Agrarian Revolution.Docx
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversifying Cropping Systems PROFILE: THEY DIVERSIFIED to SURVIVE 3
Opportunities in Agriculture CONTENTS WHY DIVERSIFY? 2 Diversifying Cropping Systems PROFILE: THEY DIVERSIFIED TO SURVIVE 3 ALTERNATIVE CROPS 4 PROFILE: DIVERSIFIED NORTH DAKOTAN WORKS WITH MOTHER NATURE 9 PROTECT NATURAL RESOURCES, RENEW PROFITS 10 AGROFORESTRY 13 PROFILE: PROFITABLE PECANS WORTH THE WAIT 15 STRENGTHEN COMMUNITY, SHARE LABOR 15 PROFILE: STRENGTHENING TIES AMONG MAINE FARMERS 16 RESOURCES 18 Alternative grains and oilseeds – like, from left, buckwheat, amaranth and flax – add diversity to cropping systems and open profitable niche markets while contributing to environmentally sound operations. – Photos by Rob Myers Published by the Sustainable KARL KUPERS, AN EASTERN WASHINGTON GRAIN GROWER, Although growing alternative crops to diversify a Agriculture Network (SAN), was a typical dryland wheat farmer who idled his traditional farm rotation increase profits while lessen- the national outreach arm land in fallow to conserve moisture. After years of ing adverse environmental impacts, the majority of of the Sustainable Agriculture watching his soil blow away and his market price slip, U.S. cropland is still planted in just three crops: soy- Research and Education he made drastic changes to his 5,600-acre operation. beans, corn and wheat. That lack of crop diversity (SARE) program, with funding In place of fallow, he planted more profitable hard can cause problems for farmers, from low profits by USDA's Cooperative State red and hard white wheats along with seed crops like to soil erosion. Adding new crops that fit climate, Research, Education and condiment mustard, sunflower, grass and safflower. geography and management preferences can Extension Service. All of those were drilled using a no-till system Kupers improve not only your bottom line, but also your calls direct-seeding. -
Industrial Biotechnology Strategic Roadmap for Standards and Regulations Report Industrial Biotechnology – Strategic Roadmap for Standards and Regulations Contents
Industrial biotechnology Strategic roadmap for standards and regulations Report Industrial biotechnology – strategic roadmap for standards and regulations Contents 1 Introduction 2 Industrial biotechnology 3 Industrial biotechnology towards net zero 5 Industrial biotechnology and the UN Sustainable Development Goals 6 Sector profile: biofuels 8 Sector profile: agritech 10 Sector profile: plastics 12 Sector profile: fine and speciality chemicals 14 Sector profile: textiles 15 Executive summary: roadmap and recommendations 18 Recommendations 18 Pathway 1: circular resource 30 Pathway 2: communication tools 42 Pathway 3: informed science-led approach 50 Pathway 4: supportive level playing field 66 Next steps 67 Appendix: organizations interviewed Industrial biotechnology – strategic roadmap for standards and regulations Introduction This report by the British Standards Institution (BSI) presents Five key sectors of IB application were covered in the scope of a strategic roadmap for the development of standards and this project as a lens for exploring opportunities and challenges: regulations as an enabling framework for UK Industrial agritech, biofuels, fine and speciality chemicals, plastics and Biotechnology (IB). It has been commissioned by Innovate UK textiles. in consultation with the Industrial Biotechnology Leadership Forum (IBLF) in order to support the acceleration of IB as a The findings and recommendations are based on primary research conducted between April and August 2020, in contributor to CO2 emissions reduction and to attaining the UK’s legislated target of net zero greenhouse emissions by combination with desk research on the relevant standards 2050. and regulatory landscape. In-depth interviews were conducted with IB stakeholders and subject matter experts from over The focus of the roadmap is on opportunities for action and 50 organizations, representing a cross-section of sectors, results in the short to medium term, which is defined here as technologies, maturity stages and domain expertise. -
What Was the Effect of New Crops in the Agricultural Revolution? Evidence from an Arbitrage Model of Crop Rotation
