Morphology and Systematics of Two Aberrant Species of Dictyota (Dictyotaceae, Phaeophyta), Including a Discussion on the Generic Boundaries in the Tribe Dictyoteae

Total Page:16

File Type:pdf, Size:1020Kb

Morphology and Systematics of Two Aberrant Species of Dictyota (Dictyotaceae, Phaeophyta), Including a Discussion on the Generic Boundaries in the Tribe Dictyoteae Morphology and systematics of two aberrant species of Dictyota (Dictyotaceae, Phaeophyta), including a discussion on the generic boundaries in the tribe Dictyoteae O De Clerck* & E Coppejans Research Group Phycology, Biology Department, Ghent University, Krijgslaan 281/58, 9000 Gent, Belgium *Corresponding author Email: [email protected] [email protected] Key words: Dictyota, Dictyotaceae, morphology, systematics, generic boundaries Abstract Dictyota naevosa (Suhr) Montagne and D. radicans Harvey possess characters that do not conform to the generic description of Dictyota. The generic boundaries in the tribe Dictyoteae are thus called into question. Dictyota naevosa differs from other Dictyota species by having more than one layer of cortical cells in the lower part of the thallus. The presence of a multilayered cortex is the only character distinguishing Pachydictyon from Dictyota. Dictyota radicans is characterised by the presence of terete surface proliferations, a feature used to distinguish Glossophora from Dictyota. Both D. naevosa and D. radicans have clear sister species that are currently placed in the genus Dilophus. The segregation of Dilophus from Dictyota, as still advocated by some authors, therefore becomes untenable. The morphological evidence leads us to question the generic status of Pachydictyon, Glossophora and Glossophorella, since the characters used to delineate these genera are commonly found in some species of Dictyota. Introduction In the past, species characterised by a multilay- ered medulla, in at least some part of the thallus, Within the brown algal family Dictyotaceae, two were assigned to Dilophus J. Agardh (1882). The tribes are currently recognised, the Dictyoteae and distinction, however, between Dictyota and Zonarieae, differentiated on the basis of the num- Dilophus, was not clear-cut because the extent to ber of apical cells. In Dictyoteae there is a single which the medulla was multilayered varied sub- apical cell, whereas in Zonarieae there is a margin- stantially and some species were particularly hard al row or cluster of apical cells. Within the tribe to assign to one or the other genus (Setchell & Dictyoteae, J. Agardh (1848, 1882, 1894, 1897) Gardner, 1925; Taylor, 1945; Dawson, 1950). recognised four genera: Dictyota, Dilophus, Eventually the two genera were merged by Hörnig Glossophora and Pachydictyon, distinguished by the et al. (1992a, b) on the basis of culture experiments relative number of cortical and medullary layers that showed that the number of medullary layers and the presence of surface proliferations. Recently can be altered in many species depending on the a new genus was added to the Dictyoteae, culture conditions. Although the merger has been Glossophorella Nizamuddin & Campbell (1995). accepted by several authors (e.g. Silva et al., 1996; Dictyota Lamouroux (1809), as defined by Hörnig Wynne, 1998), some authors still recognise et al. (1992a), includes species characterised by a Dilophus as a separate genus (Phillips, 1992; Millar single lenticular, transversely orientated apical cell, & Kraft, 1994; Huisman, 2000). Pachydictyon J. and a parenchymatous thallus composed of a cor- Agardh (1894) is characterised by a single-layered tex and a medulla. 