A New Genus, Prasinococcus, and a New Species, P, Capsulatus, Are De

Total Page:16

File Type:pdf, Size:1020Kb

A New Genus, Prasinococcus, and a New Species, P, Capsulatus, Are De J. Gen. App!. Microbio!., 39, 571-582 (1993) PRASINOCOCCUS CAPSULATUS GEN. ET SP. NOV., A NEW MARINE COCCOID PRASINOPHYTE HIDEAKI MIYASHITA,' * HISATO IKEMO T0,' NORIHIDE KURANO,' SIGETOH MIYACHI,2 AND MITSUO CHIHARA"3 'Marine Biotechnology Institute , Kamaishi Laboratories, Kamaishi 026, Japan 2Marine Biotechnology Institute , Bunkyo-ku, Tokyo 113, Japan 3Japanese Red Cross College of Nursing , Shibuya-ku, Tokyo 150, Japan (Received July 2, 1993) A new genus, Prasinococcus, and a new species, P, capsulatus, are de- scribed on the basis of specimen that appeared in enriched cultures inoculated from water samples in the western Pacific Ocean. Cells of this unicellular alga are spherical and surrounded with a large amount of gelatinous matrix. The pigment composition, which includes chlorophylls a and b, prasinoxarithin, Mg 2,4-diviriylphaeoporphyrin a5 monomethyl ester (Mg 2,4-D) and 5,6-epoxy-3,3 '-dihydroxy-5,6,7',8'-tetrahydro$-E- caroten-11',19-olide (uriolide), is close to that observed in the Mamiel- lales (Prasinophyceae). The cell is non-flagellate and has a firm cell wall, but no scales on the cell body. The pyrerioid has a characteristic structure in which a mitochondrial lobe and chloroplast outer membranes protrude into the pyrenoid matrix. The cell wall has a projecting appendage like a circle collar surrounded by distinctive holes penetrating the cell wall. Since the cell contains no 3-deoxy-manno-octulosonic acid (KDO), the wall is considered to have a different origin from the cell coverings which consist of fused scales in 1 etraseimis species. It has a characteristic way of asexual reproduction in which, after cell division, one cell remains within the parent cell wall while the other is extruded. This suggests that this alga be placed tentatively in the Pycnococcaceae (Order Marniellales) on the basis of the pigment composition and morphological characteris- tics, but the taxonomic position of coccoid prasinophytes rrray need to be reconsidered. Since the cells of prasinophycean algae are generally covered with scales instead of cell walls, they are considered to be the most primitive forms of * Address reprint requests to: Mr . Hideaki Miyashita, Marine Biotechnology Institute, Kamaishi Laboratories, 3-75-1 Heita, Kamaishi 026, Japan. 571 572 MIYASHITA et al. VOL. 39 green-colored algae. With few exceptions, a scaly cell with an apical depression having two or four flagella with bluntly rounded ends is the typical feature of the Prasinophyceae. Cells of Tetraselmis species have a theca rather than body scales, but the origin of theca is thought to be scales because of the presence of 2-keto sugar acids (2) and the active production of scales in the Golgi body (3). Recently, two taxa of coccoid prasinophytes, Bathycoccus prasinos (4) and Pycnococcus provasolii (8), were described. These two taxa were placed tentatively in the order Mamiellales on the basis of the presence of scales and the pigment composition, respectively. This article focuses on the description of the characteristics of another related taxon of non-flagellated coccoid algae, Prasinococcus capsulatus Miyashita et Chihara gen. et sp. nov., isolated from pelagic waters in the western Pacific Ocean. MATERIALS AND METHODS Isolation and cultivation. During a cruise by the research vessel Sohgen-maru of Marine Biotechnology Institute, in November and December, 1990, seawater samples were collected at 64 localities in the western Pacific Ocean, from 31 ° N to 12° S. One liter of seawater was filtered through a nitrocellulose membrane filter (pore size 0.45 ,am, Toyo Roshi, Tokyo, Japan), and the filter was then incubated in several seawater-based and artificial seawater media at 25°C under continuous illumination (150 1aE m-2 sec -') . Samples were brought back to the Kamaishi Laboratories, and serial transfers were carried out to isolate the dominant species in each culture. Microalgal species in these enrichment cultures were recorded by light microscopic photographs