fnmol-11-00018 February 3, 2018 Time: 13:27 # 1 ORIGINAL RESEARCH published: 06 February 2018 doi: 10.3389/fnmol.2018.00018 Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress Ethan A. Everington†, Adina G. Gibbard†, Jerome D. Swinny* and Mohsen Seifi* Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom Gamma aminobutyric acid (GABA) subtype A receptors (GABAARs) are integral membrane ion channels composed of five individual proteins or subunits. Up to 19 different GABAAR subunits (a1–6, b1–3, g1–3, d, +, ", p, and r1–3) have been identified, resulting in anatomically, physiologically, and pharmacologically distinct multiple receptor Edited by: subtypes, and therefore GABA-mediated inhibition, across the central nervous system Gregg E. Homanics, (CNS). Additionally, GABAAR-modulating drugs are important tools in clinical medicine, University of Pittsburgh, United States although their use is limited by adverse effects. While significant advances have been Reviewed by: Hartmut Lüddens, made in terms of characterizing the GABAAR system within the brain, relatively less Johannes Gutenberg-Universität is known about the molecular phenotypes within the peripheral nervous system of Mainz, Germany major organ systems. This represents a potentially missed therapeutic opportunity Tija Jacob, University of Pittsburgh, United States in terms of utilizing or repurposing clinically available GABAAR drugs, as well as *Correspondence: promising research compounds discarded due to their poor CNS penetrance, for Jerome D. Swinny the treatment of peripheral disorders. In addition, a broader understanding of the
[email protected] Mohsen Seifi peripheral GABAAR subtype repertoires will contribute to the design of therapies mohsen.seifi@port.ac.uk which minimize peripheral side-effects when treating CNS disorders.