275 DICTYOTA: MORPHOLOGY AND SYSTEMATICS medulla and multilayered cortex. Although the sta- single stupose base from which one to several tus of Pachydictyon has been questioned in the past fronds (and usually a few narrow proliferations) (Setchell & Gardner, 1925; Dawson, 1950), it is arise; the base often with a velvet patch of rhizoids; still currently recognised. Pachydictyon coriaceum colour in situ medium brown, bluish iridescent; (Holmes) Okamura, a species from Japan and dry specimens medium to dark brown. All straps of California, is characterised by a medulla which the thallus of similar width, reaching their maxi- may comprise two layers of cells at the margins. mum width in the middle part of the thallus, grad- Therefore, the species was transferred to ually tapering towards the base and apices; average Glossophorella Nizamuddin & Campbell (1995), width: (3.5–) 6.3–10.7 (–16.0) mm, proximal which accommodates species with a multilayered width: (2.0–) 3.8–6.5 (–11.0) mm, distal width: cortex as well as a multilayered medulla. (3.0–) 8.7–15.0 (–22.0) mm, Wd/Wp: (1.9–) Glossophora J. Agardh (1882), a genus containing 2.2–2.5 (–2.6); length: (12.0–) 24.2–48.0 (–86.0) three species restricted to southern Australia and mm; L/W: (2.0–) 3.0–6.1 (–8.8). Apices rounded, the Pacific coast of South America, is characterised apical segments very long (up to 135 mm) and by a unilayered cortex and medulla, but the surface spathulate, often eroded; apical cell protruding. is often densely beset with terete proliferations. Branching isotomous dichotomous to somewhat The morphology and taxonomy of D. naevosa irregular (often as a result of damage), sparse, most- (Suhr) Montagne and D. radicans Harvey was stud- ly to 2 or 3 orders; branching angle (15–) 25–40 ied in the framework of a revision of the genus in (–50)°. Margins smooth, proliferations rare. the Indian Ocean (De Clerck, 1999). The results Surface proliferations absent. Hair tufts common. are discussed in this paper. Because these species Cortex and medulla predominantly unilayered, but possess characters that do not conform to the several layers of both cortical and medullary cells generic description of Dictyota, we have been led to frequently observed especially in Australian speci- reassess generic definitions in the tribe Dictyoteae. mens (Figs. 2–4); Cortical cells (14–) 22–23 (–36) µm long, (10–) 14–16 (–24) µm wide, ratio: (1.3–) Materials & Methods 1.4–1.6 (–1.9), and (22–) 23–26 (–29) µm high; medullary cells (77–) 112–120 (–197) µm long, Specimens were collected by SCUBA or (48–) 68–71 (–120) µm wide, ratio: (1.5–) 1.6–1.7 snorkelling during several trips in the Indian (–1.8), and (120–) 130–160 (–188) µm high. Ocean, Indonesia and Papua New Guinea since Sporangia on both surfaces of the thallus, also 1980 by ourselves. Material was prepared as present in the apical segments, grouped in conspic- herbarium specimens or preserved in 4% forma- uous ovate to oblong sori, often surrounding one lin/seawater and lodged in GENT. Additional or two central hair tufts (most apparent in the api- specimens were examined from several herbaria cal segments and becoming more obscure near the (Appendix 1). Herbarium abbreviations follow basal parts of the thallus), hair tufts disappear in Holmgren et al. (1990). older parts; sori (433–) 716 (–1,435) µm wide, Morphological data result from morphometric (340–) 1,640 (–5,740) µm long, ratio: (1.35–) 2.5 analyses as described by De Clerck & Coppejans (–5.1) (Figs. 6, 7); sporangia more or less drop- (1999). shaped, not surrounded by an involucrum, mature sporangia born on a single stalk cell, width: Results 60–100 µm, height: 110–130 µm (Fig. 8); divided sporangia frequently observed. Dictyota naevosa (Suhr) Montagne 1840: 145 Male gametophytes with sori of antheridia evenly dispersed over the whole thallus, also pres- Description ent in the apical segments, often merging with Thallus completely erect, sparsely branched and other sori to form large coenosori (Figs. 9, 10); sori very robust, 10–35 cm long (Fig. 1); attached by a (272–) 325 (–758) µm wide, (400–) 725 (–1,846) 276 DICTYOTA: MORPHOLOGY AND SYSTEMATICS Plate 1. Morphology and anatomy of Dictyota naevosa. Fig. 7. Detail of a tetrasporangial sorus with a central hair tuft Fig. 1. Habit of D. naevosa (HEC 11000) (scale: 1 cm). (arrow) (scale: 500 µm). Fig. 2. Transverse section showing unilayered cortex and medulla Fig. 8. Transverse section of a tetrasporangial sorus (scale: 50 µm). (scale: 100 µm). Fig. 9. Surface view of an antheridial strap (scale: 2.5 mm). Fig. 3. Transverse section showing multiple duplications of the cor- Fig. 10. Detail of an antheridial sorus with a central hair tuft (scale: tical layer (scale: 100 µm) . 