and classified on the basis of their morphological features. Isolation was carried out by pipetting an individual cell under microscop- ic observation to establish the unialgal culture. The cells were cultured in a 500 ml flat oblong glass vessel with ESM medium (16) at 25°C under fluorescent illumina- tion (14 h day-', 80,uE m-2 sec-') and used for following experiments. Electron microscopy. For transmission electron microscopy (TEM), two methods were employed for cell fixation. One was the simultaneous glutaraldehyde/ osmic acid fixation described by Melkonian and Preisig (9), in which cells were suspended in 0.1 M phosphate buffer (pH 7.0) containing 2.0% glutaraldehyde, 0.7% 0804 and 1.0% NaCI at 0-4°C for 30-60 min. In the second method, cells were prefixed with 1.0% glutaraldehyde solution containing 0.1 M phosphate buffer (pH 7.0) and 1.5% NaCI. The cells were then suspended in the same buffer containing 1.0% 0504. Before embedding in Spurr's resin (1S), the fixed cells were buried in 1.0% agar and dehydrated with a 50-100% ethanol series. Ultrathin sections were cut with a diamond knife on a Porter-Blum Mt-1 Ultramicrotome, collected on slot grids and double-stained with uranyl acetate and lead citrate (13). Observations were carried out with a Hitachi H-7000 transmission electron micro- scope. Pigment analysis. Pigment composition was analyzed using the reverse-phase 1993 Prasinococcus capsulatus gen. et sp. nov. 573 HPLC method described by Fawley (S). Cells were collected by centrifugation and the pigments were extracted with cold methanol. The extract was centrifuged, and 100 al of supernatant was injected into a TSKge1 ODS-80Ts column (25 cm X 4.6 mm I.D., 5,am particle size, Tohsoh, Tokyo, Japan). The HPLC system (Tohsoh) consisted of a CCMP pump, a Rheodyne injector, a packed column, a UV detector (UV-8010) and a system controller (SC8010). A photodiode array UV-visible detector system (SPD-M6A, Shimadzu, Kyoto, Japan) was also used to measure the spectra of eluted pigments. Solvents used were A) methanol : water (9 :1), and B) 100% methanol. Samples were eluted with 100% solvent A for 3 min, then passed through a linear gradient from 100% solvent A to 100% solvent B in 10 min. The initial flow rate of 1.0 ml min-' was increased to 2.0 ml min -' at 20 min. The eluted pigments were detected by the absorbance at 440 nm. The retention times and the spectra of each peak of eluted pigment were compared with those from two reference strains, Mantoniella squamata and Micromonas pusilla, which were kindly supplied by Dr. Isao Inouye (University of Tsukuba). Detection of 3-deoxy-manno-2-octulosonic acid. Cells were harvested by cen- trifugation and washed once with filtered seawater and twice with methanol. The precipitates were dried and resuspended in 5% HCl methanol solution (Wako Chemicals, Tokyo, Japan). Samples were incubated in sealed tubes at 85°C for 18 h. The insoluble materials were removed by centrifugation and the supernatant was dried in vacuo. Detection of 3-deoxy-manno-2-octulosonic acid (KDO) in the extract was performed as described by Becker et al. (2). The samples were trimethylsilylated with pyridine/chlorotrimethylsilane/hexamethyldisilazane (5: 1: 1) for 30 min at room temperature and analyzed with capillary gas-liquid chroma- tography (GC-14A; Shimadzu, DB-1 column: 30m X 0.25 mm I.D., J & W Scien- tific, California, U.S.A.). The presence of KDO in the samples was identified by comparing the chromatograms with those of trimethylsilylated methyl glycosides prepared from KDO (Sigma, St. Louis, U.S.A.) and the methanolysates from Mantoniella squamata from Dr. I. Inouye and Tetraselmis chui CS-26 obtained from CSIRO Marine Laboratories, Tasmania, Australia. RESULTS Distribution A new species of a non-flagellated coccoid alga, Prasinococcus capsulatus, which has a cell wall and a distinct polysaccharide capsule around the cell, was isolated from pelagic waters throughout the course of the cruise (Fig. 1). It was found in seawaters from surface to a depth of 200 m. The alga was observed in microscope preparations in the enrichment culture samples from 34 of 64 survey sites. It did not grow in cultures