What was the Effect of New Crops in the Agricultural Revolution? Evidence from an Arbitrage Model of Crop Rotation Liam Brunt1 Abstract In this paper we develop an arbitrage model of crop rotation that enables us to estimate the impact of crop rotation on wheat yields, using only the yields and prices of each crop employed in the rotation. We apply this technique to eighteenth century England to assess the importance of two new crops – turnips and clover – in raising wheat yields. Contrary to the received wisdom, we show that turnips substantially pushed up wheat yields but clover pushed down wheat yields. We confirm this result by comparing our estimates to both experimental data and production function estimates. Further detailed analysis facilitated by the new model enables us to explain this surprising result in terms of the management practices pursued by farmers. Keywords: agriculture, crop rotation, technological change. JEL Classification: N01, N53, O13, Q12. 1 I would like to thank James Foreman-Peck and Lucy White for helpful comments. Any remaining errors are my own responsibility. An arbitrage model of crop rotation 2 I. Introduction. The defining feature of the Industrial Revolution in England was the transfer of labour resources from agriculture to industry, which occurred exceptionally early by international standards.2 But England had to remain virtually self-sufficient in food production during the eighteenth century because very few exportable surpluses were being generated by other European countries.3 The adoption of new technology was a crucial factor that permitted England to attain a high level of agricultural labour productivity – which in turn facilitated labour release.4 The number and range of innovations coming into general use in the eighteenth century has prompted commentators to dub it the period of the ‘Agricultural Revolution’.5 There were new animal breeds (the Shire horse and the dairy short horn cow); new crops (turnips and clover); new machines (seed drills and threshers); and new hand tools (the cradle scythe). -
Post-Brexit Plans for Agriculture
SPICe Briefing Pàipear-ullachaidh SPICe Post-Brexit plans for agriculture Wendy Kenyon This briefing sets the scene as the UK agriculture bill is introduced into Westminster. It provides information on agricultural policy now, under the Common Agricultural Policy in the UK and Scotland. It summarises the proposals set out by Defra and the devolved administrations on how the CAP may be replaced with domestic policy in the coming years. 12 September 2018 SB 18-57 Post-Brexit plans for agriculture, SB 18-57 Contents Executive Summary _____________________________________________________3 Agricultural policy frameworks for the UK ___________________________________4 A UK Agriculture Bill _____________________________________________________5 Current UK Common Agricultural Policy funding _____________________________7 The Common Agricultural Policy: Pillars 1 and 2 _____________________________9 UK funding guarantees __________________________________________________ 11 Post-Brexit plans for agriculture in Scotland ________________________________12 Post-Brexit plans for agriculture in England ________________________________14 Post-Brexit plans for agriculture in Wales __________________________________16 Post-Brexit plans for agriculture in Northern Ireland _________________________17 Proposals for the CAP after 2020__________________________________________19 Bibliography___________________________________________________________21 2 Post-Brexit plans for agriculture, SB 18-57 Executive Summary When the UK leaves the EU, it will leave the Common Agricultural Policy (CAP). Defra and the devolved administration will then design and implement their own policies. Scotland, England, Wales and Northern Ireland have published proposals for how agricultural policy might change in the coming years. The CAP will also change after 2020. Under the CAP, UK agricultural policy shares a common framework, although with considerable regional variations. A UK-wide framework for agriculture to replace the CAP is being negotiated. A UK Agriculture Bill is expected in September 2018. -
Thesis Aurelian Mbzibain Resu
An empirical investigation into the uptake, motivations and constraints and the factors affecting farmers’ renewable energy investment intentions Aurelian Mbzibain A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the Degree of Doctor of Philosophy July 2012 This work or any part thereof has not previously been presented in any form to the University or to any other body whether for the purposes of assessment, publication or for any other purpose (unless otherwise indicated). Save for any express acknowledgements, references and/or bibliographies cited in the work, I confirm that the intellectual content of the work is the result of my own efforts and of no other person. The right of Aurelian Mbzibain to be identified as author of