500 µm). Fig. 4. Transverse section of a three-layered cortex in the lower part Fig. 11. Transverse section of an antheridial sorus surrounded by 6 of the thallus (scale: 50 µm). unicellular paraphyses (scale: 50 µm). Fig. 5. Transverse section of a thallus margin with multiple duplica- Fig. 12. Surface view of an oogonial strap (scale: 2.5 mm). tions of the cortical layer (scale: 50 µm). Fig. 13. Detail of oogonial sori (scale: 100 µm). Fig. 6. Surface view of tetrasporangial strap (scale: 2.5 mm). Fig. 14. Transverse section of an oogonial sorus (scale: 50 µm). 277 DICTYOTA: MORPHOLOGY AND SYSTEMATICS Plate 2. Morphology and anatomy of D. radicans. Fig. 19. Transverse section of a thallus margin (scale: 50 µm). Fig. 15. Lectotype specimen of D. radicans (TCD Harvey 69A) Fig. 20. Transverse sections of a transition zone between a normal (scale: 1 cm). strap and a terete stolonoidal fibre (scale: 50 µm). Fig. 16. Habit of a broad specimen (MEL 16991) (scale: 1 cm). Fig. 21. Transverse section of a terete stolonoidal fibre (scale: 100 Fig. 17. Detail of an apical portion of the thallus with multiple surface proliferations (scale: 5 mm). µm). Fig. 18. Transverse section through the thallus showing a unilayered Fig. 22. Longitudinal section of a terete surface proliferation cortex and medulla (scale: 50 µm). showing a multilayered medulla (scale: 50 µm). µm long, L/W: (0.9–) 2.3 (–4.3); antheridia, born (–1.7); oogonia 65 µm wide, 140 µm high; oogo- on a single stalk cell, 22 µm wide, 65 µm high; nia per sorus: (39–) 65 (–88) (Fig. 14). antheridia per sorus: (31–) 52 (–94); sori sur- rounded by 3–6 rows of unicellular paraphyses Remarks (Fig. 11). Female gametophytes, with sori of oogonia The distribution of D. naevosa is limited to South evenly distributed over the whole surface, also pres- Africa and Australia.
Recommended publications
  • Marine Brown Algae (Phaeophyta) from the North Coast of Papua New Guinea, with a Description of Dictyota Mugneana Sp. Nov
    Cryptogamie, Algal., 2001, 22 (1): IS-40 0 2001 Adac/l?ditions scientifiques et medicales Elsevier SAS. Tous droits reserves SOl81-1568(00)01047-3/PLA Marine brown algae (Phaeophyta) from the north coast of Papua New Guinea, with a description of Dictyota mugneana sp. nov. Eric COPPEJANp*, Olivier DE CLERCKb and Frederik LELIAERT Research group Phycology, Department Biology, Ghent University, K.L. Ledeganckstraat, 35 9000. Ghent, Belgium (Received 10 July 2000, accepted 14 November 2000) Abstract - The marine benthic brown algae of the north coast of Papua New Guinea (mainly from Madang province) are documented, based on collections made by the first author, between 1980 and 1990. All records [34 identified taxa (+Sargassum spp.)] are listed with bibliographic, taxonomic, nomenclatural and biogeographical notes. The specimens belonging to the genus Dictyota are identified according to recent species definitions. D. magneana De Clerck et Coppejans is described as new to science. Only some representatives of the genus Sargassum have been identified to species level. The phaeophycean flora of the north coast is very similar to that of the south coast (Port Moresby area); nevertheless some differences can be observed. 0 2001 Adac/Editions scientifiques et medicales Elsevier SAS Phaeophyta I Papua New Guinea I checklist I Dictyota magneana sp. nav. R&urn6 - Les PhCophyckes hcnthiques de la tote Nord de la Papouasie Nouvelle Guinee (surtout de la Province de Madang) sont documentees, base sur les collections du premier auteur, effect&es entre 1980 et 1990. Pour chaque espece (+ de 34 taxons) des don&es bibliographiques, taxonomiques, nomenclaturales et biogeographiques sont ajoutr5es.