using artificial seawater media. Isolations were made from nine samples: that obtained from the surface water at Site No. 4 (27°48' N, 142°03' E, water temperature 23.2°C) was selected as the type strain of this new marine alga. All the observations and analyses described in this paper were 574 MIYASHITA et al. VOL. 39 conducted on this type strain. The type strain is maintained at Marine Biotechnol- ogy Institute, the Karnaishi Laboratories, Japan. Light microscopy The alga is unicellular. Cells are solitary, non-flagellate, spherical, occasionally ovoid or subspherical, 3.5-5.5 urn and rarely reaching 8,urn in diameter, and yellow-green in color. They are surrounded with a thick gelatinous envelope which is easily observed in the cell suspensions mounted in Indian ink (Fig. 2). The capsule is ellipsoidal or drop-shaped, ranging 10-15,am wide and 12-26 ,am long. The cells have a single chloroplast which is parietal and cup-shaped. It is deeply Fig. 1. Distribution of P. capsulatus in the western Pacific Ocean. The alga was found at 34 points (Q) and isolated from 9 points (.) of the 64 survey points. Fig. 2. P. capsulatus (phase contrast). A) Cells in culture medium. B) Cells mounted in Indian ink. Scale bar= l0,um. Fig. 3. P. capsulatus (electron micrographs). A) Vertical section of cell showing the arrangement of organelles. Scale bar= LO tem. B) Section through nucleus showing the arrangement of pyrenoid and nucleus. Scale bar =1.0,um. C) Part of cell showing the detailed structure of pyrenoid matrix. Scale bar =0.5 ICm.
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • An Unrecognized Ancient Lineage of Green Plants Persists in Deep Marine Waters1
    J. Phycol. 46, 1288–1295 (2010) Ó 2010 Phycological Society of America DOI: 10.1111/j.1529-8817.2010.00900.x AN UNRECOGNIZED ANCIENT LINEAGE OF GREEN PLANTS PERSISTS IN DEEP MARINE WATERS1 Frederick W. Zechman2,3 Department of Biology, California State University Fresno, 2555 East San Ramon Ave, Fresno, California 93740, USA Heroen Verbruggen,3 Frederik Leliaert Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium Matt Ashworth University Station MS A6700, 311 Biological Laboratories, University of Texas at Austin, Austin, Texas 78712, USA Mark A. Buchheim Department of Biological Science, University of Tulsa, Tulsa, Oklahoma 74104, USA Marvin W. Fawley School of Mathematical and Natural Sciences, University of Arkansas at Monticello, Monticello, Arkansas 71656, USA Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58105, USA Heather Spalding Botany Department, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA Curt M. Pueschel Department of Biological Sciences, State University of New York at Binghamton, Binghamton, New York 13901, USA Julie A. Buchheim, Bindhu Verghese Department of Biological Science, University of Tulsa, Tulsa, Oklahoma 74104, USA and M. Dennis Hanisak Harbor Branch Oceanographic Institution, Fort Pierce, Florida 34946, USA We provide molecular phylogenetic evidence that Key index words: Chlorophyta; green algae; molec- the obscure genera Palmophyllum Ku¨tz. and Verdigel- ular phylogenetics; Palmophyllaceae fam. nov.; las D. L. Ballant. et J. N. Norris form a distinct and Palmophyllales ord. nov.; Palmophyllum; Prasino- early diverging lineage of green algae. These pal- phyceae; Verdigellas; Viridiplantae melloid seaweeds generally persist in deep waters, Abbreviations: AU, approximately unbiased; BI, where grazing pressure and competition for space Bayesian inference; ML, maximum likelihood; are reduced.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Identification of a Dual Orange/Far-Red and Blue Light Photoreceptor From
