 Objective 8. Improve capability to predict earthquake losses.— 310 II. Earthquake Prediction Studies (P) Objective 1. Observe at a reconnaissance
    [Show full text]
  • 5.4 Geology and Soils
    BEACH BOULEVARD SPECIFIC PLAN DRAFT EIR CITY OF ANAHEIM 5. Environmental Analysis 5.4 GEOLOGY AND SOILS This section of the Draft Environmental Impact Report (DEIR) evaluates the potential for implementation of the Beach Boulevard Specific Plan (Proposed Project) to impact geological and soil resources in the City of Anaheim. 5.4.1 Environmental Setting Regulatory Setting California Alquist-Priolo Earthquake Fault Zoning Act The Alquist-Priolo Earthquake Fault Zoning Act was signed into state law in 1972. Its primary purpose is to mitigate the hazard of fault rupture by prohibiting the location of structures for human occupancy across the trace of an active fault. The act delineates “Earthquake Fault Zones” along faults that are “sufficiently active” and “well defined.” The act also requires that cities and counties withhold development permits for sites within an earthquake fault zone until geologic investigations demonstrate that the sites are not threatened by surface displacement from future faulting. Pursuant to this act, structures for human occupancy are not allowed within 50 feet of the trace of an active fault. Seismic Hazard Mapping Act The Seismic Hazard Mapping Act (SHMA) was adopted by the state in 1990 to protect the public from the effects of nonsurface fault rupture earthquake hazards, including strong ground shaking, liquefaction, seismically induced landslides, or other ground failure caused by earthquakes. The goal of the act is to minimize loss of life and property by identifying and mitigating seismic hazards. The California Geological Survey (CGS) prepares and provides local governments with seismic hazard zone maps that identify areas susceptible to amplified shaking, liquefaction, earthquake-induced landslides, and other ground failures.
    [Show full text]
  • Foreshock Sequences and Short-Term Earthquake Predictability on East Pacific Rise Transform Faults
    NATURE 3377—9/3/2005—VBICKNELL—137936 articles Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults Jeffrey J. McGuire1, Margaret S. Boettcher2 & Thomas H. Jordan3 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, and 2MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts 02543-1541, USA 3Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-7042, USA ........................................................................................................................................................................................................................... East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion. On average, before large earthquakes occur, local seismicity rates support the inference of slow slip transients, but the subject remains show a significant increase1. In continental regions, where dense controversial23.
    [Show full text]
  • Archibald Business Center Building #1 1 7 , 3 2 4 S Q U a R E F E E T a Vailable on 1
    ARCHIBALD BUSINESS CENTER BUILDING #1 1 7 , 3 2 4 S Q U A R E F E E T A VAILABLE ON 1 . 4 3 A CRES 1420 S. ARCHIBALD AVENUE, ONTARIO, CALIFORNIA SAN BERNARDINO FWY FEATURES 10 Ontario Airport Dr. International • Office: 993 Sq. Ft. Airport La Salle St. • Clearance: 22’ at 1st Column Mission U.P.R.R. UPS Carnegie Ave. Carnegie Dupont St. Dupont Commerce Pkwy. Commerce • Sprinkler System: .45 GPM/3,000 Sq. Ft. Blvd. Jurupa St. Fayette La . e ARCHIBALD UPS v CALIFORNIA • Power: 800 Amp, 277/480 Volts, 3 Phase A HOFER COMMERCE CENTER . RANCH • Loading: 1 Dock High Door Francis St. 15 Francis St. Ave Vineyard M e. 1 Ground Level Door v A Ave. Metrolink • Parking: 44 Existing Station Milliken Ave. Archibald Ave. Turner • Lighting: Metal Halide Philadelpia St. Hellman • Adjacent to Ontario International Airport POMONA FWY Haven 60 • Immediate access to the Pomona (60), Ontario (15), and San Bernardino (10) Freeways N ONTARIO FWY • Part of the Majestic Airport Center - Ontario, the Premier Master Planned Business Park of the Inland Empire 101 134 AZUSA RANCHO PASADENA CUCAMONGA LOS 101 5 ANGELES SAN DIMAS 210 FONTANA ContactFEATURES Information: 10 ONTARIO 10 INTERNATIONAL CITY OF AIRPORT INDUSTRY 57 TRENT WYLDE (562) 948-4315 [email protected] LOS ANGELES 60 ONTARIO INTL. 405 110 605 DIAMOND BAR MIRA 710 WHITTIER LOMA AIRPORT 71 CHINO R.E. License #01180856 (CA) 105 57 CHINO HILLS 15 SANTA FE BREA 5 SPRINGS YORBA LINDA KEVIN McCARTHY (562) 948-4394 [email protected] CORONA 91 FULLERTON PLACENTIA LONG 91 R.E.