    [Show full text]
  • Taonia Abbottiana Sp.Nov. (Dictyotales, Phaeophyceae)
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2004 Adac. Tous droits reserves. This manuscript is an author version with the final publication available and may be cited as: Littler, D. S., & Littler, M. M. (2004). Taonia abbottiana sp. nov. (Dictyotales, Phaeophyceae) from the tropical western Atlantic. Cryptogamie Algologie, 25(4), 419-427. Cryptogamie, Algol., 2004, 25 (4): 419-427 © 2004 Adac. Tous droits reserves Taonia abbottiana sp. nov. (Dictyotales, Phaeophyceae) from the Tropical Western Atlantic1 Diane S. LITTLERa, b* & Mark M. LITTLERb aDivision of Marine Science, Harbor Branch Oceanographic Institution, 5600 U.S. 1 North, Fort Pierce, Florida 34946, USA. b National Museum of Natural History, Department of Botany, NHB-166, P.O. Box 37012, Smithsonian Institution, Washington, D. C. 20013-7012, USA. (Received 19 May 2004, accepted 18 August 2004) Abstract - A new species of brown algae, Taonia abbottiana D.S. Littler et M.M. Littler, is described from the tropical western Atlantic. To date, this is the only member of the genus reported from the region. Taonia abbottiana differs from other species of the genus in having (1) sporangia raised above the surface layer on a stalk composed of two cells, and (2) in addition having a surface cortical layer of differentiated cells that are smaller than those of the medullary layers. Taonia abbottiana has often been confused with Stypopodium zonate, but the two differ anatomically in the development of cells directly behind the growing margin and, when living at similar depths, T.
    [Show full text]
  • M., 2012. Brown Algae from Chaojing, Keelung City, Taiwan. Memoirs Of
    ῒῐΐ ῌ (48), pp. 149ῌ157, 2012 ῕ 3 ῑ 28 ῔ Mem. Natl. Mus. Nat. Sci., Tokyo, (48), pp. 149ῌ157, March28, 2012 Brown Algae from Chaojing, Keelung City, Taiwan Taiju Kitayama1, ῍ and Showe-Mei Lin2 1 Department of Botany, National Museum of Nature and Science, 4ῌ1ῌ1 Amakubo, Tsukuba, Ibaraki 305ῌ0005, Japan 2 Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China ῍ E-mail: [email protected] Abstract. Sixteen species of brown algae (Phaeophyceae) were reported from the shore of Chaojing, Keelung, Taiwan. Among them eight species belong to the Dictyotales and two to the Fucales. Consequently, the seaweed community of Chaojing is considered as typical of subtropical one, while it has also several temperate species together. Spatoglossum asperum, Ralfsia verrucosa, Feldmannia irregularis and Scytosiphon gracilis are new records for Taiwan. Key words: brown algae, Feldmannia irregularis, flora, Keelung, Phaeophyceae, Spatoglossum asperum, Taiwan. brown algae. Introduction Brown algae (Phaeophyceae, Ochrophyta, Materials and Methods kingdom Chromista) are most important bo- tanical components of coastal marine com- The collections of brown algae were carried munities, in terms of productivity and biomass. out at the coast of Chaojing, Keelung City, In Taiwan the marine macro-algal flora has Taiwan (33῍07῎49῏N, 139῍48῎24῏E) on been well investigated and published numerous March 2, March 3, May 25, May 27 in 2010. reports by many algologists since Martens The samples were collected from both inter- (1868) and there had been recorded over 500 tidal zone and subtidal zone by walking and species of marine algae from the coasts and snorkeling.