    ARTICLE https://doi.org/10.1038/s41467-021-23741-5 OPEN Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton Yuko Makita1,13, Shigekatsu Suzuki2,13, Keiji Fushimi3,4,5,13, Setsuko Shimada1,13, Aya Suehisa1, Manami Hirata1, Tomoko Kuriyama1, Yukio Kurihara1, Hidefumi Hamasaki1,6, Emiko Okubo-Kurihara1, Kazutoshi Yoshitake7, Tsuyoshi Watanabe8, Masaaki Sakuta 9, Takashi Gojobori10, Tomoko Sakami11, Rei Narikawa 3,4,5,12, ✉ Haruyo Yamaguchi 2, Masanobu Kawachi2 & Minami Matsui 1,6 1234567890():,; Photoreceptors are conserved in green algae to land plants and regulate various develop- mental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a crypto- chrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/ blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities. 1 Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan. 2 Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan. 3 Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan. 4 Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan. 5 Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
    [Show full text]
  • Diversity and Evolution of Algae: Primary Endosymbiosis
    CHAPTER TWO Diversity and Evolution of Algae: Primary Endosymbiosis Olivier De Clerck1, Kenny A. Bogaert, Frederik Leliaert Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 56 1.1. Early Evolution of Oxygenic Photosynthesis 56 1.2. Origin of Plastids: Primary Endosymbiosis 58 2. Red Algae 61 2.1. Red Algae Defined 61 2.2. Cyanidiophytes 63 2.3. Of Nori and Red Seaweed 64 3. Green Plants (Viridiplantae) 66 3.1. Green Plants Defined 66 3.2. Evolutionary History of Green Plants 67 3.3. Chlorophyta 68 3.4. Streptophyta and the Origin of Land Plants 72 4. Glaucophytes 74 5. Archaeplastida Genome Studies 75 Acknowledgements 76 References 76 Abstract Oxygenic photosynthesis, the chemical process whereby light energy powers the conversion of carbon dioxide into organic compounds and oxygen is released as a waste product, evolved in the anoxygenic ancestors of Cyanobacteria. Although there is still uncertainty about when precisely and how this came about, the gradual oxygenation of the Proterozoic oceans and atmosphere opened the path for aerobic organisms and ultimately eukaryotic cells to evolve. There is a general consensus that photosynthesis was acquired by eukaryotes through endosymbiosis, resulting in the enslavement of a cyanobacterium to become a plastid. Here, we give an update of the current understanding of the primary endosymbiotic event that gave rise to the Archaeplastida. In addition, we provide an overview of the diversity in the Rhodophyta, Glaucophyta and the Viridiplantae (excluding the Embryophyta) and highlight how genomic data are enabling us to understand the relationships and characteristics of algae emerging from this primary endosymbiotic event.
    [Show full text]
  • Into the Deep: New Discoveries at the Base of the Green Plant Phylogeny
    Prospects & Overviews Review essays Into the deep: New discoveries at the base of the green plant phylogeny Frederik Leliaert1)Ã, Heroen Verbruggen1) and Frederick W. Zechman2) Recent data have provided evidence for an unrecog- A brief history of green plant evolution nised ancient lineage of green plants that persists in marine deep-water environments. The green plants are a Green plants are one of the most dominant groups of primary producers on earth. They include the green algae and the major group of photosynthetic eukaryotes that have embryophytes, which are generally known as the land plants. played a prominent role in the global ecosystem for While green algae are ubiquitous in the world’s oceans and millions of years. A schism early in their evolution gave freshwater ecosystems, land plants are major structural com- rise to two major lineages, one of which diversified in ponents of terrestrial ecosystems [1, 2]. The green plant lineage the world’s oceans and gave rise to a large diversity of is ancient, probably over a billion years old [3, 4], and intricate marine and freshwater green algae (Chlorophyta) while evolutionary trajectories underlie its present taxonomic and ecological diversity. the other gave rise to a diverse array of freshwater green Green plants originated following an endosymbiotic event, algae and the land plants (Streptophyta). It is generally where a heterotrophic eukaryotic cell engulfed a photosyn- believed that the earliest-diverging Chlorophyta were thetic cyanobacterium-like prokaryote that became stably motile planktonic unicellular organisms, but the discov- integrated and eventually evolved into a membrane-bound ery of an ancient group of deep-water seaweeds has organelle, the plastid [5, 6].