the work is asserted in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At this date copyright is owned by the author. Signature: Aurelian Mbzibain Date: …July 2012 1 Abstract The rate of adoption of renewable energy (RE) production and associated enterprises on- farms in the UK has been lower than expected suggesting that the UK government’s energy, agricultural and climate change objectives may not be achieved. The aim of this research is to investigate why this is the case by assessing the uptake, motivations, constraints and the factors affecting farmers’ RE investment intentions. Building on extant research literature (institutional theory, social cognition theory, theory of planned behaviour and the resource based view) a novel comprehensive and multidimensional model of entrepreneurial intentions was developed and tested using principal component, path and multivariate regression analysis techniques. -
Guidance for Designing a Compliant Crop Rotation
Guidance for Designing a Compliant Crop Rotation Crop rotation is an important cultural method for managing nutrients, combating pests, and protecting vital natural resources. Rotations designed using knowledge of plant biology, weed cycles, and nutrient cycling can boost yields and provide investments in soil fertility. It is important to consider, however, that while crop rotation has formal and informal meanings, NOP defines crop rotation as “the practice of certified organic operators are required to alternating the annual crops grown on a specific field in a planned pattern or sequence in create a crop rotation as defined through the successive crop years so that crops of the same National Organic Program (NOP). Certifiers, species or family are not grown repeatedly such as PCO, evaluate whether a crop rotation without interruption on the same field. Perennial is compliant with organic regulations based on cropping systems employ means such as alley the regulatory definition and several standards cropping, intercropping, and hedgerows to that refer to crop rotation (7 CFR 205.203, introduce biological diversity in lieu of crop 205.205 and 205.206). rotation.” (7 CFR 205.2) Crop rotation: a functional standard Crop rotation is a required practice in the NOP organic regulations. Generally, crop rotations are planned to take advantage of inherent crop characteristics that will benefit the land, the farmer, and subsequent crops. While there are multiple strategies and possibilities for rotating crops in a given field over time, there are specific functions that must be considered during its design and implementation. PCO will look at your rotation to determine whether it fulfills the following criteria: (1) Maintains or improves soil organic matter; (2) Assists with the management of pests in annual and perennial crops; (3) Manages deficient or excess plant nutrients; and (4) Provides erosion control. -
Rotations for Soil Fertility
Do you have a problem with: • Soil crusting • Cloddy soil • Water stress (too wet or too dry) for crops • Soil erosion • Soil compaction • Low yields A crop rotation can help to manage your soil and Rotations need to include crops that provide good fertility, reduce erosion, improve your soil’s health, cover and root development to control erosion and and increase nutrients available for crops. improve soil health. Benefits of Crop Rotations: • Improve crop yields • Improve the workability of the soil • Reduce soil crusting • Increase water available for plants • Reduce erosion and sedimentation • Recycle plant nutrients in the soil • Provide better distribution of labor during the crop season by using different crops, planting dates, and harvest periods Rotations that include high residue crops build healthy • Reduce fertilizer & insecticide inputs soils and improve production. • More money in your pocket How much does it cost? There is little to no cost to implement this practice. Benefits Financial Benefits: •Reduced fertilizer inputs •Reduced pesticide inputs Costs Rotations for Soil Fertility Crop Rotation Planning Considerations: Practice Application: • Identify soil erosion, nutrient, and soil health • Using a map, lay out a rotation for the concerns. crops by year for the length of the rotation. • Soil test (every 1-3 years) for pH, organic • Plan the rotation for the operation to estab- matter, and nutrients. Use soil test lish a nearly equal acreage of each crop recommendations to adjust pH and nutrient each year. levels for optimum crop yields and quality. • Determine nutrient (fertilizer, manure, or composts) needs. Corn Grain - Yr 1 Oats - Yr 2 Field 1 Crops • Choose the crops/varieties to meet the 9.3 Hay - Yr 3 erosion, soil health, nutrient concerns, and Hay - Yr 4 other producer objectives. -