    [Show full text]
  • Lecture21 Stramenopiles-Phaeophyceae.Pptx
    Stramenopiles IV (Ch. 14):! Phaeophyceae or Brown Algae" PHAEOPHYCEAE" •250 genera and +1500 spp" •Seaweeds: large, complex thalli (kelp); some filaments (no unicells or colonies)" •Almost all are marine (@ 5 FW genera)" •Chlorophylls a & c, #-carotene, fucoxanthin & violaxanthin " •PER " •Physodes (tannins = phenols)" •Walls: cellulose fibers with alginic acid (alginate)" •Storage products are:" • laminarin (#-1,3 glucan), " • mannitol (sap & “antifreeze”)" • lipids" •Flagella: Heterokont, of course!" •Fucans or fucoidins are sulfated sugars" How these algae grow?" GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" • Single: Sphacelariales, Dictyotales, Fucales" • Marginal: Dictyotales" Dictyota! Padina! Sphacelaria! Fucus! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" 2. Trichothalic: Desmarestiales, ! Cutleriales" Desmarestia! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" 2. Trichothalic: Desmarestiales, ! Cutleriales" 3. Intercalary: Laminariales" Laminaria! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1.
    [Show full text]
  • Terpenes and Sterols Composition of Marine Brown Algae Padina Pavonica (Dictyotales) and Hormophysa Triquetra (Fucales)
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2014-15; 6(4); 894-900 ISSN: 0975-4873 Research Article Terpenes and Sterols Composition of Marine Brown Algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales) *Gihan A. El Shoubaky, Essam A. Salem Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt Available Online: 22nd November, 2014 ABSTRACT In this study the terpenes and sterols composition were identified and estimated qualitatively and quantitatively from the brown algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales) by using GC/MS (Gas Chromatography- Mass Spectrum). Significant differences were found in the terpenes and sterols composition of the selected algae. The analysis revealed the presence of 19 terpenes in Padina pavonica and 20 terpenes in Hormophysa triquetra, in addition to 5 sterols recoded in both of them.The total concentration of terpenes in Hormophysa triquetra recorded the highest percentage than Padina pavonica. In contrast, Padina pavonica registered high content of sterols than those in Hormophysa triquetra. The main terpene component was the hemiterpene 3-Furoic acid recording in Hormophysa triquetra more than in Padina pavonica. The diterpene phytol compound occupied the second rank according to their concentration percentage in both of the studied species. Hormophysa triquetra characterized by alkylbenzene derivatives more than Padina pavonica.Fucosterolwas the major sterol component in both of the selected algae recording a convergent concentration in Padina pavonica and Hormophysa triquetra. β- Sitosterol was detected only in Padina pavonica whereas β–Sitostanol and Stigmasterol were characterized in Hormophysa triquetra. Campesterol was found in the two studied species.
    [Show full text]
  • New Records of Benthic Brown Algae (Ochrophyta) from Hainan Island (1990 - 2016)
    Titlyanova TV et al. Ochrophyta from Hainan Data Paper New records of benthic brown algae (Ochrophyta) from Hainan Island (1990 - 2016) Tamara V. Titlyanova1, Eduard A. Titlyanov1, Li Xiubao2, Bangmei Xia3, Inka Bartsch4 1National Scientific Centre of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia; 2Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China; 4Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany Corresponding author: E Titlyanov, e-mail: [email protected] Abstract This study reports on the intertidal and shallow subtidal brown algal flora from Hainan Island in the South China Sea, based on extensive sample collection conducted in 1990, 1992 and 2008−2016. The analysis revealed 27 new records of brown algae for Hainan Island, including 5 species which also constitute new records for China. 21 of these species are de- scribed with photographs and an annotated list of all species with information on life forms, habitat (localities and tidal zones) and their geographical distribution is provided. Keywords: Hainan Island, new records, seaweeds, brown algae Introduction et al. 1994; Hodgson & Yau 1997; Tadashi et al. 2008). Overall, algal species richness also changed. Hainan Island is located on the subtropical northern Partial inventory of the benthic flora of Hainan has periphery of the Pacific Ocean in the South China Sea already been carried out (Titlyanov et al. 2011a, 2015, 2016; (18˚10′-20˚9′ N, 108˚37′-111˚1′ E).