    [Show full text]
  • An Unrecognized Ancient Lineage of Green Plants Persists in Deep Marine Waters
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2010 Phycological Society of America. This manuscript is an author version with the final publication available at http://www.wiley.com/WileyCDA/ and may be cited as: Zechman, F. W., Verbruggen, H., Leliaert, F., Ashworth, M., Buchheim, M. A., Fawley, M. W., Spalding, H., Pueschel, C. M., Buchheim, J. A., Verghese, B., & Hanisak, M. D. (2010). An unrecognized ancient lineage of green plants persists in deep marine waters. Journal of Phycology, 46(6), 1288‐1295. (Suppl. material). doi:10.1111/j.1529‐8817.2010.00900.x J. Phycol. 46, 1288–1295 (2010) Ó 2010 Phycological Society of America DOI: 10.1111/j.1529-8817.2010.00900.x AN UNRECOGNIZED ANCIENT LINEAGE OF GREEN PLANTS PERSISTS IN DEEP MARINE WATERS1 Frederick W. Zechman2,3 Department of Biology, California State University Fresno, 2555 East San Ramon Ave, Fresno, California 93740, USA Heroen Verbruggen,3 Frederik Leliaert Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium Matt Ashworth University Station MS A6700, 311 Biological Laboratories, University of Texas at Austin, Austin, Texas 78712, USA Mark A. Buchheim Department of Biological Science, University of Tulsa, Tulsa, Oklahoma 74104, USA Marvin W. Fawley School of Mathematical and Natural Sciences, University of Arkansas at Monticello, Monticello, Arkansas 71656, USA Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58105, USA Heather Spalding Botany Department, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA Curt M. Pueschel Department of Biological Sciences, State University of New York at Binghamton, Binghamton, New York 13901, USA Julie A.
    [Show full text]
  • 7 Systematics of the Green Algae
    7989_C007.fm Page 123 Monday, June 25, 2007 8:57 PM Systematics of the green 7 algae: conflict of classic and modern approaches Thomas Pröschold and Frederik Leliaert CONTENTS Introduction ....................................................................................................................................124 How are green algae classified? ........................................................................................125 The morphological concept ...............................................................................................125 The ultrastructural concept ................................................................................................125 The molecular concept (phylogenetic concept).................................................................131 Classic versus modern approaches: problems with identification of species and genera.....................................................................................................................134 Taxonomic revision of genera and species using polyphasic approaches....................................139 Polyphasic approaches used for characterization of the genera Oogamochlamys and Lobochlamys....................................................................................140 Delimiting phylogenetic species by a multi-gene approach in Micromonas and Halimeda .....................................................................................................................143 Conclusions ....................................................................................................................................144
    [Show full text]
  • Molecular Phylogeny and Classification of The
    ARTICLE IN PRESS Protist, Vol. ], ]]]–]]], ]] ]]]] http://www.elsevier.de/protis Published online date 10 December 2009 ORIGINAL PAPER Molecular Phylogeny and Classification of the Mamiellophyceae class. nov. (Chlorophyta) based on Sequence Comparisons of the Nuclear- and Plastid-encoded rRNA Operons Birger Marin1, and Michael Melkonian Biowissenschaftliches Zentrum, Botanisches Institut, Lehrstuhl I, Universitat¨ zu Koln,¨ Otto-Fischer-Str. 6, 50674 Koln,¨ Germany Submitted August 10, 2009; Accepted October 19, 2009 Monitoring Editor: David Moreira Molecular phylogenetic analyses of the Mamiellophyceae classis nova, a ubiquitous group of largely picoplanktonic green algae comprising scaly and non-scaly prasinophyte unicells, were performed using single and concatenated gene sequence comparisons of the nuclear- and plastid-encoded rRNA operons. The study resolved all major