    [Show full text]
  • Report of Geotechnical Investigation Proposed Improvements
    REPORT OF GEOTECHNICAL INVESTIGATION PROPOSED IMPROVEMENTS PROPOSED RIO HONDO SATELLITE CAMPUS EL RANCHO ADULT SCHOOL 9515 HANEY STREET PICO RIVERA, CALIFORNIA Prepared for: RIO HONDO PROGRAM MANAGEMENT TEAM Whittier, California January 20, 2016 Project 4953-15-0302 January 20, 2016 Mr Luis Rojas Rio Hondo Program Management Team c/o Rio Hondo College 3600 Workman Mill Road Whittier, California 90601-1699 Subject: LETTER OF TRANSMITTAL Report of Geotechnical Investigation Proposed Improvements Proposed Rio Hondo Satellite Campus El Rancho Adult School 9515 Haney Street Pico Rivera, California, 90660 Amec Foster Wheeler Project 4953-15-0302 Dear Mr. Rojas: We are pleased to submit the results of our geotechnical investigation for the proposed improvements as part of the proposed Rio Hondo Satellite Campus at the El Rancho Adult School in Pico Rivera, California. This investigation was performed in general accordance with our proposal dated November 24, 2015, which was authorized by e-mail on December 15, 2015. The scope of our services was planned with Mr. Manuel Jaramillo of DelTerra. We have been furnished with a site plan and a general description of the proposed improvements. The results of our investigation and design recommendations are presented in this report. Please note that you or your representative should submit copies of this report to the appropriate governmental agencies for their review and approval prior to obtaining a permit. Correspondence: Amec Foster Wheeler 6001 Rickenbacker Road Los Angeles, California 90040 USA
    [Show full text]
  • Analyzing the Performance of GPS Data for Earthquake Prediction
    remote sensing Article Analyzing the Performance of GPS Data for Earthquake Prediction Valeri Gitis , Alexander Derendyaev * and Konstantin Petrov The Institute for Information Transmission Problems, 127051 Moscow, Russia; [email protected] (V.G.); [email protected] (K.P.) * Correspondence: [email protected]; Tel.: +7-495-6995096 Abstract: The results of earthquake prediction largely depend on the quality of data and the methods of their joint processing. At present, for a number of regions, it is possible, in addition to data from earthquake catalogs, to use space geodesy data obtained with the help of GPS. The purpose of our study is to evaluate the efficiency of using the time series of displacements of the Earth’s surface according to GPS data for the systematic prediction of earthquakes. The criterion of efficiency is the probability of successful prediction of an earthquake with a limited size of the alarm zone. We use a machine learning method, namely the method of the minimum area of alarm, to predict earthquakes with a magnitude greater than 6.0 and a hypocenter depth of up to 60 km, which occurred from 2016 to 2020 in Japan, and earthquakes with a magnitude greater than 5.5. and a hypocenter depth of up to 60 km, which happened from 2013 to 2020 in California. For each region, we compare the following results: random forecast of earthquakes, forecast obtained with the field of spatial density of earthquake epicenters, forecast obtained with spatio-temporal fields based on GPS data, based on seismological data, and based on combined GPS data and seismological data.
    [Show full text]
  • San Diego Creek Watershed Natural Treatment System Orange County, California
    San Diego Creek Watershed Natural Treatment System Orange County, California Environmental Assessment U.S. Department of the Interior Bureau of Reclamation Southern California Area Office Temecula, California August 2009 Mission Statements The mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to Indian tribes and our commitments to island communities. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Cover Photo: San Joaquin Wildlife Sanctuary, Irvine, California by R.L. Kenyon, courtesy of Sea and Sage Audubon Society http://www.seaandsageaudubon.org/ Environmental Assessment San Diego Creek Watershed Natural Treatment System Project (SCH No. 2002021120) Irvine Ranch Water District, Orange County, California Prepared pursuant to the National Environmental Policy Act (NEPA) 42 U.S.C. 4332 (2) (C), 16 U.S.C. 470, 49 U.S.C. 303 and 23 U.S.C. 138 for the Environmental Protection Agency (NEPA Cooperating Agency) and the Bureau of Reclamation (NEPA Lead Agency) August 2009 Based on information provided by Bonterra Consulting 151 Kalmus Drive, Suite E-200 Costa Mesa, California 92626 The following people may be contacted for information concerning this document: Cheryl McGovern Doug McPherson Environmental Protection Agency Bureau of Reclamation 75 Hawthorne Street, WTR-3 27708 Jefferson Ave.,
    [Show full text]
  • An Elusive Blind-Thrust Fault Beneath Metropolitan Los Angeles
    R EPORTS 5 The intercept of the line with the abscissa yields Di/D 1/4, which is an extreme case, differs only by 36. N. A. Sulpice and R. J. D’Arcy, J. Phys. E 3, 477 (1970). 7% as compared with D 5 0. DV. This geometry-independent constant is i 37. Electrical charging due to the electron beam cannot 31. Microscopy was performed with a Philips CM30 200- account for the effect, because the charge found to characteristic for the specific nanotube under kV high-resolution TEM. reside on the nanotubes is positive rather than neg- investigation and is typically on the order of 32. The ripple mode may be a precursor to buckling, but ative. Furthermore, the amplitude of vibration at several volts. Similarly, attaching nanoscopic it should not be confused with bucking. Buckling (in resonance does not change with electron dose, as it contrast to rippling) is characterized as an instability would if electron beam charging were important. conducting particles to the nanotubes facilitates giving rise to a nonlinear response. It occurs in highly 38. M. Gurgoze, J. Sound Vib. 190, 149 (1996). measurements of their work functions. stressed nanotubes (and beams) and manifests as 39. We thank U. Landman, R. L. Whetten, L. Forro, and A. The methods developed here are also well one or several kinks with very small radii of curvature Zangwill for fruitful discussion and R. Nitsche for his suited to measure masses in the picogram-to- (about 1 to 10 nm). It is accompanied by abrupt analysis of the static bent nanotube.
    [Show full text]