    [Show full text]
  • New Records of Benthic Marine Algae and Cyanobacteria for Costa Rica, and a Comparison with Other Central American Countries
    Helgol Mar Res (2009) 63:219–229 DOI 10.1007/s10152-009-0151-1 ORIGINAL ARTICLE New records of benthic marine algae and Cyanobacteria for Costa Rica, and a comparison with other Central American countries Andrea Bernecker Æ Ingo S. Wehrtmann Received: 27 August 2008 / Revised: 19 February 2009 / Accepted: 20 February 2009 / Published online: 11 March 2009 Ó Springer-Verlag and AWI 2009 Abstract We present the results of an intensive sampling Rica; we discuss this result in relation to the emergence of program carried out from 2000 to 2007 along both coasts of the Central American Isthmus. Costa Rica, Central America. The presence of 44 species of benthic marine algae is reported for the first time for Costa Keywords Marine macroalgae Á Cyanobacteria Á Rica. Most of the new records are Rhodophyta (27 spp.), Costa Rica Á Central America followed by Chlorophyta (15 spp.), and Heterokontophyta, Phaeophycea (2 spp.). Overall, the currently known marine flora of Costa Rica is comprised of 446 benthic marine Introduction algae and 24 Cyanobacteria. This species number is an under estimation, and will increase when species of benthic The marine benthic flora plays an important role in the marine algae from taxonomic groups where only limited marine environment. It forms the basis of many marine information is available (e.g., microfilamentous benthic food chains and harbors an impressive variety of organ- marine algae, Cyanobacteria) are included. The Caribbean isms. Fish, decapods and mollusks are among the most coast harbors considerably more benthic marine algae (318 prominent species associated with the marine flora, which spp.) than the Pacific coast (190 spp.); such a trend has serves these animals as a refuge and for alimentation (Hay been observed in all neighboring countries.
    [Show full text]
  • Plate. Acetabularia Schenckii
    Training in Tropical Taxonomy 9-23 July, 2008 Tropical Field Phycology Workshop Field Guide to Common Marine Algae of the Bocas del Toro Area Margarita Rosa Albis Salas David Wilson Freshwater Jesse Alden Anna Fricke Olga Maria Camacho Hadad Kevin Miklasz Rachel Collin Andrea Eugenia Planas Orellana Martha Cecilia Díaz Ruiz Jimena Samper Villareal Amy Driskell Liz Sargent Cindy Fernández García Thomas Sauvage Ryan Fikes Samantha Schmitt Suzanne Fredericq Brian Wysor From July 9th-23rd, 2008, 11 graduate and 2 undergraduate students representing 6 countries (Colombia, Costa Rica, El Salvador, Germany, France and the US) participated in a 15-day Marine Science Network-sponsored workshop on Tropical Field Phycology. The students and instructors (Drs. Brian Wysor, Roger Williams University; Wilson Freshwater, University of North Carolina at Wilmington; Suzanne Fredericq, University of Louisiana at Lafayette) worked synergistically with the Smithsonian Institution's DNA Barcode initiative. As part of the Bocas Research Station's Training in Tropical Taxonomy program, lecture material included discussions of the current taxonomy of marine macroalgae; an overview and recent assessment of the diagnostic vegetative and reproductive morphological characters that differentiate orders, families, genera and species; and applications of molecular tools to pertinent questions in systematics. Instructors and students collected multiple samples of over 200 algal species by SCUBA diving, snorkeling and intertidal surveys. As part of the training in tropical taxonomy, many of these samples were used by the students to create a guide to the common seaweeds of the Bocas del Toro region. Herbarium specimens will be contributed to the Bocas station's reference collection and the University of Panama Herbarium.