Definition Regenerative Agriculture Low
Regenerative Agriculture: A Definition Terra Genesis International terra-genesis.com/regenerative-agriculture regenerativeagriculturedefinition.com Regenerative Agriculture is a system of farming principles and practices that increases biodiversity, enriches soils, improves watersheds, and enhances ecosystem services. By capturing carbon in soil and aboveground biomass, Regenerative Agriculture aims to reverse global climate change. At the same time, it offers increased yields, resilience to climate instability, and higher health and vitality for farming communities. The system draws from decades of scientific and applied research by the global communities of organic farming, agroecology, holistic grazing, and agroforestry. Regenerative Agriculture Principles These principles are uniquely applied to each specific climate and bioregion PROGRESSIVELY CREATE CONTEXT- IMPROVE WHOLE SPECIFIC DESIGNS AGROECOSYSTEMS AND MAKE HOLISTIC (SOIL, WATER AND DECISIONS THAT BIODIVERSITY) EXPRESS THE ESSENCE OF EACH FARM 1 2 ENSURE AND 3 4 CONTINUALLY DEVELOP JUST AND GROW AND EVOLVE RECIPROCAL INDIVIDUALS, FARMS, RELATIONSHIPS AND COMMUNITIES AMONGST ALL STAKEHOLDERS Regenerative Agriculture Practices From the 4 Principles emerge a diversity of Practices This definition presents these most-explored Regenerative Agriculture Practices, leaving space to articulate Practices for the other Principles in the future. The Regenerative Agriculture Practices that can progressively improve whole agroecosystems are: Ensure reciprocal relationships Continually Grow Principles Design & Decide & Evolve Holistically Regenerative Agriculture Organic Annual Cropping Improve whole Holistically Managed Grazing agroecosystems No-Till Farming Animal Integration Practices Compost Biochar Perennial Crops Silvopasture Pasture Cropping Intercropping Compost Tea Agroforestry A comprehensive list and description of climate-specific Regenerative Agriculture Practices is available in The Carbon Farming Solution: A Global Toolkit of Regenerative Agriculture (Toensmeier, 2016). -
Crop Rotation in Organic Farming Must Provide the Soil Fertility Required for Maintaining Productivity and It Must Prevent Problems with Weeds, Pests and Diseases
Designing and testing Danish Research Centre for Organic Farming crop rotations for organic farming Proceedings from an International workshop Jørgen E. Olesen, Ragnar Eltun, Mike J. Gooding, Erik Steen Jensen & Ulrich Köpke (Eds.) DARCOF Danish research in organic Farming The remit of Danish Research Centre for Organic Farming (DARCOF) is to initiate and co-ordinate Danish research in organic farming. DARCOF is a "centre without walls" meaning that scientists remain in their own environments but work across institutions. The activities at DARCOF comprise presently 20 institutes, around 140 scientists and 40 – 50 ongoing projects. Danish Research Centre for Organic Farming Foulum • P.O. Box 50 • DK-8830 Tjele Tel. +45 89 99 16 75 • Fax +45 89 99 16 73 E-mail: [email protected] Homepage: www.foejo.dk Designing and testing crop rotations for organic farming Proceedings from an international workshop DARCOF Report no. 1 Printed from www.foejo.dk Jørgen E. Olesen, Ragnar Eltun, Mike J. Gooding, Erik Steen Jensen & Ulrich Köpke (Eds.) Danish Research Centre for Organic Farming 1999 DARCOF Report No. 1/1999 Designing and testing crop rotations for organic farming Proceedings from an international workshop Editors Jørgen E. Olesen, Danish Institute of Agricultural Sciences Ragnar Eltun, The Norwegian Crop Research Institute Mike J. Gooding, The University of Reading, UK Erik Steen Jensen, The Royal Veterinary and Agricultural University, Denmark Ulrich Köpke, Institute of Organic Agriculture, University of Bonn, Germany Layout Cover: Enggaardens Tegnestue Content: Grethe Hansen, DARCOF Photos: E. Keller Nielsen Print: Repro & Tryk, Skive, Denmark Paper: 90 g. Cyklus print Paginated pages: 350 First published: December 1999 Publisher: Danish Research Centre for Organic Agriculture, DARCOF ISSN: 1399-915X Price: 100 DKK incl. -
Science and the Sustainable Intensification of Global Agriculture