clades within the class, identified molecular signature sequences for most clades through an exhaustive search for non-homoplasious synapomorphies [Marin et al. (2003): Protist 154: 99-145] and incorporated these signatures into the diagnoses of two novel orders, Monomastigales ord nov., Dolichomastigales ord. nov., and four novel families, Monomastigaceae fam. nov., Dolichomastigaceae fam. nov., Crustomastigaceae fam. nov., and Bathycoccaceae fam. nov., within a revised classification of the class. A database search for the presence of environmental rDNA sequences in the Monomastigales and Dolichomastigales identified an unexpectedly large genetic diversity of Monomastigales
    [Show full text]
  • Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats
    Early photosynthetic eukaryotes inhabited PNAS PLUS low-salinity habitats Patricia Sánchez-Baracaldoa,1, John A. Ravenb,c, Davide Pisanid,e, and Andrew H. Knollf aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bDivision of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; cPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; dSchool of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; eSchool of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; and fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 SEE COMMENTARY Edited by Peter R. Crane, Oak Spring Garden Foundation, Upperville, Virginia, and approved July 7, 2017 (received for review December 7, 2016) The early evolutionary history of the chloroplast lineage remains estimates for the origin of plastids ranging over 800 My (7). At the an open question. It is widely accepted that the endosymbiosis that same time, the ecological setting in which this endosymbiotic event established the chloroplast lineage in eukaryotes can be traced occurred has not been fully explored (8), partly because of phy- back to a single event, in which a cyanobacterium was incorpo- logenetic uncertainties and preservational biases of the fossil re- rated into a protistan host. It is still unclear, however, which cord. Phylogenomics and trait evolution analysis have pointed to a Cyanobacteria are most closely related to the chloroplast, when the freshwater origin for Cyanobacteria (9–11), providing an approach plastid lineage first evolved, and in what habitats this endosym- to address the early diversification of terrestrial biota for which the biotic event occurred.
    [Show full text]
  • Are the Green Algae (Phylum Viridiplantae) Two Billion Years Old?
    Carnets de Géologie / Notebooks on Geology - Article 2006/03 (CG2006_A03) Are the green algae (phylum Viridiplantae) two billion years old? Bernard TEYSSÈDRE1 Abstract: In his book, Life on a young planet, A.H. KNOLL states that the first documented fossils of green algae date back 750 Ma. However, according to B. TEYSSÈDRE's book, La vie invisible, they are much older. Using a method which combines paleontology and molecular phylogeny, this paper is an inquiry into the Precambrian fossils of some "acritarchs" and of a primitive clade of green algae, the Pyramimonadales. A paraphyletic group of unicellular green algae, named "Prasinophyceae", is represented at Thule (Greenland) ca. 1200 Ma by several morphotypes of the monophyletic Pyramimonadales, including Tasmanites and Pterospermella that are akin to algae still living today. These two, and others, probably had forerunners going back 1450 / 1550 Ma. Some acritarchs that may represent Pyramimonadales producing "phycomas" which split open for dehiscence were confusingly included in the polyphyletic pseudo-taxon "Leiosphaeridia" and are possibly already present at Chuanlinggou, China, ca. 1730 Ma. Many acritarchs that TIMOFEEV obtained by acid maceration of Russian samples dated between 1800 and 2000 Ma were probably unicellular Chlorophyta which synthesized algaenans or other biopolymers resistant to acetolysis. Living Prasinophyceae are undoubtedly green algae (Viridiplantae). Thus, if Prasinophyceae fossils go back certainly to 1200 Ma, probably to 1500 Ma and possibly to 1730 Ma, then the ancestor of green algae (Chlorophyta and Streptophyta) probably separated from the ancestor of red algae (Rhodophyta) as early as 2000 Ma. Key Words: Chlorophyta, Leiosphaeridia, Prasinophyceae, Precambrian algae, Pterospermella, Pterospermopsimorpha, Pyramimonadales, Spiromorpha, Tasmanites, Viridiplantae Citation: TEYSSEDRE B.
    [Show full text]