    [Show full text]
  • Dictyotaceae, Phaeophyceae) from Taiwan Wei-Lung Wang1*, Ching-Su Lin1, Wook-Jae Lee2 and Shao-Lun Liu3
    Wang et al. Botanical Studies 2013, 54:13 http://www.as-botanicalstudies.com/content/54/1/13 RESEARCH Open Access Morphological and molecular characteristics of Homoeostrichus formosana sp. nov. (Dictyotaceae, Phaeophyceae) from Taiwan Wei-Lung Wang1*, Ching-Su Lin1, Wook-Jae Lee2 and Shao-Lun Liu3 Abstract Background: In the marine brown macroalgae, the morphological characters are highly similar between two widely distributed genera, Homoeostrichus and Zonaria (Dictyotaceae), thereby resulting in the difficulty of exploring their hidden biodiversity. Owing to the help of the molecular tools, it is now easy for scientists to objectively describe a new species in nature. In this study, we make a description on the Homoeostrichus formosana sp. nov. from Taiwan, Indo-Pacific Ocean based on the morphological evidence and molecular data. Results: Our morphological observations revealed that this species has marginal row of apical cells responsible for thallus growth and the thallus with four layers of cells except the marginal regions. The cortical cell lies upon each medullary cell in transverse section, and two cortical cells upon each medullary cell in longitudinal section. Tetrasporangium is developed from cortical cell with stalk cell and singly scattered over the thallus surface, and has no indusia and paraphyses. Molecularly, the phylogenetic trees based on SSU, psaA, psbA, and rbcL gene sequences supported that Homoeostrichus species are closely related to Exallosorus species and clearly separated from each others in addition to Zonaria species. Conclusions: Homoeostrichus formosana sp. nov. can now be clearly distinguished from E. harveyanus and Japanese H. flabellatus. Keywords: Dictyotaceae; Homoeostrichus formosana; Phaeophyceae; Taiwan; Zonarieae Background (Phillips 1997; Phillips and Nelson 1998), and most of The three genera, Exallosorus Phillips 1997, Homoeostrichus them are endemic to Australia (Womersley 1987; Phillips J.
    [Show full text]
  • Dictyotales, Phaeophyceae) Species from the Canary Islands1
    J. Phycol. 46, 1075–1087 (2010) Ó 2010 Phycological Society of America DOI: 10.1111/j.1529-8817.2010.00912.x NICHE PARTITIONING AND THE COEXISTENCE OF TWO CRYPTIC DICTYOTA (DICTYOTALES, PHAEOPHYCEAE) SPECIES FROM THE CANARY ISLANDS1 Ana Tronholm,2 Marta Sanso´n, Julio Afonso-Carrillo Departamento de Biologı´a Vegetal (Bota´nica), Universidad de La Laguna, 38271 La Laguna, Canary Islands, Spain Heroen Verbruggen, and Olivier De Clerck Research Group Phycology and Centre for Molecular Phylogenetics and Evolution, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium Coexistence in a homogeneous environment The advent of DNA sequencing two decades ago requires species to specialize in distinct niches. has considerably altered our ideas about algal spe- Sympatry of cryptic species is of special interest to cies-level diversity. A plethora of studies has revealed both ecologists and evolutionary biologists because cryptic or sibling species within morphologically the mechanisms that facilitate their persistent coexis- defined species, falsifying the assumption that speci- tence are obscure. In this study, we report on two ation events always coincide with any noticeable sympatric Dictyota species, D. dichotoma (Huds.) morphological differentiation. As aptly stated by J. V. Lamour. and the newly described species Saunders and Lemkuhl (2005), species do not D. cymatophila sp. nov., from the Canary Islands. evolve specifically to render their identification Gene sequence data (rbcL, psbA, nad1, cox1, cox3, easier for scientists. In many cases, the respective and LSU rDNA) demonstrate that D. dichotoma and cryptic species are confined to discrete nonoverlap- D. cymatophila do not represent sister species. ping geographic regions.