Reaping the benefits Science and the sustainable intensification of global agriculture October 2009 Cover image: From an illustration of a push-pull system for pest control, courtesy of The Gatsby Charitable Foundation. The Quiet Revolution: Push-Pull Technology and the African Farmer. Gatsby Charitable Foundation 2005. Reaping the benefi ts: science and the sustainable intensifi cation of global agriculture RS Policy document 11/09 Issued: October 2009 RS1608 ISBN: 978-0-85403-784-1 © The Royal Society, 2009 Requests to reproduce all or part of this document should be submitted to: The Royal Society Science Policy 6–9 Carlton House Terrace London SW1Y 5AG Tel +44 (0)20 7451 2500 Email [email protected] Web royalsociety.org Design by Franziska Hinz, Royal Society, London Copyedited and Typeset by Techset Composition Limited Reaping the benefi ts: science and the sustainable intensifi cation of global agriculture Contents Foreword v Membership of working group vii Summary ix 1 Introduction 1 1.1 An urgent challenge 1 1.2 Trends in food crop production 2 1.3 Science in context 5 1.4 The need for sustainable intensifi cation 6 1.5 Agricultural sustainability 7 1.6 Agriculture and sustainable economic development 7 1.7 Other major studies 8 1.8 Further UK work 9 1.9 About this report 9 1.10 Conduct of the study 10 2 Constraints on future food crop production 11 2.1 Climate change 11 2.2 Water 11 2.3 Temperature 12 2.4 Ozone 13 2.5 Soil factors 13 2.6 Crop nutrition 15 2.7 Pests, diseases and weed competition 16 2.8 Energy and greenhouse -
Du Conflit D'intérêts Au Mariage De Raison
Université du Maine U.F.R. de Lettres, langues et sciences humaines L'agricu lture an glaise et la protection de I'environnement : du conflit d'intérêts au mariage de raison Evolution des attitudes du début des années 1980 au début du vingt et unième siècle Thèse de doctorat Discipline : langue et littérature anglaise et anglo-saxonne Présentée et soutenue publiquement par Jean-Luc Hoarau Le I juillet 2002 Sous la direction de M. le Professeur R. Tholoniat Devant le jury ci-dessous : M. William Findlay, professeur à I'université de Tours M. Jeffrey Hopes, professeur à l'université du Maine Madame Lucette Laurens, professeur à I'université de Caen M. Richard Tholoniat, professeur à I'université du Maine Tome 3 'flifliiiïfiifi iiiiiifi iliiilîiïifi iffi r 'il047299' 541 LE MONDE AGRICOLE FACE A SES NOUVEAUX DEFIS INTRODUCTION Depuis le début des années 1990, la profession agricole a dÛ faire face à des Situations nouvelles dans les domaines tant environnemental qu'agricole. Les problèmes environnementaux n'ont sans doute pas changé de manière sensible, mais ils ne se posent plus tout à fait de la même manière. certes, les questions fondamentales de pollution, de droit d'accès' de protection du paysage ont peu changé, mais I'approche des problèmes et la recherche de solutions ont pris une autre dimension: le contexte n'est plus tout à fait le même sur les olans tant national qu'international. Comme le laissait entrevoir l'évolution des événements des années 1980, I'environnement est devenu une question politique, au même titre que le capitalisme, le libre-échange ou le marxisme. -
Integrated Policies for an Agricultural Revolution in the Sahel by Greg Vaughan
Farm Foundation offered the 30-Year Challenge Policy Competition to promote constructive and deliberative debate of issues outlined in the report, The 30-Year Challenge: Agriculture’s Strategic Role in Feeding and Fueling a Growing World. Farm Foundation does not endorse or advocate the ideas or concepts presented in this or any of the competition entries. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ WINNER, GLOBAL ECONOMIC DEVELOPMENT CATEGORY Integrated Policies for an Agricultural Revolution in the Sahel By Greg Vaughan ABSTRACT: The African Sahel has passed abruptly from a slash-and-burn system to the use of ox-drawn plows and modern chemicals in the past century. Using lessons drawn from the agricultural history of the West, this essay recommends changes in fertility management, equipment, and institutional policies to improve productivity and sustainability in the Sahel. The African Sahel Belt is a climatic zone running in a band below the Sahara from Senegal in West Africa to Sudan in the East. It is characterized by a single rainy season lasting three to six months, depending on the latitude and the year, followed by no rain whatsoever the rest of the year. The Sahel is densely populated and has undergone explosive population growth in the past decades. Due to the fragile and variable climate, combined with the dense and growing population, the Sahel has been the site of many humanitarian crises in the recent past, including crop failure in Niger, and war in Chad and Sudan. These problems promise to continue in the future, possibly aggravated by climate change and continuing population growth. Agriculturally, the Sahel is at a crossroads.