    [Show full text]
  • Redalyc.On the Presence of Fertile Gametophytes of Padina Pavonica
    Anales del Jardín Botánico de Madrid ISSN: 0211-1322 [email protected] Consejo Superior de Investigaciones Científicas España Gómez Garreta, Amelia; Lluch, Jordi Rull; Barceló Martí, M. Carme; Ribera Siguan, M. Antonia On the presence of fertile gametophytes of Padina pavonica (Dictyotales, Phaeophyceae) from the Iberian coasts Anales del Jardín Botánico de Madrid, vol. 64, núm. 1, enero-junio, 2007, pp. 27-33 Consejo Superior de Investigaciones Científicas Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=55664102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anales del Jardín Botánico de Madrid Vol. 64(1): 27-33 enero-junio 2007 ISSN: 0211-1322 On the presence of fertile gametophytes of Padina pavonica (Dictyotales, Phaeophyceae) from the Iberian coasts by Amelia Gómez Garreta, Jordi Rull Lluch, M. Carme Barceló Martí & M. Antonia Ribera Siguan Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain. [email protected] (corresponding author), [email protected], [email protected], [email protected] Abstract Resumen Gómez Garreta, A., Rull Lluch, J., Barceló Martí, M.C. & Ribera Gómez Garreta, A., Rull Lluch, J., Barceló Martí, M.C. & Ribera Siguan, M.A. 2007. On the presence of fertile gametophytes of Siguan, M.A. 2007. Sobre la presencia de gametófitos fértiles de Padina pavonica (Dictyotales, Phaeophyceae) from the Iberian Padina pavonica (Dictyotales, Phaeophyceae) en las costas ibéri- coasts.
    [Show full text]
  • Dictyotales, Phaeophyceae)1
    ƒ. Phycol. 46, 1301-1321 (2010) © 2010 Phycological Society of America DOI: 10.1 lll/j.1529-8817.2010.00908.x SPECIES DELIMITATION, TAXONOMY, AND BIOGEOGRAPHY OF D ICTYO TA IN EUROPE (DICTYOTALES, PHAEOPHYCEAE)1 Ana Tronholn? Departamento de Biología Vegetal (Botánica) , Universidad de La Laguna, 38271 La Laguna, Canary Islands, Spain Frederique Steen, Lennert Tyberghein, Frederik Leliaert, Heroen Verbruggen Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Rrijgslaan 281, Building S8, 9000 Ghent, Belgium M. Antonia Ribera Signan Unitat de Botánica, Facultat de Farmacia, Universität de Barcelona, Joan XXIII s/n, 08032 Barcelona, Spain and Olivier De Clerck Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Rrijgslaan 281, Building S8, 9000 Ghent, Belgium Taxonomy of the brown algal genus Dictyota has a supports the by-product hypothesis of reproductive long and troubled history. Our inability to distin­ isolation. guish morphological plasticity from fixed diagnostic Key index words: biogeography; Dictyota; Dictyotales; traits that separate the various species has severely diversity; molecular phylogenetics; taxonomy confounded species delineation. From continental Europe, more than 60 species and intraspecific taxa Abbreviations: AIC, Akaike information criterion; have been described over the last two centuries. Bí, Bayesian inference; BIC, Bayesian information Using a molecular approach, we addressed the criterion; GTR, general time reversible; ML, diversity of the genus in European waters and made maximum likelihood necessary taxonomic changes. A densely sampled DNA data set demonstrated the presence of six evo- lutionarily significant units (ESUs): Dictyota dichotoma Species of the genus Dictyota J. V. Lamour., along (Huds.) J. V.
    [Show full text]